【特训班 提优训练】七年级数学下学期专题复习训练卷四 频率与概率(pdf) (新版)北师大版
- 格式:pdf
- 大小:892.42 KB
- 文档页数:3
初一数学概率试题答案及解析1.用10个球设计一个摸球游戏,使得:(1)摸到红球的机会是。
(2)摸到红球的机会是,摸到黄球的机会是。
(3)你还能设计一个符合下列条件的游戏吗?为什么?摸到红球的机会是,摸到黄球的机会是,摸到绿球的机会是。
【答案】(1)设计的摸球游戏为:5个红球,5个其他颜色的球;(2)设计的摸球游戏为:5个红球,4个黄球,1个其他颜色的球;(3)不能设计.【解析】(1)(2)利用设计球的个数=球的总数×摸到该球的概率直接计算即可;(3)利用同一个实验中所有概率之和为1进行验证即可.试题解析:(1)红球的个数为:10×=5,故设计的摸球游戏为:5个红球,5个其他颜色的球;(2)红球的个数为:10×=5,黄球的个数为:10×=4,其他颜色的球的个数为:10-5-4=1,故设计的摸球游戏为:5个红球,4个黄球,1个其他颜色的球;(3)∵++>1,∴不能设计.【考点】概率公式.2.有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【答案】(1)树状图如下:(2)【解析】解:(1)树状图如下:所有等可能的结果有16种:(A,A),(A,B),(A,C),(A,D)(B,A),(B,B),(B,C),(B,D)(C,A),(C,B),(C,C),(C,D)(D,A),(D,B),(D,C),(D,D)列表如下:所有等可能的结果有16种;(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况,即:(B,B),(B,C),(C,B),(C,C)故所求概率是.本题涉及了概率的计算,该题是常考题,主要考查学生对概率、事件的概念以及事件发生的概率的计算。
一、基础知识: 用频率估计概率一般地,在大量重复试验中,如果事件A 发生的频率会稳定在某一个常数p 的附近,那么事件A 发生的概率P (A )=p .其中0≤p ≤1条件是:在同等条件下,需要做大量的重复试验。
关键是:通过大量重复试验找出频率的稳定值。
二、重难点分析本课教学重点:通过对事件发生的频率的分析来估计事件发生的概率。
本课教学难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率。
通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。
培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。
典型例题分析例1、绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1912 2850 发芽的频率=nm 0.9600.9400.9550.9500.9480.956 0.950则绿豆发芽的概率估计值是 ( )A .0.96 B .0.95 C .0.94D .0.90率=频数与总情况数之比.例2、一个不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大1,求:(1)取出白球的概率是多少?量的实验,得到取出红球的频率是4(2)如果袋中的白球有18只,那么袋中的红球有多少只?三、感悟中考1、(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4(2014•贵阳)“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是个.四、专项训练(一)基础练习1、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率分别稳定在20%和40%,则布袋中白色球的个数很可能是个.姚明在某段时间内进行定点投篮训练,其成绩如下表:投篮次数10 100 10000投中次数9 89 9012试估计姚明在这段时间内定点投篮投中的概率是(精确到0.1)【点评】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.3、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【点评】此题主要考查了利用频率估计概率,搞清频率与概率的关系是解题关键.(二)提升练习1、(2014•东海县模拟)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A.袋子一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次【答案】D2、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500 1000 2000 6500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.。
【特训班提优训练】七年级数学下册第五章综合提优测评卷(pdf)(新版)北师大版第五章综合提优测评卷(时间:60分钟一满分:100分)一二选择题(每题3分,共27分) 1.从轴对称的角度来看如图的四幅图案,你觉得比较独特的一幅是(一一).2.若一个等腰三角形的底角是顶角的12,则这个等腰三角形的底角与顶角的度数分别为(一一).A.36?,60?B.45?,90?C.60?,120?D.40?,80?3.在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,如:鲁L80808二鲁L22222二鲁L12321等,这些牌照中的五个数字都是关于中间的一个数字对称的,给人以对称的美感,我们不妨把这样的牌照叫做数字对称牌照.如果让你负责制作只以8或9开头且有五个数字的数字对称牌照,那么最多可制作(一一).A.2000个B.1000个C.200个D.100个4.如图,牧童在A处放牛,其家在B处,A二B两点到河岸的距离分别为A C和B D,且A C=B D,若点A到河岸C D的中点M的距离为500m,则牧童从A处把牛牵到河边饮水再回家,最短距离是(一一).A.750m B.1000mC.1500m D.2000m(第4题)一(第5题)5.在?A B C中,?A=90?,B D平分?A B C,A D=3c m, B C=8c m,则?B D C的面积为(一一).A.12c m2B.24c m2C.6c m2D.48c m26.若等腰三角形两腰上的高所成的钝角为130?,则此等腰三角形各内角的度数可能为(一一).A.50?,50?,80?B.65?,57.5?,57.5?C.50?,65?,65?D.100?,40?,40?7.小华用一个图章,在纸上印出了的图案,图章上的图案是(一一).8.如图,公路B C所在的直线恰为A D的垂直平分线,则下列说法中正确的有(一一).①小梅从家到书店与小花从家到书店一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.1个一一一B.2个一一一C.3个一一一D.4个(第8题)一(第9题)9.如图,?E B D是以正方形A B C D的对角线B D为一边的正三角形,E F?D F,垂足为F,?A E F的度数是(一一).A.15?B.30?C.45?D.60?二二填空题(每题3分,共27分)10.汉字是世界上最古老的文字之一,字形结构体现了人类追求均衡对称二和谐稳定的天性.如王二中二田 ,请你再举出三个可以看成是轴对称图形的汉字:一一一一(笔画的粗细和书写的字体可以忽略不计) 11.写出一个有且只有两条对称轴的多边形名称:一.12.小颖将一张正方形纸沿对角线对折后,得到等腰直角三角形,然后在这张重叠的纸上任意剪出一个漂亮图案,打开后的图案至少有一一一一条.(第14题)13.等腰三角形顶角的平分线,底边上的一一一一,底边上的一一一一重合,也称一一一一 ,它们所在的直线都是等腰三角形的对称轴.14.小超从平面镜中看到一个没有标注钟点数的时钟,钟面如图所示,则实际时刻是一一一一.15.如图,将标号A二B二C二D的正方形沿图中虚线剪开后,得到标号为P二Q二M二N的四个图形.按照哪个正方形剪开后得到哪个图形, 的对应关系,填空:A与一一一一对应,B与一一一一对应,C 与一一一一对应,D与一一一一对应.(第15题)那些背叛同伴的人,常常不知不觉地把自己也一起毁灭了. 伊一索16.过春节时,莉莉的奶奶剪了好多漂亮的窗花,她用一张正方形纸沿对角线对折后,得到一个等腰直角三角形,再沿底边上的高对折,又得到一个等腰直角三角形,在这重叠的三角形纸上剪了一个图案,然后打开折叠的纸,并铺平,莉莉一下就说出这个窗花至少有一一一一条对称轴.17.如图,等边?A B C的边长为1c m,D二E分别是A B二A C 上的点,将?A D E沿直线D E折叠,点A落在点A?处,且点A?在?A B C 外部,则阴影部分图形的周长为一一一一c m .(第17题)一一(第18题)18.如图,P Q是图形的对称轴,它是某些线段的垂直平分线,这些线段分别是一一一一,P Q也使某些角相等,图中相等的角分别是一一一一.(写出两个即可)三二解答题(第19二20题每题5分,其余每题6分,共46分)19.如图,?A O B包含?D O E,O C平分?A O B,P F?O A, P G?O B,垂足分别为F二G,P F二P G分别交O D二O E于点M二N.那么P F=P G吗,P M=P N吗,为什么?(第19题)20.如图是某市一座斜拉桥的剖面图,B C是桥面,A D是桥墩(与地面垂直),设计大桥时工程师要求斜拉的钢绳A B等于A C,大桥建成以后,工程技术人员要对大桥质量进行验收,由于桥墩A D很高,无法直接测量钢绳A B二A C的长度,请你至少用两种方法检验A B二A C的长度是否相等?(检验工具为刻度尺二量角器;检验时,人只能站在桥面上)(第20题)21.方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为格点多边形.如图(1)中四边形A B C D就是一个格点四边形.(1)求图(1)中四边形A B C D的面积;(2)在图(2)方格纸中画一个格点三角形E F G,使?E F G 的面积等于四边形A B C D的面积且为轴对称图形.(1)一一(2)(第21题)22.如图,A F平分?B A C,P是A F上的任意一点,过点P 向A B 二A C作垂线P D二P E,D二E分别为垂足,连接D E.求证:A F垂直平分D E .(第22题)先相信自己,然后别人才会相信你. 罗曼罗兰23.如图,?A B C是等腰三角形,?B A C=90?,B E是?A B C 的角平分线,D E?B C于点D.(1)请写出图中所有的等腰三角形(?A B C除外); (2)请你判断A D 与B E是否垂直?并说明理由; (3)如果B C=10c m,求A B+A E的长.(第23题)24.某市的牛奶加工厂P恰好在两条铁路O A二O B的夹角内部,为了抓住这个千载难逢的机遇,提高牛奶的销量,经理决定在这两条铁路沿线上各建一个运转站M二N,把加工厂的成品牛奶每天从加工厂P 运往M二N.请问M二N应建在何处,能够使P二M二N之间运转的路程最短.(第24题)25.佳佳上周吃了a块糖,本周吃了b块糖,把这两个数的积正对镜子一照,镜子里的数恰好等于a+b,求a和b.26.数学课上,李老师出示了如下的题目:在等边三角形A B C中,点E在A B上,点D在C B的延长线上,且E D=E C,如图(1),试确定线段A E与D B的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论: 当点E为A B的中点时,如图(2),确定线段A E与D B的大小关系,请你直接写出结论:A E一一D B(填><或= ).(1)(2)一(3)(第26题)(2)特例启发,解答题目:解:题目中,A E与D B的大小关系是:A E一一一一D B(填><或= ),理由如下:如图(3),过点E作E F?B C,交A C于点F.(请你完成以下解答过程)(3)拓展结论,设计新题:在等边三角形A B C中,点E在直线A B上,点D在直线B C上,且E D=E C,若?A B C的边长为1,A E=2,求C D的长(请你直接写出结果).自我控制是最强者的本能. 萧伯纳第五章综合提优测评卷1.B一2.B一3.C一4.B一5.A 一6.C 7.B一8.B一9.C10.日一由一口一11.长方形一12.113.中线一高一三线合一一14.8点30分15.M,P,Q,N一16.217.318.E C,B F一?A=?D,?A P R=?R P D等19.P F=P G.理由:因为角平分线上的点到角两边的距离相等.无法判断P M是否等于P N.20.方法一:用量角器度量?B二?C的大小,若?B=?C,则可得A B =A C;方法二:用刻度尺测量B D二D C的长度,若B D=D C,又A D?B C,则可得A B=A C.21.(1)四边形的面积可以看作是底边是6,高是3的?A B D的面积+底边是6,高是1的?B C D的面积,即S=12?6?4=12.(2)依据等腰三角形和轴对称的知识可以画出如图的几种情况.(只要画出一种即可)(第21题)22.?一A F平分?B A C,P D?A B,P E?A C,垂足分别为D二E, 一P D=P E,?P A D=?P A E,?A D P =?A E P=90?.一R t?A P D?R t?A P E.一A D=A E.一点A在D E的垂直平分线上.又一P D=P E,点P也在D E的垂直平分线上,故A F为D E的垂直平分线.23.(1)?A D E二?B A D二?D C E.(2)A D?B E.理由如下:一B E平分?A B C,?B A C=90?,D E?B C,一E A=E D.在R t?B A E和R t?D A E中,一B E=B E,E A=E D,一R t?B A E?R t?B D E.一B A=B D,?A B E=?D B E.设B E与A D交于点F.在?A B F和?D B F中,一A B=D B,?A B F=?D B F,B F=B F,一?A B F??D B F.一?B F A=?B F D.一?B F A=90?.一B F?A F,即A D?B E.(3)10c m24.根据线段的垂直平分线的性质,可作点P 关于O A的对称点P?,作点P关于O B的对称点P?,连接P?P?,交O A于点N,交O B于点M.点M二N即为所求.(第24题)25.a=9,b=926.(1)=(2)=在等边三角形A B C中,?A B C=?A C B=?B A C=60?,A B=B C=A C,一E F?B C,一?A E F=?A F E=60?=?B A C.?一?A E F是等边三角形.一A E=A F=E F.一A B-A E=A C-A F,即B E=C F.又一?A B C=?E D B+?B E D=60?,?A C B=?E C B+?F C E=60?,一E D=E C,一?E D B=?E C B.一?B E D=?F C E.一?D B E??E F C.一D B=E F.一A E=B D.(3)1或3.。
北师大新版七年级下学期《6.2 频率的稳定性》同步练习卷一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近;假如你去摸一次,你摸到红球的概率是(精确到0.1).(2)试估算口袋中红球有多少只?3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?12.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.13.某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?14.某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)你能估算出学习小组做摸球实验的口袋中白球个数吗?(3)若摸球实验是从口袋里先摸出一球,不放回,再摸出一球;请用树状图或列表分析计算,这两只球颜色相同的概率是多少?15.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.16.在一个不透明的箱子中装有2个红球、n个白球和1个黄球,这些球除颜色外无其他差别.(1)若每次摸球前先将箱子里的球摇匀,任意摸出一个球记下颜色后再放回箱子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么估计箱子里白球的个数n为;(2)如果箱子里白球的个数n为1,小亮随机从箱子里摸出1个球不放回,再随机摸出1个球,请用画树状图或列表法求两次均摸到红球的概率.17.如图,两个转盘A,B都被分成了3个全等的扇形,在每一个扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)(1)用列表法(或树形图)表示两个转盘停止转动后指针所指扇形内的数字的所有可能结果;(2)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(3)根据(2),若0<x<y,试求出x与y的值.北师大新版七年级下学期《6.2 频率的稳定性》2019年同步练习卷参考答案与试题解析一.解答题(共17小题)1.在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?【分析】(1)根据摸出的黑球的频率在0.4附近摆动可估计摸出一球是黑球的概率为0.4,据此可得;(2)根据概率公式可得.【解答】解:(1)∵摸出的黑球的频率在0.4附近摆动,∴估计袋中黑球的个数约为20×0.4=8个;(2)由(1)知袋子中红球6个、黑球8个、白球6个,第一次摸出白球后袋子中还有白球5个,总的球数为19个,故摸出白球的概率是.【点评】本题主要考查频率估计概率和概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的口袋里装有若干个质地相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,多次重复摸球.下表是多次活动汇总后统计的数据:(1)请估计:当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?【分析】(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;【解答】解:(1)当次数S很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是1﹣0.3=0.7;故答案为:0.3,0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸到白球的频率(1)完成上表;(2)“摸到白球”的概率的估计值是0.6(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少只?【分析】(1)利用频率=频数÷样本容量=频率直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6;(3)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数.【解答】解:(1)填表如下:摸到白球的频率(2)“摸到白球”的概率的估计值是0.60;(3)由(2)摸到白球的概率为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20﹣12=8(个).答:黑球8个,白球12个.故答案为:(1)0.59,0.58;(2)0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是0.;(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出“和为8”的概率,即可得出答案.【解答】解:(1)利用图表得出:实验次数越大越接近实际概率,所以出现“和为8”的概率是.故答案为;(2)当x=7时,画树状图如下:则两个小球上数字之和为8的概率是:=≠,所以x的值不可以取7.【点评】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.5.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?【分析】(1)根据概率公式分别计算小明获胜和小颖获胜的概率,比较即可得;(2)设向袋子中放入了x个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【解答】解:(1)不公平,∵袋子中共有30个小球,从中摸出一个小球,是黑球的概率为=,从中摸出一个小球,是黄球的概率为=,∴这个游戏不公平;(2)设裁判向袋子中放入了x个红球,根据题意可得:=0.25,解得:x=10,经检验:x=10是分式方程的解,∴裁判放入了10个红球.【点评】本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.6.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近0.6;(精确到0.1)(2)试估算口袋中白球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?【分析】(1)根据统计数据,当n很大时,摸到白球的频率接近0.6;(2)根据利用频率估计概率,可估计摸到白球的概率为0.6,然后利用概率公式计算白球的个数;(3)先利用列表法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【解答】解:(1)答案为:0.6;(2)由(1)摸到白球的概率为0.6,所以可估计口袋中白种颜色的球的个数=5×0.6=3(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.7.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:落在“可乐”区域的频率(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1﹣0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【解答】解:(1)298÷500≈0.6;0.59×800=472;(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.故答案为0.6,0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.在一个不透明的盒子中有2个白球和1个黄球,每个小球除颜色外,其余的都相同,每次从该盒中摸出1个球,然后放回,搅匀再摸,在摸球实验中得到下表中部分数据:(1)将数据表补充完整;(2)根据上表中的数据在下图中绘制折线统计图;(3)观察该图表可以发现,随着实验次数的增加,摸出黄色小球的频率有何特点?(4)请你估计从该盒中摸出1个黄色球的机会是多少.【分析】(1)根据频数与频率的关系,频数等于频率与样本容量的积,代入数据可得答案,(2)根据(1)的数据,进而可以制折线统计图,(3)由(2)的折线图,观察可得结论,(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,进而可得答案.【解答】解:(1)根据频数与频率的关系,频数等于频率与样本容量的积,第二行第7列应填的数据为240×0.36=86.4≈86,第三行第3列应填的数据为24÷80=0.3,故答案为:86,0.3.(2)根据(1)的数据,绘制折线统计图如图所示(3)从折线统计图可以看出,随着实验次数的增加,出现黄色小球的频率逐渐平稳;(4)观察折线统计图可知,出现黄色小球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%.【点评】用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.大量实验得到的频率接近于概率.9.问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.(1)小颖的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言小聪与小颖两位同学的实验说明了什么?【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【解答】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的(2)小明得到的“一正一反”的频率是50÷100=0.50小颖得到的“一正一反”的频率是47÷100=0.47据此,我得到“一正一反”的概率是(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.(8分)【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D 四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.【分析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;(4)先求出已售出轿车的总数,利用售出的A型号车的数量即可求出答案.【解答】解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.【点评】利用统计图解决问题时,要善于从图中寻找各种信息.当一个事件的频率具有稳定性时,可以用该事件发生的频率来估计这一事件发生的概率.用到的知识点为:概率=所求情况数与总情况数之比.部分数目=总体数目乘以相应概率.11.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近0.6;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为0.60;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?【分析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.【解答】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.。
七年级数学培优班选拔试题填空题(共25题,满分100)1、有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是。
2、将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则完成五次操作以后,剪去所得小正方形的左下角. 问:当展开这张正方形纸片后,一共有个小孔3、已知关于x的整系数的二次三项式ax2+bx+c,当x分别取1,3,6,8时,某同学算得这个二次三项式的值分别为1,5,25,50,经过验算,只有一个结果是错误的,这个错误的结果是。
4、下表记录了某次钓鱼比赛中,钓到n条鱼的选手数:n 0 1 2 3 …13 14 15 钓到n条鱼的人数9 5 7 23 … 5 2 1已知:(1)冠军钓到了15条鱼; (2)钓到3条或更多条鱼的所有选手平均钓到6条鱼; (3)钓到12条或更少鱼的所有选手平均钓到5条鱼;则参加钓鱼比赛的所有选手共钓到条鱼。
5、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于度。
6、一个木制的立方体,棱长为n(n是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成3n个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等于没有一个面涂黑色的小立方体的个数,则n= .7、把8张不同的扑克牌交替的分发成左右两叠:左一张,右一张,左一张,右一张,……;然后把左边一叠放在右边一叠上面,称为一次操作。
重复进行这个过程,为了使扑克牌恢复到最初的次序,至少要进行操作的次数是。
8、一台大型计算机中排列着500个外形相同的同一种元件,其中有一只元件已损坏,为了找出这一元件,检验员将这些元件按1-500的顺序编号,第一次先从中取出单数序号的元件,发现其中没有坏元件,他将剩下的元件在原来的位置上又按1-250编号。
(原来的2号变成1号,原来的4号变成2号…)又从中取出单数序号的元件进行检查,仍没有发现…如此下去,检查到最后一个元件,才是坏元件。
概率初步能力提升训练一、选择题1. 在围棋盒中有 颗白色棋子和 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子x y 的概率是 ,如再往盒中放进3 颗黑色棋子,取得白色棋子的概率变为 ,则原来盒里有 白色棋子() A. B. C. D.4 颗 1 颗 2 颗 3 颗 2. 同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是( )A. C.B. D. 两正面都朝上两背面都朝上三种情况发生的概率一样大一个正面朝上,另一个背面朝上 3. 甲、乙、丙、丁四位同学参加校田径运动会 4×100 米接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是()A. B. C. D.4. 某中学举行数学竞赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是()A. B. C. D.5. 一个不透明的袋子里装着质地、大小都相同的 3 个红球和 2 个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.6. 一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A. B. C. D.17. 在一个不透明的布袋中装有红色、白色玻璃球共60 个,除颜色外其他完全相同.小明 通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球 可能有( ) A. B. C. D.45 个 5 个 8. 袋子里有 4 个球,标有 2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于 6 的概率是(10 个 15 个 )A. B. C.D.9. 某事件发生的概率为 ,则下列说法不正确的是()A. 无数次实验后,该事件发生的频率逐渐稳定在 左右B.C. 无数次实验中,该事件平均每 4 次出现 1 次每做 4 次实验,该事件就发生 1 次D. 逐渐增加实验次数,该事件发生的频率就和 逐渐接近10.一个盒子中有4个除颜色外其余都相同的玻璃球,1个红色,1个绿色,2个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为()A. B. C. D.1二、填空题11.八年级的小亮和小明是好朋友,他们都报名参加学校的田径运动会,将被教练随机分进甲、乙、丙三个训练队,他俩被分进同一训练队的概率是______.12.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红球、两个黄球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄球的概率是______.13.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是______.14.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为______.15.现有四根长3、4、7、9的木棒,任取其中的三根,首尾相连后,能组成三cm cm cm cm角形的概率为______.三、解答题16.一个不透明的盒子中装有2枚黑色的棋子和1枚白色的棋子,每枚棋子除了颜色外其余均相同.从盒中随机摸出一枚棋子,记下颜色后放回并搅匀,再从盒子中随机摸出一枚棋子,记下颜色,用画树状图(或列表)的方法,求两次摸出的棋子颜色不同的概率.17.如图,某商场为了吸引顾客,制作了可以自由转动的转盘(转盘被等分成20个扇形),顾客每购买200元的商品,就能获得一次转动转盘的机会,如果转动转盘,转盘停止后指针正好对准红色、黄色或绿色区域,就可以分别获得200元、100元、50元的购物券;如果不愿意,可直接获得30元的购物券.(1)求转动一次转盘获得购物券的概率;(2)如果你在该商场消费210元,你会选择转转盘还是直接获得购物券?说明理由.18.如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为,乙转动转盘后指针所指区域内x的数字为(当指针在边界上时,重转一次,直到指向一个区域为止).y(1)直接写出甲转动转盘后所指区域内的数字为负数的概率;(2)用树状图或列表法,求出点(,)落在第二象限内的概率.x y19.小明参加某智力竞答节目,只要再答对最后两道单选题就能顺利通关.第一道单选题有2个选项,分别记为A、B,第二道单选题有3个选项,分别记为C、D、E,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是______.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)答案和解析【答案】1.2.9.3.10.A4.5.6.7.CB CC AD A B8.C11.12.13.14.15.16.解:画树状图得:∵共有9种等可能的结果,两次摸出的棋子颜色不同的有4种情况,∴两次摸出的棋子颜色不同的概率为:.17.解:(1)∵自由转动的转盘被等分成20个扇形,红色、黄色或绿色区域分别占1,3,6个区域,∴转动一次转盘获得购物券的概率为:=;(2)选择转转盘.理由:转转盘:200×+100×+50×=40(元),∵40>30,∴选择转转盘.18.解:(1)∵一共有6种等可能的结果,甲转动转盘后所指区域内的数字为负数的有:-1,-2共2种情况,∴甲转动转盘后所指区域内的数字为负数的概率为:=;(2)根据题意,列表得:甲-1-20234乙-1 -2 0(-1,-1)(-2,-1)(0,-1)(2,-1)(3,-1)(4,-1)(-1,-2)(-2,-2)(0,-2)(2,-2)(3,-2)(4,-2)(-1,0)(-2,0)(0,0)(-1,2)(-2,2)(0,2)(-1,3)(-2,3)(0,3)(-1,4)(-2,4)(0,4)(2,0)(2,2)(2,3)(2,4)(3,0)(4,0)(3,2)(4,2)(3,3)(4,3)(3,4)(4,4)234∴点(,)的坐标一共有36种等可能的结果,且每种结果发生的可能性相等,其中点(,x y x y)落在第二象限的结果共有6种,∴点( , )落在第二象限内的概率为: = .x y19.【解析】1. 先根据白色棋子的概率是 ,得到一个方程,再往盒中放进3 颗黑色棋子,取得白色棋子的概率变为 ,再得到一个方程,求解即可.2. 解:画树状图为:共有 4 种等可能的结果数,其中两正面朝上的占 1 种,两背面朝上的占 1 种,一个正面朝上, 另一个背面朝上的占 2 种,所以两正面朝上的概率= ;两反面朝上的概率= ;一个正面朝上,另一个背面朝上的概率 = = .故选 .C先画出树状图展示所有 4 种等可能的结果数,再找出两正面朝上的、两背面朝上的和一个正 面朝上,另一个背面朝上的结果数,然后分别计算它们的概率,再比较大小即可.本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出 ,再从中n选出符合事件 或 的结果数目 ,然后利用概率公式求事件 或 的概率.A AB m B 3. 解:根据题意,画树状图得:∴一共有 24 种跑步顺序,而恰好由甲将接力棒交给乙的有6 种, ∴恰好由甲将接力棒交给乙的概率是: = .故选 .A此题需要三步完成,所以采用树状图法比较简单.注意要做到不重不漏.此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件.注意画树状图是 要做到不重不漏. 4. 解:列表如下:七八九 九 七 八 九--- (九,七) (九,八) ---(九,七) (九,八) (九,九)(七,八) (七,九)(八,九)九 (七,九) (八,九) (九,九)---所有等可能的情况有 12 种,其中九年级同学获得前两名的情况有2 种, 则 = = .P 故选 D列表得出所有等可能的情况数,找出九年级同学获得前两名的情况数,即可求出所求概率. 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5. 解:列表如下:红红红绿绿 红 红 红 绿 绿--- (绿,红) (绿,红) (绿,红) (绿,绿) ---(红,红) (红,红) (红,绿) (红,绿)(红,红) (红,绿) (红,绿)(红,绿) (红,绿)(绿,绿)得到所有可能的情况数为 20 种,其中两次都为红球的情况有 6 种, 则 = = . P 两次红故选: .A列表得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率. 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.6. 解:用 和 分别表示粉色有盖茶杯的杯盖和茶杯;用 和 分别表示白色有盖茶杯的A aB b杯盖和茶杯、经过搭配所能产生的结果如下: 、 、 、Aa Ab Ba Bb所以颜色搭配正确的概率是 ;故选 .B根据概率的计算公式.颜色搭配总共有 4 种可能,分别列出搭配正确和搭配错误的可能,进 而求出概率即可.此题考查概率的求法:如果一个事件有 种可能,而且这些事件的可能性相同,其中事件An 出现 种结果,那么事件 的概率 ()= . m A P A 7. 解:∵摸到红色球的频率稳定在 25%左右,∴口袋中红色球的频率为 25%,故红球的个数为 60×25%=15(个). 故选: .C由频数=数据总数×频率计算即可.本题考查了利用频率估计概率,难度适中.大量重复实验时,事件发生的频率在某个固定位 置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势 来估计概率,这个固定的近似值就是这个事件的概率. 8. 解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选:.C首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.解:、无数次实验后,该事件发生的频率逐渐稳定在左右,正确,不符合题意;AB、无数次实验中,该事件平均每4次出现1次,正确,不符合题意;C、每做4次试验,该事件可能发生一次,也可能发生两次,也有可能不发生,故错误,符合题意;D、逐渐增加实验次数,该事件发生的频率就和逐渐接近,正确,不符合题意,故选.C利用概率的意义分别判断后即可确定正确的选项.本题考查了利用频率估计概率的知识,解题的关键是了解概率的意义,某事件发生的概率为,不一定试验4次就一定有一次发生,难度不大.10.解:共12种等可能的情况,2次都是白球的情况数有2种,所以概率为.故选.A列举出所有情况,看这两个球都是白球的情况数占总情况数的多少即可.考查概率的求法;得到这两个球都是白球的情况数是解决本题的关键;用到的知识点为:概率=所求情况数与总情况数之比.11.解:假设小亮在甲,则小明有甲、乙、丙三种,那么他们要在同一队的可能只有,同理,小亮在乙或丙,他们要在同一队的可能也只有,因此概率为.本题可假设小亮在某一个训练队,则小明有3种被安排的可能,要与小亮在同一个训练队,那么就只有的可能,因此可知概率的值.本题考查了概率的公式.解本题时学生常常会认为小亮、小明都是三种其中一种而算出×=的错误答案.12. 解:共有 3×2=6 种可能,两次都摸到黄球的有 2 种,所以概率是.依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 用到的知识点为:概率=所求情况数与总情况数之比. 13. 解:第一个同学的贺卡为 ,第二个同学的贺卡为 ,第三个同学的贺卡为 ,B CA 共有( , , )、( , , )、( , , )、( , , )、( , , )、( , ,A CB B AC B C A C A B C BA B C A ),6 种情况,她们拿到的贺卡都不是自己的有:( , , )、( , , ),共 2 种, B C A C A B 故她们拿到的贺卡都不是自己所写的概率= = 故答案为: .三个人抽贺卡的情况有 6 种,抽到不是自己的情况有两种,用 2 除以 6 即可得出概率的值.本题考查的是概率的公式.每个人抽到与自己不同的卡片只有两种情况,根据“若其中一个 人确定抽到的卡片时,另外两个人手中卡片也是固定的”可知满足条件的只有两种情况.用 到的知识点为:概率=所求情况数与总情况数之比.14. 解:根据题意画树状图如下:从图上可以看出,共有12 种可能的情况数,其中他所获得购物券的金额不低于30 元的有 8 种可能结果,因此 (不低于 30 元)= = ; P 故答案为: .根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数 之比.15. 解:共有 4 种等可能的结果数,其中有 2 种能组成三角形, 所以能组成三角形的概率= .先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据 概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出 ,再从n中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率.A B m A B16. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色 不同的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 17. (1)由自由转动的转盘被等分成20 个扇形,红色、黄色或绿色区域分别占1,3,6 个 区域,直接利用概率公式求解即可求得答案;(2)首先求得转转盘可能得到的购物券钱数,再比较即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.注意掌握选择转转盘获得购物券的钱数的求解方法是关键.18.(1)根据古典概率的知识,利用概率公式即可求得答案;(2)根据题意列出表格,然后根据表格即可求得所有等可能的结果与点(,)落在第二x y象限内的情况,然后利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.19.解:(1)∵第一道单选题有2个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)画树状图得:∵共有6种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.(1)由第一道单选题有2个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)分别计算出在第一题使用“求助”小明顺利通关的概率和在第二题使用“求助”小明顺利通关的概率即可求得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选n出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.A B m BA12. 解:共有 3×2=6 种可能,两次都摸到黄球的有 2 种,所以概率是.依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 用到的知识点为:概率=所求情况数与总情况数之比. 13. 解:第一个同学的贺卡为 ,第二个同学的贺卡为 ,第三个同学的贺卡为 ,B CA 共有( , , )、( , , )、( , , )、( , , )、( , , )、( , ,A CB B AC B C A C A B C BA B C A ),6 种情况,她们拿到的贺卡都不是自己的有:( , , )、( , , ),共 2 种, B C A C A B 故她们拿到的贺卡都不是自己所写的概率= = 故答案为: .三个人抽贺卡的情况有 6 种,抽到不是自己的情况有两种,用 2 除以 6 即可得出概率的值.本题考查的是概率的公式.每个人抽到与自己不同的卡片只有两种情况,根据“若其中一个 人确定抽到的卡片时,另外两个人手中卡片也是固定的”可知满足条件的只有两种情况.用 到的知识点为:概率=所求情况数与总情况数之比.14. 解:根据题意画树状图如下:从图上可以看出,共有12 种可能的情况数,其中他所获得购物券的金额不低于30 元的有 8 种可能结果,因此 (不低于 30 元)= = ; P 故答案为: .根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数 之比.15. 解:共有 4 种等可能的结果数,其中有 2 种能组成三角形, 所以能组成三角形的概率= .先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据 概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出 ,再从n中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率.A B m A B16. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色 不同的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 17. (1)由自由转动的转盘被等分成20 个扇形,红色、黄色或绿色区域分别占1,3,6 个 区域,直接利用概率公式求解即可求得答案;(2)首先求得转转盘可能得到的购物券钱数,再比较即可求得答案.握选择转转盘获得购物券的钱数的求解方法是关键.18.(1)根据古典概率的知识,利用概率公式即可求得答案;(2)根据题意列出表格,然后根据表格即可求得所有等可能的结果与点(,)落在第二x y象限内的情况,然后利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.19.解:(1)∵第一道单选题有2个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)画树状图得:∵共有6种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.(1)由第一道单选题有2个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)分别计算出在第一题使用“求助”小明顺利通关的概率和在第二题使用“求助”小明顺利通关的概率即可求得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选n出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.A B m BA依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 用到的知识点为:概率=所求情况数与总情况数之比.13. 解:第一个同学的贺卡为 ,第二个同学的贺卡为 ,第三个同学的贺卡为 , B C A 共有( , , )、( , , )、( , , )、( , , )、( , , )、( , , A C B B A C B C A C A B C B A B C A ),6 种情况,她们拿到的贺卡都不是自己的有:( , , )、( , , ),共 2 种,B C A C A B 故她们拿到的贺卡都不是自己所写的概率= =故答案为: .三个人抽贺卡的情况有 6 种,抽到不是自己的情况有两种,用 2 除以 6 即可得出概率的值. 本题考查的是概率的公式.每个人抽到与自己不同的卡片只有两种情况,根据“若其中一个 人确定抽到的卡片时,另外两个人手中卡片也是固定的”可知满足条件的只有两种情况.用 到的知识点为:概率=所求情况数与总情况数之比.14. 解:根据题意画树状图如下:从图上可以看出,共有12 种可能的情况数,其中他所获得购物券的金额不低于30 元的有 8 种可能结果,因此 (不低于 30 元)= = ;P 故答案为: .根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数 之比.15. 解:共有 4 种等可能的结果数,其中有 2 种能组成三角形,所以能组成三角形的概率= .先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据 概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出 ,再从 n 中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率. A B m A B 16. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的棋子颜色 不同的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 17. (1)由自由转动的转盘被等分成20 个扇形,红色、黄色或绿色区域分别占1,3,6 个 区域,直接利用概率公式求解即可求得答案;(2)首先求得转转盘可能得到的购物券钱数,再比较即可求得答案.握选择转转盘获得购物券的钱数的求解方法是关键.18.(1)根据古典概率的知识,利用概率公式即可求得答案;(2)根据题意列出表格,然后根据表格即可求得所有等可能的结果与点(,)落在第二x y象限内的情况,然后利用概率公式求解即可求得答案.此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏的表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.19.解:(1)∵第一道单选题有2个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)画树状图得:∵共有6种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.(1)由第一道单选题有2个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)分别计算出在第一题使用“求助”小明顺利通关的概率和在第二题使用“求助”小明顺利通关的概率即可求得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选n出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.A B m BA。
专题26 用频率估计概率1. 某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C. 袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是偶数2. 甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A. 掷一枚正六面体的骰子,出现1点的概率B. 一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C. 抛一枚硬币,出现正面的概率D. 任意写一个整数,它能被2整除的概率3. 不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,再随机摸出一个,下图显示了某数学小组开展上述摸球活动的某次实验的结果.下面四个推断中正确的是( )①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率是0.33;②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;③可以根据本次实验结果,计算出盒子中约有红球7个;④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率一定是0.40.A. ①②B. ①③C. ②③D. ②④4. 如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为8m ,宽为5m 的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )A. 212mB. 214mC. 216mD. 218m 5. 一个袋子中装有12个球 (袋中每个球除颜色外其余都相同). 其活动小组想估计袋子中红球的个数,分10个组进行摸球试验,每一组做400次试验,汇总后,摸到红球的次数为3000次.请你估计袋中红球接近()A. 3B. 4C. 6D. 9第II卷(非选择题)二、解答题6. 黔东南州某校数学兴趣小组开展摸球试验,具体操作如下:在一个不透明的盒子里装有黑、白两种颜色的小球共4个,这些球除颜色外无其它差别,将球搅匀后从中随机摸出一个球记下颜色,然后再把它放回盒子里搅匀,再随机摸出一球记下颜色,不断重复摸球实验.下表是这次活动的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数263850127197251m摸到白球的频率0.2600.2530.2500.2540.2460.251mn(1)请你根据上表统计数据估计:从不透明的盒子里随机摸出一个球,摸出的球是白球的概率约为___________(精确到0.01);(2)试估算盒子里有多少个白球?(3)根据第(2)题的估算结果,若从盒子里随机摸出两球,请画树状图或列表求“摸到两个颜色相同小球”的概率.7. 一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字2、3、4、x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如表:摸球总次数20306090120180240330450“和为7”出现的10132430375882110150频数“和为7”出现的频率0.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率是___________;(2)当5x=时,请用列表法或树状图法计算“和为7”的概率.8. 在一个不透明的口袋里装有n个相同的红球,为了用估计绕中红球的数量,八(1)学生在数学实验分组做摸球试验:每将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个并记下颜色,再把它放回袋中,不断重复,下表是统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012601500摸到白球的频数n60a247365484609摸到白球的频率ns0.4000.420.4120.4060.403b(1)按表格数据格式,表中的a=_______,b=________;(2)请估计:当次数s很大时,摸到到白球的频率将会接近_________(精确到0.1);(3)请推算:摸到红球的概率是_________(精确到0.1);(4)根据(3)中结果,试估算:这个不透明的口袋中红球的数量n的值.9. 在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率mn0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?10. 2020年南宁市开展创建全国文明城市活动,青秀区创城办招募了大量“卫生保洁”和“交通引导”志愿者(一人只参与一个项目),开展一段时间后,创城办决定派数位调查员分别调查这两个项目的开展情况.(1)调查员小明被分配到调查“交通引导”项目的概率是 ;(2)为掌握“交通引导”志愿志愿者早上7:20按时到位情况,小明对部分志愿者进行调查并整理,得到如下数据:调查总人数2050100300500按时到位人数184694283472按时到位频率0.9000.9200.9400.9430.944分析上表中的数据,估算“交通引导”志愿者早上7:20按时到位的概率为 (精确到0.01);②请估计4800名“交通引导”志愿者早上7:20能按时到位的人数.11. 某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)1415161718特级柑橘的日销售量(千克)1000950900850800(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.12. 小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:掷石子次数石子落在的区域ABC50次150次300次石子落在圆内(含圆上)的次数m144393石子落在阴影内的次数n1985186(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.13. 一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?14. 在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别,每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回,在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验,下图显示的是这个试验中摸出一个球是红球的结果.(1)根据所学的频率与概率关系的知识,估计从这个不透明的帆布袋中随机摸出一个球是红球的概率是______,其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列举法求摸出的两个球刚好一个是红球和一个是白球的概率.15. 在一个不透明的箱子中装有形状、大小都一样的小球,其中红色小球有3个,蓝色小球有1个.(1)从箱子中任意摸出一个小球,恰好是红色的概率为______ ;(2)从箱子中任意摸出两个小球,两个小球颜色恰好不同的概率为______ ;(3)将摸出的小球全部放回后,又放入n个蓝色小球,摇晃均匀后任意摸出一个,记下颜色后放回,经过大量反复地实验,发现摸到蓝色小球的频率约为23,则n ______.16. 下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n50010001500200030004000发芽的粒数m4719461425189828533812发芽频率mn0.9420.946x0.949y0.953(1)求表中x,y的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.17. 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生哪种结果,在烧制前无法预知,所以这是一种随机现象.由于烧制结果不是等可能的,所以我们常用合格品的频率来估计合格品的概率.某瓷砖厂对最近出炉的一批瓷砖进行了质量抽检,结果如下:抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924合格品频率nm0.9500.960a0.9630.9620.9620.9630.961b (1)计算:=a________;b=________.(结果保留三位小数)(2)根据上表,在这批瓷砖中任取一个,它为合格品的概率大约是多少?(结果保留两位小数)18. 【数学试验】数学学习小组在学习“用频率估计概率”的数学活动课上,做投掷骰子(质地均匀的正方体)试验,他们共做了100次试验,试验的结果如下:向上点数123456出现次数1219151820x(1)求表格中x的值;(2)计算“3点朝上”的频率.(3)【数学发现】数学学习小组针对数学试验的结果提出结论:“根据试验及‘用频率估计概率’的知识,出现1点朝上的概率是12%.”你认为数学学习小组的结论正确吗?并说明理由.(4)【结论应用】在一个不透明的盒子里,装有40个黑球和若干个白球,它们除颜色外都相同,搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中,不断重复试验,统计结果发现,随着试验次数越来越多,摸到黑球的频率逐渐稳定在0.2左右.据此估计盒子中大约有白球多少个?19. 某运动员进行打靶训练,对该名运动员打靶正中靶心的情况进行统计,并绘制成了如图所示的统计的图,请根据图中信息回答问题:(1)该名运动员正中靶心的频率在________附近摆动,他正中靶心的概率估计值为________.(2)如果一次练习时他一共打了150枪.①试估计他正中靶心的枪数.②如果他想要在这次练习中想要打中靶心180枪,请计算出他还需要打大约多少枪?20. 为了加强疫情防控,某校从4月初开始启动闭环管理,要求所有的学生午餐统一在学校食堂就餐.为了加强对食堂的监控,有效保证饮食质量,学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分.将本次调查结果制成如下统计表:评分/分45678910人数/人6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是______分;(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬;6~8分为“比较满意”,提醒食堂进行改善;0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)专题26 用频率估计概率【1题答案】【答案】D【解析】【分析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为13,错误.(2)B事件的概率为14,错误.(3)C事件概率为23,错误.(4)D事件的概率为12,正确.故选D.【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.视频【2题答案】【答案】B【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率1 3≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为12,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.【3题答案】【答案】C【解析】【分析】根据概率公式和给出的摸到红球的频率示意图分别对每一项进行分析,即可得出答案.【详解】解:①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率接近0.33,故本选项推理错误;②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35,故本选项推理正确;③可以根据本次实验结果,计算出盒子中约有红球200.357⨯=(个),故本选项推理正确;④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率也是0.35,故本选项推理错误.所以,正确的推断是②③.故选:C【点睛】此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.【4题答案】【答案】B【解析】【分析】根据折线统计图知,当实验的次数逐渐增加时,样本的频率稳定在0.35,因此用频率估计概率,再根据几何概率知,不规则图案的面积与矩形面积的比为0.35,即可求得不规则图案的面积.【详解】p 由折线统计图知,随着实验次数的增加,小球落在不规则图案上的频率稳定在0.35,于是把0.35作为概率.设不规则图案的面积为x cm 2,则有0.3585x =⨯解得:x=14即不规则图案的面积为14cm2.故选:B.【点睛】本题考查了几何概率以及用频率估计概率,并在此基础上进行了题目创新,关键在于读懂折线统计图的含义,随着实验次数的增加,频率稳定于0.35附近,由此得实验的频率,并把它作为概率.这对学生知识的灵活应用提出了更高的要求.【5题答案】【答案】D【解析】【分析】首先由分10个组进行摸球试验,每一组做400次试验,可求得共进行试验的次数,再由摸到红球的次数为3000次得出口袋中红色球的概率,进而求出红球个数即可.【详解】解:∵分10个组进行摸球试验,每一组做400次试验,∴共进行试验的次数为:104004000⨯=(次),∵把结果汇总起来后,摸到红球的次数为3000次,∴摸到红球的概率为:30003 40004=,∴袋中红球接近312=94⨯(个),故选:D.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值求出概率是解题关键.第II卷(非选择题)二、解答题【6题答案】【答案】(1)0.25(2)1 (3)12【解析】【分析】(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此可得.(2)设盒子里有x 个白球,根据概率公式列出算式,再进行计算即可得出答案;(3)先利用列表法展示所有12种等可能的结果数,再找出“摸到两个颜色相同小球”的结果数,然后根据概率公式求解.【小问1详解】从不透明的盒子里随机摸出一个球,摸出的球是白球的概率约为0.25;故答案为:0.25;【小问2详解】设盒子里有x 个白球,根据题意,得:0.254x =,解得:1x =,∴盒子里有1个白球.【小问3详解】随机摸出两球的树状图如下:共有12种等可能结果,而“摸到的两个球是颜色相同的小球”6种结果,“摸到两个颜色相同小球”的概率是61122=.【点睛】本题主要考查利用频率估计概率,解题的关键是掌握大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【7题答案】【答案】(1)0.33(2)见解析,13【解析】【分析】(1)由频率估计概率可得答案;(2)先画树状图,得到所有等可能的结果,再得到符合条件的结果数,利用概率公式进行计算即可.【小问1详解】利用图表得出:实验次数越大越接近实际概率,所以出现“和为7”的概率是0.33;【小问2详解】当5x=时,如图,共有12种情况,和是7的情况共4种,“和为7”的概率41 123 ==.【点睛】本题考查的利用频率估计概率,利用画树状图求解随机事件的概率,熟练的画树状图得到所有的等可能的结果数与符合条件的结果数是解本题的关键.【8题答案】【答案】(1)126,0.406(2)0.4(3)0.6(4)15【解析】【分析】(1)根据频率=频数÷样本总数分别求得a、b的值即可;(2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)摸到红球的概率为10.40.6-=;(4)根据红球的概率公式得到相应方程求解即可;【小问1详解】3000.42126a=⨯=,60915000.406b=÷=;故答案为:126,0.406;【小问2详解】当次数s很大时,摸到白球的频率将会接近0.40;故答案为: 0.4;【小问3详解】摸到红球的概率是10.40.6-=;故答案为: 0.6;【小问4详解】设红球有x 个,根据题意得:0.610x x =+解得:15x =,经检验15x =是原方程的解,故答案为: 15.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.【9题答案】【答案】(1)0.6;(2)可估计口袋中红球的个数为2只;(3)两只球颜色不同的概率为35.【解析】【分析】(1)根据统计数据,当 n 很大时,摸到白球的频率接近0.6;(1)根据利用频率估计概率,可估计摸到白球的概率为0.6,则摸到红球的概率为0.4,然后利用概率公式计算红球的个数;(1)先利用树状图法展示所有20种等可能的结果数,再找出两只球颜色不同所占结果数,然后根据概率公式求解.【小问1详解】解:当n 很大时,摸到白球的频率将会接近0.6;故答案为:0.6;【小问2详解】解:由(1)摸到白球的概率为0.6,则摸到红球的概率为10.60.4-=,所以可估计口袋中红球的个数为:50.42⨯=(只);【小问3详解】解:画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率123 205 ==.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,理解并掌握这个固定的近似值就是这个事件的概率是解题的关键.【10题答案】【答案】(1)12(2)①0.94;②4512人【解析】【分析】(1)直接根据概率公式求解即可;(2)①随着调查总人数的增加,按时到位的频率逐渐稳定于0.94,利用频率估计概率即可得出答案;②总人数乘以按时到位的概率即可.【小问1详解】解:调查员小明被分配到调查“交通引导”项目的概率是12,故答案为:12;【小问2详解】解:①由表中数据知,随着调查总人数的增加,按时到位的频率逐渐稳定于0.94,所以估计“交通引导”志愿者早上7:20按时到位的概率为0.94,故答案为:0.94;②48000.944512⨯=(人),答:估计4800名“交通引导”志愿者早上7:20能按时到位的有4512人.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【11题答案】【答案】(1)9000千克;(2)①当售价定为16.5元/千克,日销售量为875千克,理由见解析;②最大利润售价为19元/千克,每日的最大利润为7500元,理由见解析【解析】【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率,根据所得出柑橘完好的概率乘以这批柑橘的总质量即可.(2)①根据表格求出销售量y 与售价x 的函数关系式,代入x =16.5计算即可;②12天内售完9000千克完好的柑橘,求出日最大销售量即可求出售价的范围,再根据利润=(售价-进价)×销售量求出利润与售价的函数关系式即可;【详解】(1)由图可知损坏率在0.1上下波动,并趋于稳定故所求为()1000010.19000⨯-=千克(2)①设销售量y 与售价x 的函数关系式为y kx b=+由题意可得函数图像过()18,800及()17,850两点8001885017k b k b=+⎧⎨=+⎩得501700k b =-⎧⎨=⎩∴y 与x 的函数关系式为501700y x =-+把16.5x =代入,875y =∴当售价定为16.5元/千克,日销售量为875千克②依题意得:12天内售完9000千克柑橘故日销售量至少为:900075012=(千克)∴501700750y x =-+≥解得19x ≤设利润为w 元,则2(9)(501700)50215015300w x x x x =-⨯-+=-+-∴对称轴为5.21=x ∴当19x ≤时w 随x 的增大而增大∴当19x =时销售利润最大,最大利润为(199)(50191700)7500-⨯-⨯+=(元)【点睛】此题考查了利用频率估计概率,以及二次函数销售利润问题.解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;并利用等量关系:利润=(售价-进价)×销售量求出利润与售价的函数关系式.【12题答案】【答案】(1)12;(2)3π.【解析】【分析】(1)根据次数越多,频率越稳定,用300次时石子落在圆内(含圆上)的次数÷ 石子落在阴影内的次数即可得答案.(2)根据石子落在圆内和石子落在阴影内的次数的关系求出圆的面积约占封闭图形ABC 面积的比例即可求出封闭图形ABC 的大致面积.【详解】(1)根据统计表,可得石子落在圆内的概率与落在阴影部分的概率之比k=93186=12;(2)石子落在圆内和石子落在阴影内的次数关系,随着试验次数的增多,逐渐趋向于为1:2,所以圆的面积约占封闭图形ABC 面积的13,因为S 圆=π,所以封闭图形ABC 的面积约为3π.【点睛】本题考查的是利用频率计算概率在实际生活中的运用,关键是得到阴影与圆的比;用规则图形来估计不规则图形的比是常用的方法.【13题答案】【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球.【解析】【详解】试题分析:(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;(2)用彩球的总数乘以10040100-,即可得到红球的个数.试题解析:(1)解:设白球的个数为x个,根据题意得:解得:x=6小明可估计口袋中的白球的个数是6个.(2)1200× =720.答:需准备720个红球.点睛:本题主要考查了用样本估计总体,其本质是利用概率相等来解决问题,如口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,随机摸出一个,摸出白球的概率与重复100次摸到40次白球的概率相同,从而列方程求解.【14题答案】【答案】(1)0.75,3(2)12【解析】【分析】(1)根据图表中的频率分布可估计概率,再利用总数乘以概率可得红球个数;(2)列出表格,利用概率公式计算.【小问1详解】解:由图表可知:摸出红球的频率分布在0.75上下,则可估计随机摸出一个球是红球的概率是0.75,红球的个数是:40.753⨯=,故答案为:0.75,3;【小问2详解】由(1)可知帆布袋中有3个红球和1个白球.列表如下:白红1红2红3白白,红1白,红2白,红3。
初一数学统计与概率试题答案及解析1.下列事件是不确定事件的是………………………………………………()A.三角形一条中线把三角形分成面积相等的两部分;B.在图形的旋转变换中,面积不会改变C.掷一枚硬币,停止后正面朝上D.抛出的石子会下落【答案】C【解析】ABD都是一定会发生的事件,而C正面朝上的概率为,为不确定时间,故选C2.某班学生在颁奖大会上得知该班获得奖励的情况如下表:-项目三好学生优秀学生干部优秀团员-已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )- A.3项- B.4项- C.5项- D.6项【答案】B【解析】试题考查知识点:概率问题思路分析:抓住学生和班干部是不兼容的具体解答过程:如果某同学是一位班干部,那么他最多可获得的奖励可以有市级、校级优秀学生干部和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(是团员),那么他最多可获得的奖励可以有市级、校级三好学生和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(不是团员),那么他最多可获得的奖励可以有市级、校级三好学生等两项奖励;综上所述,该班获得奖励最多的一位同学可获得的奖励为4项。
试题点评:分情况讨论即可。
3.一个扇形统计图,某一部分所对应扇形的圆心角为108°,则该部分在总体中所占的百分比是.【答案】30%.【解析】因为圆心角的度数=百分比×360°,所以该部分在总体中所占有的百分比=108°÷360°=30%.【考点】扇形统计图.4.小明是2013年入学的,现就读的班级是2014-2015学年八年级2班,座位号是15号,他发现他的学号是20130215.若小英的学号是20120310,则小英现就读的班级是班,座位号是号.【答案】2015届九年级3班,10.【解析】根据学号的表示:前四位是年级, 56位是班级,七八位是座位号,可得答案.小英的学号是20120310,则小英现就读的班级是2015届九年级3班,座位号是10号,【考点】用数字表示事件5.已知样本容量为30,在频数分布直方图中共有三个小长方形,各个小长方形的高的比值是2:4:3,则第三组的频数为()A.10B.12C.9D.8【答案】A.【解析】用30乘以第三组的高所占的比例即可,即第三组的频数为30×=10.故答案选A.【考点】频数(率)分布直方图.6.某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为.【答案】9.【解析】用总人数45乘以60﹣70分这组人数占全班总人数的百分比即可得该组的频数,即频数=45×20%=9.【考点】频数与频率.7.下列调查方式,你认为最合适的是()A.了解恒安新区每天的流动人口数,采用抽样调查方式B.要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C.了解矿区居民日平均用水量,采用全面调查方式D.旅客进火车站上车前的安检,采用抽样调查方式【答案】A.【解析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由此可得选项A,了解恒安新区每天的流动人口数,宜采用抽样调查方式;选项B,要了解全市七年级学生英语单词的掌握情况,宜采用抽样调查方式;选项C,了解矿区居民日平均用水量,宜采用抽样调查方式;选项D,旅客进火车站上车前的安检,宜采用全面调查方式.故答案选A.【考点】全面调查与抽样调查.8.(3分)下列抽样调查较科学的是()①小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况②小华为了了解初中三个年级平均身高,在2014-2015学年七年级抽取了一个班的学生做调查③小智为了了解初中三个年级的平均体重,在七、八、2015届九年级各抽一个班学生进行调查④小明为了知道烤箱内的面包是否熟了,任意取出一小块品尝.A.①②B.②③C.③④D.②④【答案】C.【解析】抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.由此可得①一年中不同季节气温变化是很大的,调查时只选了一天的情况,调查的对象太少,缺乏代表性,也不符合广泛性;②要了解初中三个年级的情况,一个年级的学生不具代表性,不科学;③和④的抽样调查符合样本的代表性和广泛性的标准,是较科学的,故答案选C.【考点】全面调查与抽样调查.9.下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量【答案】C【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.A、人数多,不容易调查,因而适合抽样调查;B、数量较多,不易全面调查;C、数量较少,易全面调查;D、数量较多,具有破坏性,不易全面调查.【考点】全面调查与抽样调查10.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【答案】C.【解析】A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选C.【考点】全面调查与抽样调查.11.綦江县教委在推进课堂教学改革的过程中,为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,2015届九年级学生每天的课外作业总时间不得超过1小时(学生阅读、自学除外):为了了解各校情况,县教委对其中40个学校2015届九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;(2)将图中的条形图补充完整;(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.【答案】(1)162°;(2)补图见解析,(3)10%.【解析】由扇形统计图可知:(1)学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角为360°×45%=162°;(2)15-30段的学校个数为40×30%=12个;(3)60-75分的学校为40-12-18-6=4个,则占的百分比为×100%=10%.试题解析:(1)360°×45%=162°;(2)40×30%=12;如图;(3)40-12-18-6=4,×100%=10%.【考点】1.条形统计图;2.扇形统计图.12.(4分)一组样本数据:101,98,102,100,99的方差是()A.0B.1C.10D.2【答案】D【解析】欲求“方差”,根据题意,先求出这组数据的平均数,再利用方差公式计算.即平均数=(99+98+101+102+100)=100,方差s2=[(99﹣100)2+(98﹣100)2+(101﹣100)2+(102﹣100)2+(100﹣100)2]=2.故选D.【考点】方差13.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】B【解析】:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.【考点】抽样调查和全面调查14.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.500【答案】 D【解析】大、中、小学生的人数比为2:3:5,所以3份为150人,每份50人,故总数为50×10=500人,故选D.【考点】抽样调查15.已知样本数据为1,2,3,4,5,则它的方差为()A.10B.C.2D.【答案】C.【解析】先计算出数据的平均数,然后根据方差公式计算.平均数=(1+2+3+4+5)=3,所以s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选C.【考点】方差.16.(2015秋•陕西校级期末)在“国庆车展”期间,某汽车经销商推出A、B、C、D四种型号的轿车共1000辆进行展销.C型号轿车销售的成交率为50%,图①是各型号参展轿车的百分比,图②是已售出的各型号轿车的数量.(两幅统计图尚不完整)(1)参加展销的D型号轿车有多少辆?(2)请你将图②的统计图补充完整;(3)通过计算说明哪一款型号的轿车销售情况最好?【答案】(1)250辆;(2)见解析;(3)D型号的轿车销售的情况最好【解析】(1)先利用扇形统计图计算出参加展销的D型号轿车所占的百分比,然后用这个百分比乘以1000即可得到参加展销的D型号轿车的数量;(2)先利用扇形统计图得到参加展销的C型号轿车所占的百分比,则可计算出参加展销的C型号轿车的数量,然后把参加展销的C型号轿车的数量乘以50%得到售出的C型号轿车的数量,再补全条形统计图;(3)分别计算出各型号轿车的销售的成交率,然后比较它们的大小即可判断哪一款型号的轿车销售情况最好.解:(1)1000×(1﹣35%﹣20%﹣20%)=1000×25%=250(辆),所以参加展销的D型号轿车有250辆;(2)1000×20%×50%=100(辆),如图2,(3)四种轿车的成交率分别为:A:×100%=48%,B:×100%=49%,C:50%,D:×100%=52%.所以D型号的轿车销售的情况最好.【考点】条形统计图;扇形统计图.17.下列调查中,适合采用普查方式的是()A.对小北江水质情况的调查B.对市场上腊味质量情况的调查C.对某班48名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【答案】C.【解析】A、对小北江水质情况的调查,不适合采用普查,故选项错误;B、对市场上腊味质量情况的调查,费事费力,不适合采用普查,故选项错误;C、对某班48名同学体重情况的调查,调查范围较小,比较容易做到,适合普查,故本选项正确;D、对某类烟花爆竹燃放安全情况的调查,不适合采用普查,故选项错误.故选C.【考点】全面调查与抽样调查.18.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是()A.1500名学生是总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本【答案】B【解析】根据题意由抽样调查的意义,可知总体是1500名学生的体重情况,每个学生的体重是个体,100名学生的体重是所抽取的一个样本.故选B【考点】抽样调查19.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本【答案】D【解析】2000名运动员的年龄是总体;每个运动员的年龄是个体;100名运动员的年龄是抽取的样本.【考点】总体、个体、样本的定义20.(2015•路北区一模)如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定哪一户大【答案】B【解析】根据条形统计图及扇形统计图分别求出甲乙两人教育支出所占的百分比,比较大小即可做出判断.解:由条形统计图可知,甲户居民全年总支出为1200+2000+1200+1600=6000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.【考点】条形统计图;扇形统计图.21.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b= .【答案】12【解析】根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【考点】频数(率)分布折线图.22.(2015秋•岑溪市期末)为了了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的一模数学成绩D.我区2014年一模考试数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.样本是被抽取的150名考生的一模数学成绩.故选:C.【考点】总体、个体、样本、样本容量.23.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a= ,b= ,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是.【答案】(1)抽样调查,40;(2)a=0.350;b=5;(3)45°.【解析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数c;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;解:(1)填抽样调查或抽查;总人数为:8÷0.200=40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;频数分布直方图如图所示:(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:抽样调查,40;a=0.350,b=5;45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.24.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【答案】D【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【考点】全面调查与抽样调查.25.(2015•南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【答案】(1)120,30°;(2)见解析;(3)1375人.【解析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【考点】条形统计图;用样本估计总体;扇形统计图.26.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人【答案】B【解析】利用频数分布直方图可得各捐款数段的人数,然后把后两组的人数相加即可.解:由频数分布直方图得后两组的捐款不少于15元,所以捐款不少于15元的有20+12=32(人).故选B.【考点】频数(率)分布直方图.27.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【答案】(1)本次一共调查了200位学生;(2)画图见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.28.在我市百万读书工程活动中,就我县中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整),设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤3,B:4≤x≤6,C:7≤x≤9,D:x≥10.(1)本次共调查了名教师;(2)扇形统计图中扇形D的圆心角的度数为 °.【答案】(1)200;(2)72.【解析】(1)用A组的频数除以A组所占的百分比即可求得抽查的教师人数;(2)用总人数减去A、B、C组的频数即可求得D组的频数,用该组的频数除以总人数乘以周角的度数即可求得圆心角的度数.解:(1)本次共调查教师38÷19%=200(人),故答案为:200;(2)D组的频数为:200﹣38﹣74﹣48=40,扇形统计图中扇形D的圆心角的度数360°×=72°,故答案为:72.29.为了了解某校七年级期末考数学科各分数段成绩分布情况,从该校七年级抽取200名学生的期末考数学成绩进行统计分析,在这个问题中,样本是()A.200B.被抽取的200名学生C.被抽取的200名学生的期末考数学成绩D.某校七年级期末考数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:为了了解某校七年级考数学科各分数段成绩分布情况,从中抽取200名考生的段考数学成绩进行统计分析,在这个问题中,样本是被抽取的200名考生的段考数学成绩,故选:C.30.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.16【答案】B【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选B.。
专题训练16统计与概率一、选择题(每小题3分,共24分) 1.下列调查工作需采用的普查方式的是()(A )环保部门对淮河某段水域的水污染情况的调查. (B )电视台对正在播出的电视节目收视率的调查. (C )质检部门对各家生产的电池使用寿命的调查. (D )企业在给职工做工作服前进行的尺寸大小的调查.2.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离 铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99 的中位数为( )4.在一个暗箱里放有Q 个除颜色外其它完全相同的球,这Q 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发 现,摸到红球的频率稳定在25%,那么可以推算出Q 大约是()(A ) 18.(B ) 50.3 .下列事件中,必然事件是()(A )中秋节晚上能看到月亮.(C )早晨的太阳从东方升起.(C ) 35.(D ) 35.5.(B )今天考试小明能得满分. (D )明天气温会升高. (A) 12. (B) 9. (C ) 4. (D ) 3.5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()1v 3 <33超(A ) — .(B ) -兀.(C ) ――^ .(D ) ----- .2 6 9几6.将50个个体编成组号为①④的四个组,如下表:组号 ① ②③ ④统计图,在一片果园中,有不同种类的果树,为了反映某种果树的种10 .有长为2、4、6、8、10的五根木棍,从中任意抽取三根,能构成三角形的概率是 11 .某校学生会调查60名同学体育爱好项目的统计图如图所示,根据图中信息,喜欢各12 .某地湖水在一年中各个月的最高温度和最低温度统计图如图所示.由图可知,全年湖频数 14 1113(A) 24.(B) 0.24.(C) 12.(D) 0.12.7.甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出 的统计图如图所示,则符合这一结果的实验可能是 (A )掷一枚正六面体的骰子,出现1点的概率. (B) 一个袋子中有2个白球和1个红球从中8. 二、 9. 任取一个球,则取到红球的概率. (C )抛一枚硬币,出现正面的概率.(D )任意写一个整数,它能被2整除的概率.在—2, — 1, 0, 1, 2中任取一个数 2 (C) 5填空题(每小题3分,共18分) 反映某种股票涨跌情况,应选用40% 30% 20% 10%200 400 600 次数 … .2 + x .................... ....恰好使分式___有意义的概率是()4(D) 5(E) 1.统计图;学校统计各年级的总人数应选值面积占整个果园的面积百分比,应选用统计图.那么第③组的频率为(频率(第11题)(第12题) (第13项体育项目的人数极差.水的最低温度是___________ ,温差最大的月份是 __________ .13.如图,数轴上两点A B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是___________ .14.为备站2008年奥运会,教练要判断刘翔100米跨栏成绩是否稳定,对他10次训练成绩进行统计分析,则教练需了解刘翔这10次成绩的.三、解答题(每小题6分,共24分)15.请将表示下列事件的序号按其发生概率的大小标在下图中.A.掷一枚均匀的硬币,正面朝上.B.在分别标有1〜9连续自然数的九张卡片中,随机抽出两张,和大于17.C任意找到两个负数,它们的乘积为正数.D.在某次有奖销售活动中,共准备了1000个抽奖号码,其中设一等将10个,二等将40个,三等将50个,顾I I I I I I I I I I I客摸一次中奖. 0 116.某校学生会生活部长王敏同学随机调查部分同学对食堂伙食的评价,准备绘制成统计图表,现已完成其中的一部分,请你运用统计知识将其他空缺部分逐一补上.食堂伙食意见统计表食堂伙食意见条形统计图食堂伙食意见扇形统计图17.下表是某校九(1)班20名学生某次数学测验的成绩统计表.成绩/分60708090100■人数/人151y(1)若这20名学生的平均成绩为82分,求1和y的值;(2)在(1)的条件下,求这20名学生本次测验成绩的众数与中位数.18.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.画树形图或列表求下列事件发生的概率.(1)甲、乙、丙三名学生在同一个餐厅用餐;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐.四、解答题(每小题7分,共14分)19.“十•一”七天长假期间,很多同学都和父母一起旅游,下图是班长小明将本班同学出游2天、3天、4天的数据绘制成扇形统计图的一部分:(1)若问一位出游的同学十一期间旅游几天,那么最有可能的回答是 ______ 天;............ ,一」,,3 …… 一、」…八, (2)小明说旅游4天的人数是2天的;,请你通过这一信息,并通过计算将扇形统计4图补充完整.20.在背面图案一样的四张卡片的正面标有数字1、2、3、4,将正面朝上洗匀后抽取一张数字为m,把此卡片放回洗匀后以同样的方式再次抽取一张卡片数字为n .若把m、n作为点的横、纵坐标,求点(m , n)在函数y 2x的图象上的概率.五、解答题(每小题10分,共20分)21 .张明、王成两位同学的10次数学单元自我检测成绩分别如下图所示:(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.张明同学王成同学1 1 S -1 5 6 7 3 1 W %号 成结/7T sT5 77 m 号(1)完成下表:(2)如果将90分以上(含90分)的成绩视为优秀,则获得优秀次数较多的同学22. A、B、C三个工程队共修建一段长240km的公路,图中分别反映了每个工程队的工程比例及每月完成公路的进度.(1)根据图中的信息,求出每个工程队的工程量;(2)若B队9个月的工程量与A队6个月的工程量相同,求a的的值;(3)在(2)的条件下,同时开工,完成全部工程需要几个月时间.参考答案一、选择题1. D2. D3. C4. A5. C6. B7. B8. C 二、填空题29.折线,条形,扇形10. 0.3 11. 25名12. 22℃, 9月份13. 3 14.方差 三、解答题15 . P (A )=0.5, P (B )=0, P (C )=1, P (D )=0.1,图略.16 .一般:20,好:(10+20+120);(1—50%)X 50% = 50,条形、扇形统计图略. 17 . (1) X + J = 12, 8 X + 9 J = 103,解得了 = 5, J = 7; (2) 90 分,80 分. 18 .树形图或列表如图所示:(1) P (甲、乙、丙三名学生在同一餐厅用餐)=1.47 (2) P (甲、乙、丙三名学生中至少有一人在B 餐厅用餐)=-. 8四、解答题19. (1) 3; (2)人数是2天的百分比为20%,人数是4天的百分比为15%,图略. 20. 点(m , n )共有16种情况,而在函数J = 2X 图象上的点有(1, 2) (2, 4)两种,丙 ABABABAB甲 A A A A B B B B 乙 A A BB A A B B 丙 A B AB A B AB-8所以点(m , n )在函数J = 2X图象上的概率为0.125.五、解答题21. (1)平均成绩均为80分,张明的方差为60分2,王成的中位数为85分,众数为90分;(2)王成;(3)王成的学习要持之以恒,保持稳定;张明的学习还须加油,提高优秀率(答案不唯一,只有你的建议合理即可).22. (1) A 工程队的工程量为:35% x 240 = 84, C 工程队的工程量为:45%x 240 = 108 ,B 工程队的工程量为:20% x 240 = 48.(2) 4x 9 = 6a , a = 6.答:三个工程队同时开工需要14个月完成全部工程. (3) T 二 14,手二 12,T = 13.5 .。