2014-2015学年华师大版九年级数学下第二十六章二次函数章末测试(三)
- 格式:doc
- 大小:597.00 KB
- 文档页数:23
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y= x−ℎ2+k的形式,结果为( )A. y=x+22+5B. y=x+22−5C. y=x−22+5D. y=x−22−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.x2+ 17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣14846x+2,则大力同学投掷标枪的成绩是________m.4818.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关x2+3x+2.问:小球能达到的最大高度是多少?系为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=x−22−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
期末专题复习:华师大版九年级数学下册第26章二次函数单元评估检测试卷一、单选题(共10题;共30分)1.已知抛物线y=(m+1)x2+2的顶点是此抛物线的最高点,那么m的取值范围是()A. m≠0B. m≠﹣1 C. m>﹣1 D. m<﹣12.下列函数是二次函数的是()A. y=2x+2B. y=﹣2x C. y=x2+2D. y=x﹣23.二次函数的最小值是A. −1B. 1C. −2D. 24.要得到二次函数y=﹣2(x﹣1)2﹣1的图象,需将y=﹣2x2的图象()A. 向左平移2个单位,再向下平移3个单位B. 向右平移2个单位,再向上平移1个单位C. 向右平移1个单位,再向下平移1个单位D. 向左平称1个单位,再向上平移3个单位5.若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2013的值为()A. 2012B. 2013C. 2014D. 20156.抛物线y=(x+2)2﹣1可以由抛物线y=x2平移得到,下列平移方法中正确的是()A. 先向左平移2个单位,再向上平移1个单位B. 先向左平移2个单位,再向下平移1个单位C. 先向右平移2个单位,再向上平移1个单位D. 先向右平移2个单位,再向下平移1个单位7.二次函数y=ax2+bx+c的图象如图所示,则在下列说法中,与此函数的系数相关的一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A. 方程有两个相等的实数根 B. 方程的实数根的积为负数C. 方程有两个正的实数根 D. 方程没有实数根8.已知b>0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示。
根据图象分析,a的值等于()A. -2B. -1C. 1D. 29.二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论正确的是()A. abc>B. 方程ax2+bx+c=0有两个实数根分别为-2和6C. a-b+c<D. 当y=4时,x的取值只能为010.已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.则正确的结论是()A. (1)(2)(3)(4)B. (2)(4)(5)C. (2)(3)(4)D. (1)(4)(5)二、填空题(共10题;共33分)11.抛物线y=2y2+4向左平移2个单位长度,得到新抛物线的表达式为________.12.二次函数y=−2y2+3y−4,当x=________时,y的值最大。
第26章 二次函数检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.下列关系式中,属于二次函数的是(x 为自变量)( ) A.219y x =B.yC.21y x= D.22y a x = 2.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论中正确的是( )A.c >-1B.b >0C.02≠+b aD.b c a 39>+3.(2014•成都中考)将二次函数223y x x =-+化为2()y x h k =-+的 形式,结果为( )A.2(1)4y x =++B.2(1)2y x =++C.2(1)4yx =-+ D.2(1)2y x =-+4.抛物线21=+44y x x --的对称轴是( )A.=2x -B.=2xC.=4x -D.=4x5.已知二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论中,正确的是( ) A.0,0ab c >> B.0,0ab c ><C. 0,0ab c <>D.0,0ab c << 6.二次函数()20y ax bx c a =++≠的图象如图所示,则点,c b a ⎛⎫⎪⎝⎭在第( )象限.A. 一B. 二C. 三D. 四7.如图所示,已知二次函数()20y ax bx c a =++≠的图象的顶点P 的横坐标是4,图象交x 轴于点(),0A m 和点B ,且>4m ,则AB 的长是( ) A.4m + B.m C.28m - D.82m -8.若一次函数()=+0y ax b a ≠的图象经过第二、三、四象限,则二次函数2=+y ax bx 的图象只可能是()第5题图第6题图第7题图第2题图9.已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线=1x -,()()111222,,,P x y P x y 是抛物线上的点,()333,P x y 是直线l 上的点,且1231,1x x x -<<<-, 则123,,y y y 的大小关系是( )A.123y y y <<B.231y y y <<C.312y y y <<D.213y y y <<10.把抛物线2241y x x =-++的图象向左平移2个单位,再向上平移3个单位,所得的抛 物线的函数关系式是( )A.()2=21+6y x -- B.()2=216y x --- C.()2=2+1+6y x - D.()2=2+16y x --11.(2013•贵州遵义中考)二次函数()20y ax bx c a =++≠的图象如图所示,若,42,2M a b c N a b c P a b =+-=-+=-,则,,M N P 中,值小于0的数有( )A.3个B.2个C.1个D.0个12.(2013•四川资阳中考)如图,抛物线()20y ax bx c a =++≠过点(1,0)和点(0,-2),且顶点在第三象限,设P a b c =-+,则P 的取值范围 是( )A.40P-<< B.42P --<< C.20P -<< D.10P -<<二、填空题(每小题4分,共24分)13.(2014•长沙中考)抛物线23(2)5y x =-+的顶点坐标 是 .14.(2013•辽宁营口中考)二次函数2y x bx c =-++的图象如第9题图第11题图第12题图第14题图图所示,则一次函数y bx c =+的图象不经过第 象限.15.已知二次函数2=++y ax bx c 的图象交x 轴于,A B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________. 16.(2014•杭州中考)设抛物线2(0)yax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x =上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 .17.(2014•河南中考)已知抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点.若点A 的坐标为()2,0-,抛物线的对称轴为直线x =2,则线段AB 的长为 .18.已知抛物线22y x x b =++经过点1,4a ⎛⎫- ⎪⎝⎭和()1,a y -,则1y 的值是_________.三、解答题(共72分)19.(8分)若二次函数的图象的对称轴方程是直线3=2x ,且图象过(04)A -,和(40)B ,. (1)求此二次函数图象上点A 关于对称轴3=2x 对称的点A '的坐标; (2)求此二次函数的解析式.20.(8分)在直角坐标平面内,点O 为坐标原点,二次函数()()2 54y x k x k =+--+的图象交x 轴于点12(0),(0)A x B x ,,,且()()12118x x ++=-. (1)求二次函数的解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△C PO 的面积.21.(8分)已知:如图,二次函数()20y ax bx c a =++≠的图 象与x 轴 交于,A B 两点,其中A 点坐标为(10)-,,点 (05)C ,,另抛物线经过点(18),,M 为它的顶点. (1)求抛物线的解析式;(2)求△MCB 的面积MCB S △.22.(8分)(2014•北京中考)在平面直角坐标系xOy 中,抛物线22yx mx n =++经过点A (0, -2),B (3, 4).(1)求抛物线的表达式及对称轴;第22题图第21题图(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A , B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.23. (8分)(2014•安徽中考)若两个二次函数图像的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数; (2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.24.(10分)(2014•河北中考)如下图,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点,抛物线l 的解析式为y =(-1)n x²+bx +c (n 为整数). (1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(10分)如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20 m ,如果水位上升3 m 时,水面CD 的宽是10 m . (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280 km (桥长忽略不计). 货车正以每小时40 km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25 m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?26.(12分)某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当 每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益 (收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用. (2)求y 与x 之间的二次函数关系式.(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该 租出多少套机械设备?请你简要说明理由.(4)请把(2)中所求的二次函数配方成22424b ac by x a a -⎛⎫=++ ⎪⎝⎭的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?第25题图 第24题图第26章 二次函数检测题参考答案1.A 解析:由二次函数的概念知选A.2.D 解析:因为抛物线与轴的交点在(0,-1)的下方,所以c <-1,因此选项A 错误; 观察抛物线发现a >0,02b a->,所以b <0,因此选项B 错误;因为抛物线的对称轴是直线x =1,所以12b a-=,即2b a =-,则20a b +=,所以选项C 错误,故选D.3.D 解析:()22223211312y x x x x x =-+=-+-+=-+.4.B 解析:抛物线21=+44y x x --,直接利用公式,得其对称轴所在直线为x =2.5.C 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-.又因为<0a ,所以0,0b ab ><. 由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c . 6.D 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-. 又因为<0a ,所以0b >.由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c ,所以<0ca.所以点,c b a ⎛⎫⎪⎝⎭在第四象限.7.C 解析:因为二次函数()2+0y ax bx c a =+≠图象顶点P 的 横坐标是4,所以抛物线的对称轴所在的直线为4x =,对称轴与x 轴交于点D , 所以,A B 两点关于对称轴对称.因为点()0A m ,,且>4m ,所以()22-4=28AB AD m m ==-.8.C 解析:因为一次函数()0y ax b a =+≠的图象经过第二、三、四象限, 所以<0,<0,<02ba b a-, 因此二次函数2+y ax bx =的图象开口向下,对称轴在y 轴左侧,交坐标轴于()0,0点. 9.D 解析:因为抛物线的对称轴为直线=1x -,且121x x -<<,当>1x -时,由图象知,y 随x 的增大而减小,所以21<y y .又因为31x <-,此时点()333,P x y 在二次函数图象上方,所以213y y y <<. 10.C 解析:原二次函数变形为,将其图象向左平移2个单位,函数解析式变为,再向上平移3个单位,函数解析式变为,所以答案选C.11.A 解析:∵ 图象开口向下,∴0a <. ∵ 对称轴在y 轴左侧,∴,a b 同号,∴ 00a b <,<. ∵ 图象经过y 轴正半轴,∴ 0c >,∴ 0M a b c =+-<. 当2x =-时,420y a b c =-+<,∴ 420N a b c =-+<.∵ 2b a ->-1,∴ 2ba<1,∴2b a >, ∴ 20a b -<,∴ 20P a b =-<,则,,M N P 中,值小于0的数有,,M N P .故选A.13. (2,5) 解析:抛物线()2y a x h k =-+的顶点坐标是(h ,k ).14.四 解析:根据图象得0,0,0a b c <>>,故一次函数y bx c =+的图象不经过第四象限.15.21y x =-(答案不唯一) 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及ABC △是直角三角形,可知答案不唯一,如21y x =-.16. 211284y x x =-+或213284y x x =-++ 解析:由题意知抛物线的对称轴为1x =或3x =.(1)当对称轴为直线1x =时,2ba =-,抛物线经过(0,2)A ,(4,3)B , ∴ {2,3168,c a a c ==-+解得1,82.a c ==⎧⎪⎨⎪⎩∴ 211284y x x =-+.(2)当对称轴为直线3x =时,6b a =-,抛物线经过(0,2)A ,(4,3)B ,∴{2,31624,c a a c ==-+解得1,82.a c =-=⎧⎪⎨⎪⎩∴ 213284y x x =-++.∴ 抛物线的函数解析式为211284y x x =-+或213284y x x =-++. 17.8 解析:因为点A 到对称轴的距离为4,且抛物线为轴对称图形,所以42⨯=AB 8=.18. 34 解析:将1,4a ⎛⎫- ⎪⎝⎭代入得2214a a b ++=-,所以221+=04a a b ++,即22102a b ⎛⎫++= ⎪⎝⎭,解得1,02a b =-=.所以当x a =-时,134y =.19.解:(1)(34)A '-,. (2)设二次函数解析式为()20y ax bx c a =++≠,由题设知3=,2216+4+=0,=4,b a a b c c ⎧-⎪⎪⎨⎪-⎪⎩∴ 1,3,4,a b c =⎧⎪=-⎨⎪=-⎩∴ 二次函数的解析式为2 34y x x =--.20.解:(1)由题意知12,x x 是方程()2(5)40x k x k +--+=的两根,∴ ()()1212+=5,=+4.x x k x x k ⎧--⎪⎨-⎪⎩又∵ ()()12118x x ++=-, ∴ ()121290x x x x +++=.∴()()4590k k -+--+=.∴5k =. ∴ 二次函数的解析式为29y x =-.(2) ∵ 平移后的函数解析式为()229y x =--,且当0x =时,5y =-, ∴ (05),(29)C P --,,. ∴ 1 5252POC S =⨯⨯=△.21.解:(1)依题意,得0,5,8,a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得1,4,5,a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为2 45y x x =-++. (2)令0y =,得()()12510,5,1x x x x -+===-, ∴ (50)B ,. 由()22 45=2+9y x x x =-++--,得(29)M ,. 作ME y ⊥轴于点E ,则 MCB ECM COB EOBM S S S S =--梯形△△△, 可得MCB S △=15. 22. (1)∵ 22yx mx n =++经过点A (0,-2),B (3,4),代入得:2,1834,n m n =-++=⎧⎨⎩∴ 4,2.m n =-=-⎧⎨⎩∴ 抛物线的表达式为224 2.yx x =--222242221214y x x x x x =--=--=--()(),∴ 其对称轴为直线x =1.(2)由题意可知C (-3,-4),二次函数2242y xx =--的最小值为-4.由图象可以看出D 点纵坐标最小值即为-4, 最大值即BC 与对称轴交点的纵坐标. 设直线BC 的解析式为y =kx +b ,根据题意得34,34,k b k b +=-+=-⎧⎨⎩解得0,4,3b k ==⎧⎪⎨⎪⎩∴ 直线BC 的解析式为4.3y x =当x =1时,4.3y=∴ 点D 纵坐标t 的取值范围是44.3t-≤≤23. 解:(1)本题是开放题,答案不唯一,符合题意即可,如221y x =,22y x =.(2)∵ 函数1y 的图象经过点(1,1)A ,则224211m m -++=,解得1m =. ∴ 221243211()y x x x =-+=-+. 解法一:∵12y y +与1y 为“同簇二次函数”,第22题答图∴ 可设212(1)1(0)y y k x k +=-+>, 则2221(1)1(2)(1)y k x y k x =-+-=--.由题可知函数2y 的图象经过点(0,5),则2(2)15k -⨯=,∴ 25k -=.∴2225(1)5105y x x x =-=-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=5(31)20⨯-=.解法二:∵ 12y y +与1y 为“同簇二次函数”,则212(+2)(4)8(+20)y y a x b x a +=+-+>,∴ 412(2)b a --=+,化简得2b a =-.又232(2)(4)14(2)a b a +--=+,将2b a =- 代入,解得5a =,10b =-.所以225105y x x =-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=53103520⨯-⨯+=.24. 解:(1)n 为奇数,则y =-x 2+bx +c .∵ 点H (0,1)和C (2,1)在抛物线上,∴21,221,c b c =⎧⎨-++=⎩2,1.b c =⎧⎨=⎩解得∴ y =-x 2+2x +1. 故格点E 是该抛物线的顶点. (2)n 为偶数,则y =x 2+bx +c .∵ 点A (1,0)和B (2,0)在抛物线上,∴ 221++0,220,b c b c ⎧=⎪⎨++=⎪⎩3,2.b c =-⎧⎨=⎩解得∴ y =x 2-3x +2.当x =0时,y =2≠1,故点F (0,2)在该抛物线上,而点H (0,1)不在该抛物线上.(3)所有满足条件的抛物线共有8条,如图①所示,当n 为奇数时,由(1)中的抛物线平移又得3条抛物线;如图②所示,当n 为偶数时,由(2)中的抛物线平移又得3条 抛物线.第24题答图25.解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h m ,则),5(h D -,)3,10(--h B .∴ ⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴ 抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为()10.254h ÷=,货车按原来速度行驶的路程为401404200280⨯+⨯=<, ∴ 货车按原来速度行驶不能安全通过此桥.设货车的速度提高到km /h x ,当2801404=⨯+x 时,60=x . ∴ 要使货车安全通过此桥,货车的速度应超过60km /h . 26.解:(1)未租出的设备为10270-x 套,所有未租出设备的支出为)5402(-x 元. (2)2270140(2540)655401010x y x x x x -⎛⎫=---=-++ ⎪⎝⎭.∴ 540651012++-=x x y . (3)当月租金为300元时,租赁公司的月收益为11 040元,此时租出的设备为37套; 当月租金为350元时,租赁公司的月收益为11 040元,此时租出的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32 套;如果考虑市场占有率,应选择出租37套. (4)221165540(325)11102.51010y x x x =-++=--+ . ∴ 当325=x 时,y 有最大值11 102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11 100元.。
二次函数 测试题一、选择题(每小题3分,共30分)1. 下列函数不属于二次函数的是 ( )A.y=(x -1)(x+2)B.y=21(x+1)2 C. y=1-3x 2D. y=2(x+3)2-2x 22.给出下列四个函数:x y 2-=,12-=x y ,32+-=x y (x >0),其中y 随x •的增大而减小的函数有 ( )A .3个B .2个C .1个D .0个 3. 把二次函数2114y x x =+-化为()k h x a y ++=2的形式是 ( ) A .21(1)24y x =++ B .21(2)24y x =+-C .21(2)24y x =-+D .21(2)24y x =--4. 下列说法错误的是 ( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大 B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点 5.二次函数227y x x =-+,当y=8时,对应的x 的值是 ( )A.3B.5C.-3或 5D.3和-56.二次函数24y x x =-的对称轴是 ( )A .2x =-B .4x =C .2x =D .4x =-7.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的解析式是 ( )A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+8. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线圈成的阴影部分的面积为 ( ) A .6 B.8 C.10 D.1210.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0; ④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为( )A .1 B.2 C.3 D.4二、填空题(每小题4分,共32分)11.已知抛物线 82++=kx x y 过点(2,-8),则=k . 12.抛物线21(4)52y x =-+的顶点坐标是 . 13.已知一圆的周长为x cm ,该圆的面积为y cm 2,则y 与x 函数关系式是 . 14.二次函数y =-x 2+6x -5,当x 时, 0<y ,且y 随x 的增大而减小. 15.二次函数2y ax bx c =++的部分对应值如下表:当x =2时,对应的函数值y =.16.如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是17.二次函数y =2x 2+bx +2的图象如图所示,则b = .18.如图,Rt△OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt△OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、解答题(共58分)19.(8分)函数2ax y =(a ≠0)的图象与直线2--=x y 交于点A (2,m ),求a 和m 的值.20.(8分)已知函数3522+--=x x y 。
第二十六章二次函数章末测试(三)一.选择题(共8小题,每题3分)1.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<02.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣43.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.54.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.3是方程ax2+bx+c=0的一个根C. a+b+c=0 D.当x<1时,y随x的增大而减小5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣6.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+18.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a ﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④二.填空题(共8小题,每题3分)9.在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是_________.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是_________.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为_________,其顶点坐标为_________12.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是_________(写出你认为正确的所有结论序号).13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________.14.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有_________.三.解答题(共10小题)15(6分).已知是x的二次函数,求出它的解析式.16.(6分)如果函数y=(m﹣3)+mx+1是二次函数,求m的值.17.(6分)已知二次函数y=.(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.18.(8分)已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点M的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.19.(8分)已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1_________y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.20(8分).如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.21.(8分)在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.22.(8分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.23.(10分)如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.24.(10分)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).第二十六章二次函数章末测试(三)参考答案与试题解析一.选择题(共8小题)1.解答:解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴﹣<0,∴b>0,∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0,∴a=2﹣b,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴﹣4<2a﹣4<0,即﹣4<P<0,故选A.2.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.3.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.4.解答:解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.5.解答:解:A、∵抛物线的开口向上,∴a>0,故本选项错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故本选项错误;C、由函数图象可知,当﹣1<x<3时,y<0,故本选项错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故本选项正确.故选D.6.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.7.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.8.解答:解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选C.二.填空题(共8小题)9.解答:解:∵抛物线y=﹣x2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4),∴所得抛物线的解析式为y=﹣(x+1)2+4.故答案为y=﹣(x+1)2+4.10.解答:解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.11.解答:解:由题意知顶点式体现顶点坐标,所以填:顶点式,由题意知:坐标为(﹣h,k)故答案为顶点式,(﹣h,k).12.解答:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣x2+bx﹣,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=﹣,解得:b=,∴抛物线y=﹣x2+x﹣,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),故②选项错误;∵﹣1<m<n<1,﹣2<m+n<2,∴抛物线对称轴为:x=﹣>1,>2,m+n,故选项③正确;当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0,∴3|a|+|c|=﹣3a﹣c<2b=2|b|,故④选项正确.故答案为:①③④.13.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,∴PP′=2×2=4,∴AD=DO=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.14.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.三.解答题(共11小题)15.解答:解:根据二次函数的定义可得:m2﹣2m﹣1=2,且m2﹣m≠0,解得,m=3或m=﹣1;当m=3时,y=6x2+9;当m=﹣1时,y=2x2﹣4x+1;综上所述,该二次函数的解析式为:y=6x2+9或y=2x2﹣4x+1.16.解答:解:根据二次函数的定义:m2﹣3m+2=2,且m﹣3≠0,解得:m=0.17.解答:解:(1)y==﹣(x2﹣6x)﹣=﹣(x2﹣6x+9﹣9)﹣=﹣(x﹣3)2+2,故顶点坐标为(3,2)和对称轴为直线x=3;(2)当y=0,则0=﹣(x﹣3)2+2,解得:x=1或x=5,则图象与x轴的交点坐标为:(1,0),(5,0),当x=0,则y=﹣,则图象与y轴的交点坐标为:(0,﹣),如图所示:.18.解答:解:(1)∵y=﹣x2+2x+6=﹣(x2﹣4x)+6=﹣(x﹣2)2+8,∴对称轴是直线x=2,抛物线的顶点坐标M为(2,8);(2)令x=0,则y=6;令y=0,则x2+2x﹣3=0,∴抛物线与坐标轴的交点是(0,6),(﹣2,0),(6,0);函数图象如图所示;(3)由函数图象可知,当﹣2<x<6时,y>0;当x=﹣2或6时,y=0,当﹣2>x或x>6时,y<0.19.解答:解:根据图表知,当x=1和x=3时,所对应的y值都是﹣2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2.15.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF=EF•DM=8.20.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).21.解答:解:(1)∵△APE≌△ADE(已知),AD=3(已知),∴AP=AD=3(全等三角形的对应边相等);在Rt△ABP中,BP===(勾股定理);(2)∵AP⊥PE(已知),∴∠APB+∠CPE=∠CPE+∠PEC=90°,∴∠APB=∠PEC,又∵∠B=∠C=90°,∴Rt△ABP∽Rt△PCE,∴即(相似三角形的对应边成比例),∴=∴当x=时,y有最大值,最大值是;(3)如图,连接BD.设BP=x,∵PE∥BD,∴△CPE∽△CBD,∴(相似三角形的对应边成比例),即化简得,3x2﹣13x+12=0解得,x1=,x2=3(不合题意,舍去),∴当BP=时,PE∥BD.22.解答:解:(1)设AC=4ycm,BC=3ycm,在Rt△ABC中,AC2+BC2=AB2,即:(4y)2+(3y)2=102,解得:y=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=xcm,∴BP=(10﹣x)cm,BQ=2xcm,∵△QHB∽△ACB,∴,∴QH=xcm,y=BP•QH=(10﹣x)•x=﹣x2+8x(0<x≤3),②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=xcm,∴BP=(10﹣x)cm,AQ=(14﹣2x)cm,∵△AQH′∽△ABC,∴,即:=,解得:QH′=(14﹣2x)cm,∴y=PB•QH′=(10﹣x)•(14﹣2x)=x2﹣x+42(3<x<7);∴y与x的函数关系式为:y=;(3)∵AP=xcm,AQ=(14﹣2x)cm,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:=,解得:x=,PQ=,∴PB=10﹣x=cm,∴==≠,∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4cm,AP=x=5cm,∵AC=8cm,AB=10cm,∴PQ是△ABC的中位线,∴PQ∥BC,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5cm,∵AP=CP,∴AP+BP=AB,∴AM+BM=AB,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm.∴△BCM的周长最小值为16cm.23.解答:解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.2.解答:解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.。
第26章二次函数一、选择题1.下列函数中,是二次函数的为()A. y=ax3+x2+bx+c(a≠0)B. y=x2+C. y=(x+1)2﹣x2D. y=x(1﹣x)2.抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A. (﹣4,3)B. (﹣4,﹣3)C. (3,﹣4)D. (﹣3,﹣4)3.下列函数中有最小值的是()A. y=2x﹣1B. y=﹣C. y=2x2+3xD. y=﹣x2+14.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A. B. C. D.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A. y1>y2>y3B. y1>y3>y2C. y2>y3>y1D. y3>y1>y26.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是( )A. x<2B. x>﹣3C. ﹣3<x<1D. x<﹣3或x>17. 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点8.将抛物线y=x2向左平移5个单位后得到的抛物线对应的函数解析式是()A. y=﹣x2+5B. y=x2﹣5C. y=(x﹣5)2D. y=(x+5)29.若抛物线y=x2-2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是( )A. 抛物线开口向上B. 抛物线的对称轴是x=1C. 当x=1时,y的最大值为﹣4D. 抛物线与x轴的交点为(-1,0),(3,0)10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有()A. ①②③B. ②③④C. ①②④D. ②④11.如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A. ①③B. ②③C. ②④D. ③④12.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…A n+1(x n+1,0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A. 或B. 或C. 或D.二、填空题13.二次函数y=﹣2x2+6x﹣5配成y=a(x﹣h)2+k的形式是________,其最大值是________.14.若函数y=mx2﹣2x+1的图象与x轴只有一个交点,则m=________.15.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是________ .16.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=________.17.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.18.如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.19.点Q1(﹣2,q1),Q2(﹣3,q2)都在抛物线y=x2﹣2x+3上,则q1、q2的大小关系是:q1________q2.(用“>”、“<”或“=”)20.两个正方形的周长之和为20cm,其中一个正方形的边长是xcm,则这两个正方形的面积之和y(cm2)与x(cm)的函数关系式为________.21.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y= x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是________.22.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为________.三、解答题23.若y=(m2+m)是二次函数,求m的值.24.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.25.某景区商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了提高销售量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)如果这批旅游纪念品共获利1050元,那么第二周每个旅游纪念品的销售价格为多少元?(2)第二周每个旅游纪念品的销售价格为多少时,这批旅游纪念品利润最大?最大利润是多少?26.已知:抛物线y=ax2+bx﹣3经过点A(7,﹣3),与x轴正半轴交于点B(m,0)、C(6m、0)两点,与y轴交于点D.(1)求m的值;(2)求这条抛物线的表达式;(3)点P在抛物线上,点Q在x轴上,当∠PQD=90°且PQ=2DQ时,求点P、Q的坐标.参考答案一、选择题D D C A A C D D C B D B二、填空题13.y=﹣2(x﹣)2﹣;﹣14.0或115.(2,5)16.117.m>118.y=x2﹣2x+319.<20.y= 2x2﹣10x+2521.﹣2<k<22.15三、解答题23.解:若y=(m2+m)是二次函数,则m2﹣m=2,且m2+m≠0,故(m﹣2)(m+1)=0,m≠0,m≠﹣1,解得:m1=2,m2=﹣1,∴m=2.24.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.25.(1)解:由题意得:200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=1050,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1050,整理得:x2﹣2x﹣3=0,解得:x1=3,x2=﹣1依题意,0≤x≤6,∴x=310﹣x=10﹣3=7.答:第二周的销售价格为7元(2)解:设这批旅游纪念品的利润为y元,则y=200×(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[600﹣200﹣(200+50x)]=﹣50+100x+1200 (0≤x≤6)∵a=﹣50<0,∴当x=﹣=1(满足0≤x≤6)时,y有最大值,最大值是:=1250.这时,10﹣x=10﹣1=9答:第二周每个旅游纪念品的销售价格为9元时,这批旅游纪念品利润最大,最大利润是1250元26.(1)解:当x=0时,y=﹣3,∴D(0,﹣3).设抛物线的解析式为y=a(x﹣m)(x﹣6m).把点D和点A的坐标代入得:6am2=﹣3①,a(7﹣m)(7﹣6m)=﹣3②,∴a(7﹣m)(7﹣6m)=6am2.∵a≠0,∴(7﹣m)(7﹣6m)=m2.解得:m=1(2)解:∵6am2=﹣3,∴a=﹣=﹣.将a=﹣,m=1代入得:y=﹣x2+ x﹣3.∴抛物线的表达式为y=﹣x2+ x﹣3(3)解:如图所示:过点P作PE⊥x轴,垂足为E.设点Q的坐标为(a,0)则OQ=﹣a﹣∵∠DQP=90°,∴∠PQO+∠OQD=90°.又∵∠ODQ+∠DQO=90°,∴∠PQE=∠ODQ.又∵∠PEQ=∠DOQ=90°,∴△ODQ∽△EQP.∴= = = ,即= = ,∴QE=6,PE=﹣2a.∴P的坐标为(a+6,﹣2a)将点P的坐标代入抛物线的解析式得:﹣(a+6)2+ (a+6)﹣3=﹣2a,整理得:a2+a=0,解得a=﹣1或a=0.当a=﹣1时,Q(﹣1,0),P(5,2);当a=0时,Q(0,0),P(6,0).综上所述,Q(﹣1,0),P(5,2)或者Q(0,0),P(6,0)。
华师大新版九年级下学期《第26章二次函数》单元测试卷一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=33.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.34.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y310.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0 11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.515.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2二.填空题(共15小题)16.当m=时,函数y=(m﹣4)x+3x是关于x的二次函数.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=,它的顶点坐标是.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△=.PAB三.解答题(共10小题)31.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?32.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.33.已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.34.已知抛物线y=ax2+bx+c,如图所示,直线x=﹣1是其对称轴,(1)确定a,b,c,△=b2﹣4ac的符号;(2)求证:a﹣b+c>0;(3)当x取何值时,y>0,当x取何值时y<0.35.已知点A(,3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.36.在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.37.某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.38.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.39.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图象;(3)当x为何值时,函数值y<0.40.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.华师大新版九年级下学期《第26章二次函数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.【点评】本题考查二次函数的定义.2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=3【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【解答】解:根据题意,得:a2﹣2a﹣1=2解得a=3或﹣1又因为a2+a≠0即a≠0或a≠﹣1所以a=3.故选:D.【点评】解题关键是掌握二次函数的定义.3.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.4.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个【分析】分别利用二次函数的对称性以及二次函数图象上点的坐标性质进而得出答案.【解答】解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.【点评】本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性,此题难度不大.6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小【分析】A、把m=﹣3代入[2m,1﹣m,﹣1﹣m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.【解答】解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m ≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.【点评】此题考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c >0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣3,y<0时,即9a﹣3b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×3得:12a+4c<0,即4(3a+c)<0又∵a<0,∴3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3【分析】二次函数抛物线向下,且对称轴为x=﹣1.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数y=﹣3x2﹣6x+12=﹣3(x+1)2+15,∴该二次函数的抛物线开口向下,且对称轴为:x=﹣1.∵点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,而三点横坐标离对称轴x=﹣1的距离按由近到远为:(﹣1,y1)、(﹣2,y2)、(2,y3),∴y1>y2>y3.故选:D.【点评】考查二次函数图象上点的坐标特征.10.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令﹣x2+x+2=0,解得(x+1)(﹣x+2)=0,x1=﹣1,x2=2.∵当自变量x取m时对应的值大于0,∴﹣1<m<2,∴m﹣3<﹣1;m+3>2;结合图象可知y1<0、y2<0,故选:B.【点评】此题考查了二次函数的性质,不等式的性质,解一元二次方程.有需要一定分析能力,需要通过解一元二次方程得到二次函数图象与x轴的交点,再结合图象确定m﹣3、m+3的范围从而得到y1、y2的取值范围,需要具备较强的分析能力11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.【点评】考查二次函数图象平移的性质.12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.5【分析】首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值求出即可.【解答】解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,∴m,n,k最小为0,当n=0时,k最大为:,∴0≤k,∵2k2﹣8k+6=2(k﹣2)2﹣2,∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.故选:D.【点评】此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值是解题关键.15.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.二.填空题(共15小题)16.当m=1时,函数y=(m﹣4)x+3x是关于x的二次函数.【分析】根据二次函数的定义即可得.【解答】解:∵函数y=(m﹣4)x+3x是关于x的二次函数,∴m2﹣5m+6=2且m﹣4≠0,解得:m=1,故答案为:1.【点评】本题主要考查二次函数的定义,掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是关键.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为2π.【分析】根据二次函数的对称性得出图中阴影部分的面积为半圆面积,进而求出即可.【解答】解:如图所示:图中阴影部分的面积为半圆面积,∵⊙O的半径为2,∴图中阴影部分的面积为:π×22=2π.故答案为:2π.【点评】此题主要考查了二次函数对称性以及圆的面积公式,正确转化阴影部分面积是解题关键.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为1.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.【点评】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x轴上的两点之间的距离的知识,解答本题的关键是求出点A的坐标,此题难度不大.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y <0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为y1<y2.【分析】分别计算出自变量为﹣4,﹣3时的函数值,然后比较函数值得大小即可.【解答】解:把A(﹣4,y1),B(﹣3,y2)分别代入y=﹣2(x+2)2得y1=﹣2(x+2)2=﹣8,y2=﹣2(x+2)2=﹣2,所以y1<y2.故答案为y1<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣x2﹣4x﹣4.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣(x+2)2,即y=﹣x2﹣4x﹣4.故答案为:y=﹣x2﹣4x﹣4.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2四边形EFGH(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S关于t的函数关系式是解题的关键.四边形EFGH23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为±6.【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解.【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴上,∴顶点的纵坐标为零,即y===0,解得b=±6.【点评】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=(x+3)2﹣5,它的顶点坐标是(﹣3,﹣5).【分析】直接利用配方法求出二次函数顶点坐标即可.【解答】解:y=x2+6x+4=(x2+6x+9)﹣9+4=(x+3)2﹣5,它的顶点坐标是:(﹣3,﹣5).故答案为:(x+3)2﹣5,(﹣3,﹣5).【点评】此题主要考查了配方法求二次函数的顶点坐标,正确进行配方得出是解题关键.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是x1=﹣4,x2=0.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性求出y 值等于﹣2的自变量x的值即可.【解答】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2,∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=﹣2的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是﹣3<x<.【分析】根据1≤m≤3,得出两个不等式:当m=3时,x2+3x﹣6<0;当m=1时,x2+x﹣6=0;根据y<0,分别解不等式x2+3x﹣6<0,x2+x﹣6<0,可求实数x 的取值范围.【解答】解:∵1≤m≤3,y<0,∴当m=3时,x2+3x﹣6<0,由y=x2+3x﹣6<0,得<x<;当m=1时,x2+x﹣6<0,由y=x2+x﹣6<0,得﹣3<x<2.∴实数x的取值范围为:﹣3<x<.故本题答案为:﹣3<x<.【点评】本题考查了用二次函数的方法求自变量x的取值范围.关键是分类列不等式,分别解不等式.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为x<3或x>5.【分析】直接利用函数图象即可得出结论.【解答】解:∵由函数图象可知,当x<1或x>3时,函数图象在x轴的下方,∴函数y=a(x﹣2)2+b(x﹣2)+c的图象与x轴的交点为3,5,∴不等式a(x﹣2)2+b(x﹣2)+c<0<0的解集为x<3或x>5.故答案为:x<3或x>5.【点评】本题考查的是二次函数与不等式组,能根据题意利用数形结合求出不等式的解集是解答此题的关键.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是y=10(x+1)2.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)2【点评】此题考查了根据实际问题列二次函数关系式,弄清题意是解本题的关键.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.【点评】本题涉及二次函数的实际应用,难度中等.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△PAB= 8.【分析】根据函数解析式,可以分别求出与x轴的两个交点,以及顶点坐标,利用三角形面积公式即可解答.【解答】解:将二次函数y=﹣x2+2x+3化为y=﹣(x﹣3)(x+1),已知二次函数与x轴交于A、B两点,故x1=3,x2=﹣1.将一般式化为顶点式为y=﹣(x﹣1)2+4,得出顶点坐标P为(1,4)=×4×4=8.故S△PAB【点评】本题考查的是二次函数的顶点式以及交点式的函数式以及三角形面积的。
华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-32x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0.其中正确的是( )A .①②B .只有①C .③④D .①④9. 如图,坐标平面上,二次函数y =-x 2+4x -k 的图形与x 轴交于A ,B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1∶4,则k 值为何?( )A .1 B. 12 C. 43 D. 4510.如图,正方形ABCD 的边长为3 cm ,动点P 从B 点出发以3 cm /s 的速度沿着边BC -CD -DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发以1 cm /s 的速度沿着边BA 向A 点运动,到达A 点停止运动,设P 点运动时间为x(s ),△BPQ 的面积为y(cm 2),则y 关于x 的函数图象是( )二、填空题11.已知函数y =(m -1)xm 2+1+4x -3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm 的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________. 13.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是___________.14.某学习小组为了探究函数y =x 2-|x|的图象和性质,根据以往学习函数的经验,列表15.如图,二次函数y =3x 2-3x 的图象经过△AOB 的三个顶点,其中A(-1,m),B(n ,n),直线AB 与y 轴交于点C ,则△AOB 的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高2.5 m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m <2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的表达式; (2)求二次函数图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况; (3)请直接写出当y 1>y 2时,自变量x 的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x 元,平均每天盈利y 元,试写出y 关于x 的函数表达式; (2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC 中,边BC 长为12,高AD 长为8.如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E ,F 分别在AB ,AC 边上,EF 交AD 于点K.(1)求EFAK的值;(2)设EH =x ,矩形EFGH 的面积为S.求S 与x 的函数表达式,并求S 的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m ,拱顶距离水面4 m . (1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m )时桥下水面的宽度为d(m ),试求d 与h 之间的函数关系式;(3)设正常水位时桥下的水深为2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ 的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC 二、11. (1,-1) 12. 9cm 2 13. k ≤4 14. 0.75 15. 2 16. 能 17. 2.3m 18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m ,0),且1<m <2,∴0<-b 2a <12,∴12+b 2a =a +b 2a>0,∴a +b >0,所以②的结论正确;∵点A(-3,y 1)到对称轴的距离比点B(3,y 2)到对称轴的距离远,∴y 1>y 2,所以③的结论错误;∵抛物线过点(-1,0),(m ,0),∴a -b +c =0,am 2+bm +c =0,∴am 2-a +bm +b =0,a(m +1)(m -1)+b(m +1)=0,∴a(m -1)+b =0,所以④的结论正确;∵4ac -b 24a <c ,而c ≤-1,∴4ac -b 24a<-1,∴b2-4ac >4a ,所以⑤的结论错误三、19. 解:(1)y =x 2-5x +6 (2)∵抛物线的表达式y =x 2-5x +6,∴A(2,0),B(3,0),C(0,6),∴S △ABC =12×1×6=320. 解:(1)把(2,1)代入y =x 2-2x +c 得4-4+c =1,解得c =1,所以抛物线表达式为y =x 2-2x +1,顶点坐标为(1,0) (2)y =x 2-2x +1=(x -1)2,抛物线的对称轴为直线x =1,而新抛物线与x 轴交于A ,B 两点,AB =2,所以A(0,0),B(2,0),所以新抛物线的表达式为y =x(x -2),即y =x 2-2x21. 解:(1)m =-1,y 2=x 2-2x -3 (2)C(1,-4),当x ≤1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大 (3)-1<x <2 22. 解:(1)根据题意得y =(200+20x)(6-x)=-20x 2-80x +1200 (2)令y =-20x 2-80x +1200中y =960,则有960=-20x 2-80x +1200,即x 2+4x -12=0,解得x =-6(舍去)或x =2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EF AK =BC AD =32 (2)由(1)知EF 8-x =32,∴EF =12-32x ,∴S =EH ·EF =12x -32x 2=-32(x -4)2+24,当x =4时,S max =24 24. 解:(1)设抛物线所对应的表达式为y =ax 2,把(-10,-4)代入得y =-125x 2 (2)由(1)得y =-125x 2,将(d 2,-4+h)代入得-4+h =-125(d 2)2,求得d =104-h (3)当x =9时,y =-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m 时,就会影响船只在桥下顺利航行25. 解:(1)∵m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m|<|n|,∴m =-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
第二十六章二次函数章末测试(三)总分120分120分钟一.选择题(共8小题,每题3分)1.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<02.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣43.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.54.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.3是方程ax2+bx+c=0的一个根C. a+b+c=0 D.当x<1时,y随x的增大而减小5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣6.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+18.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④二.填空题(共8小题,每题3分)9.在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是_________.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是_________.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为_________,其顶点坐标为_________12.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是_________(写出你认为正确的所有结论序号).13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_________.14.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c <3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有_________.三.解答题(共10小题)15(6分).已知是x的二次函数,求出它的解析式.16.(6分)如果函数y=(m﹣3)+mx+1是二次函数,求m的值.17.(6分)已知二次函数y=.(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.18.(8分)已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点M的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.19.(8分)已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1_________y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.20(8分).如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.21.(8分)在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.22.(8分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.23.(10分)如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.24.(10分)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).第二十六章二次函数章末测试(三)参考答案与试题解析一.选择题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0考点:二次函数图象与系数的关系.专题:压轴题.分析:求出a>0,b>0,把x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+c=2a﹣4,求出2a﹣4的范围即可.解答:解:∵二次函数的图象开口向上,∴a>0,∵对称轴在y轴的左边,∴﹣<0,∴b>0,∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0,∴a=2﹣b,b=2﹣a,∴y=ax2+(2﹣a)x﹣2,把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0,∴a<2,∵a>0,∴0<a<2,∴0<2a<4,∴﹣4<2a﹣4<0,即﹣4<P<0,故选A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).2.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.3.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.5考点:二次函数的最值.分析:先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.点评:本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.3是方程ax2+bx+c=0的一个根C. a+b+c=0 D.当x<1时,y随x的增大而减小考点:二次函数图象与系数的关系;二次函数的性质.专题:压轴题.分析:根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.解答:解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.点评:此题主要考查了二次函数图象与系数的关系,关键是从抛物线中的得到正确信息.①二次项系数a决定抛物线的开口方向和大小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0 C.当﹣1<x<3时,y>0 D.﹣考点:二次函数图象与系数的关系.专题:压轴题;存在型.分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可.解答:解:A、∵抛物线的开口向上,∴a>0,故本选项错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故本选项错误;C、由函数图象可知,当﹣1<x<3时,y<0,故本选项错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故本选项正确.故选D.点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.6.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:压轴题.分析:根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.点评:本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.7.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1考点:二次函数图象与几何变换.专题:压轴题.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.8.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a ﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④考点:二次函数图象与系数的关系.专题:压轴题.分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.解答:解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选C.点评:本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.二.填空题(共8小题)9.在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=﹣(x+1)2+4.考点:二次函数图象与几何变换.分析:先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可.解答:解:∵抛物线y=﹣x2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4),∴所得抛物线的解析式为y=﹣(x+1)2+4.故答案为y=﹣(x+1)2+4.点评:本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.10.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是a≠﹣1.考点:二次函数的定义.分析:根据二次函数的定义条件列出不等式求解即可.解答:解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.点评:本题考查二次函数的定义.11.把抛物线y=x2+4x+5改写成y=(x+h)2+k的形式为顶点式,其顶点坐标为(﹣h,k).考点:二次函数的三种形式.专题:数形结合.分析:从抛物线的一般式到顶点式,则顶点为相应为括号内常数项的相反数为横坐标,最后的常数项即为坐标的纵坐标.解答:解:由题意知顶点式体现顶点坐标,所以填:顶点式,由题意知:坐标为(﹣h,k)故答案为顶点式,(﹣h,k).点评:本题考查了二次函数的顶点式,从抛物线的一般式开始,则顶点式即为括号内横坐标的相反数,纵坐标即为函数的常数项.12.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是①③④(写出你认为正确的所有结论序号).考点:二次函数图象与系数的关系.专题:压轴题.分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项.解答:解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣x2+bx﹣,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=﹣,解得:b=,∴抛物线y=﹣x2+x﹣,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),故②选项错误;∵﹣1<m<n<1,﹣2<m+n<2,∴抛物线对称轴为:x=﹣>1,>2,m+n,故选项③正确;当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0,∴3|a|+|c|=﹣3a﹣c<2b=2|b|,故④选项正确.故答案为:①③④.点评:此题主要考查了二次函数图象与系数的关系,利用特殊值法求出m+n的取值范围是解题关键.13.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.考点:二次函数图象与几何变换.专题:压轴题.分析:根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.解答:解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,∴PP′=2×2=4,∴AD=DO=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.点评:此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.14.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c <3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的番号有①③④.考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.点评:此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三.解答题(共11小题)15.已知是x的二次函数,求出它的解析式.考点:二次函数的定义.分析:根据二次函数的定义列出不等式求解即可.解答:解:根据二次函数的定义可得:m2﹣2m﹣1=2,且m2﹣m≠0,解得,m=3或m=﹣1;当m=3时,y=6x2+9;当m=﹣1时,y=2x2﹣4x+1;综上所述,该二次函数的解析式为:y=6x2+9或y=2x2﹣4x+1.点评:本题考查二次函数的定义.一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.16.如果函数y=(m﹣3)+mx+1是二次函数,求m的值.考点:二次函数的定义.专题:计算题.分析:根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,即可答题.解答:解:根据二次函数的定义:m2﹣3m+2=2,且m﹣3≠0,解得:m=0.点评:本题考查了二次函数的定义,属于基础题,比较简单,关键是对二次函数定义的掌握.17.已知二次函数y=.(1)用配方法求出该函数图象的顶点坐标和对称轴;(2)在平面直角坐标系中画出该函数的大致图象.考点:二次函数的图象;二次函数的三种形式.分析:(1)利用配方法求出二次函数的对称轴和顶点坐标即可;(2)把握抛物线与x轴,y轴的交点,顶点坐标,开口方向等画出图象即可.解答:解:(1)y==﹣(x2﹣6x)﹣=﹣(x2﹣6x+9﹣9)﹣=﹣(x﹣3)2+2,故顶点坐标为(3,2)和对称轴为直线x=3;(2)当y=0,则0=﹣(x﹣3)2+2,解得:x=1或x=5,则图象与x轴的交点坐标为:(1,0),(5,0),当x=0,则y=﹣,则图象与y轴的交点坐标为:(0,﹣),如图所示:.点评:此题主要考查了配方法求二次函数的对称轴和顶点坐标,此题是二次函数的基本性质也是考查重点,同学们应熟练掌握.18.已知(1)把它配方成y=a(x﹣h)2+k形式,写出它的开口方向、顶点M的坐标;(2)作出函数图象;(填表描出五个关键点)(3)结合图象回答:当x取何值,y>0,y=0,y<0.考点:二次函数的三种形式;二次函数的图象.分析:(1)根据配方法求出二次函数的对称轴、顶点坐标即可;(2)由坐标轴上点的坐标特点求出函数图象与坐标轴的交点以及(1)中抛物线的顶点坐标及与坐标轴的交点坐标描出各点,画出函数图象;(3)根据(2)中函数图象直接得出结论.解答:解:(1)∵y=﹣x2+2x+6=﹣(x2﹣4x)+6=﹣(x﹣2)2+8,∴对称轴是直线x=2,抛物线的顶点坐标M为(2,8);(2)令x=0,则y=6;令y=0,则x2+2x﹣3=0,∴抛物线与坐标轴的交点是(0,6),(﹣2,0),(6,0);函数图象如图所示;(3)由函数图象可知,当﹣2<x<6时,y>0;当x=﹣2或6时,y=0,当﹣2>x或x>6时,y<0.点评:本题考查了二次函数的性质、二次函数的图象及二次函数与不等式,在解答此题时要注意利用数形结合求不等式的解集.19.已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1>y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …考点:二次函数图象上点的坐标特征.分析:由二次函数图象的对称性知,图表可以体现出二次函数y=ax2+bx+c的对称轴和开口方向,然后由二次函数的单调性解答.解答:解:根据图表知,当x=1和x=3时,所对应的y值都是﹣2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2.点评:本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.15.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF=EF•DM=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.20.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).点评:本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.21.在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.(1)连接AE,当△APE与△ADE全等时,求BP的长;(2)若设BP为x,CE为y,试确定y与x的函数关系式.当x取何值时,y的值最大?最大值是多少?(3)若PE∥BD,试求出此时BP的长.考点:相似三角形的判定与性质;一元二次方程的应用;二次函数的最值;全等三角形的判定与性质;勾股定理;矩形的性质.专题:代数几何综合题;压轴题.分析:(1)根据全等三角形的对应边相等知AP=AD=3;然后在Rt△ABP中利用勾股定理可以求得BP的长度;(2)根据相似三角形Rt△ABP∽Rt△PCE的对应边成比例列出关于x、y的方程,通过二次函数的最值的求法来求y 的最大值;(3)如图,连接BD.利用(2)中的函数关系式设BP=x,则CE=,然后根据相似三角形△CPE∽△CBD的对应边成比例列出关于x的一元二次方程,通过解该方程即可求得此时BP的长度.解答:解:(1)∵△APE≌△ADE(已知),AD=3(已知),∴AP=AD=3(全等三角形的对应边相等);在Rt△ABP中,BP===(勾股定理);(2)∵AP⊥PE(已知),∴∠APB+∠CPE=∠CPE+∠PEC=90°,∴∠APB=∠PEC,又∵∠B=∠C=90°,∴Rt△ABP∽Rt△PCE,∴即(相似三角形的对应边成比例),∴=∴当x=时,y有最大值,最大值是;(3)如图,连接BD.设BP=x,∵PE∥BD,∴△CPE∽△CBD,∴(相似三角形的对应边成比例),即化简得,3x2﹣13x+12=0解得,x1=,x2=3(不合题意,舍去),∴当BP=时,PE∥BD.点评:本题综合考查了矩形的性质、勾股定理、二次函数的最值等知识点.本题中求二次函数的最值时,采用了配方法.22.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在C A上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.考点:相似三角形的判定与性质;二次函数的最值;勾股定理.专题:压轴题;动点型.分析:(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;(2)分别从当点Q在边BC上运动时,过点Q作QH⊥AB于H与当点Q在边CA上运动时,过点Q作QH′⊥AB 于H′去分析,首先过点Q作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(3)由PQ⊥AB,可得△APQ∽△ACB,由相似三角形的对应边成比例,求得△PBQ各边的长,根据相似三角形的判定,即可得以点B、P、Q为定点的三角形与△ABC不相似;(4)由x=5秒,求得AQ与AP的长,可得PQ是△ABC的中位线,即可得PQ是AC的垂直平分线,可得当M与P重合时△BCM得周长最小,则可求得最小周长的值.解答:解:(1)设AC=4ycm,BC=3ycm,在Rt△ABC中,AC2+BC2=AB2,即:(4y)2+(3y)2=102,解得:y=2,∴AC=8cm,BC=6cm;(2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,∵AP=xcm,∴BP=(10﹣x)cm,BQ=2xcm,∵△QHB∽△ACB,∴,∴QH=xcm,y=BP•QH=(10﹣x)•x=﹣x2+8x(0<x≤3),②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=xcm,∴BP=(10﹣x)cm,AQ=(14﹣2x)cm,∵△AQH′∽△ABC,∴,即:=,解得:QH′=(14﹣2x)cm,∴y=PB•QH′=(10﹣x)•(14﹣2x)=x2﹣x+42(3<x<7);∴y与x的函数关系式为:y=;(3)∵AP=xcm,AQ=(14﹣2x)cm,∵PQ⊥AB,∴△APQ∽△ACB,∴=,即:=,解得:x=,PQ=,∴PB=10﹣x=cm,∴==≠,∴当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4cm,AP=x=5cm,∵AC=8cm,AB=10cm,∴PQ是△ABC的中位线,∴PQ∥BC,∴PQ⊥AC,∴PQ是AC的垂直平分线,∴PC=AP=5cm,∵AP=CP,∴AP+BP=AB,∴AM+BM=AB,∴当点M与P重合时,△BCM的周长最小,∴△BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16cm.∴△BCM的周长最小值为16cm.点评:本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.23.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解答:解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.点评:此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.2.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).。