数学六年级总复习概念整理
- 格式:doc
- 大小:67.00 KB
- 文档页数:15
六年级数学上册期末复习知识点汇总(人
教版)
1. 数的读写和数位在数表中的比较
- 掌握百以内数的读写方法
- 进一步练百以内数字的大小比较
- 在数表中比较数位的大小
2. 术语的认识和深化
- 理解单位和量的关系,研究长度、容量、时间等单位的名称和换算
- 认识图线表、拔河运动、神奇图等特殊的数学问题
- 进一步掌握理论题中的数学术语,如加法、减法、乘法、除法等
3. 两位数和三位数的认识
- 认识两位数和三位数,并通过具体的例子进行演算
- 进一步研究如何将两位数和三位数的大小进行比较
- 在实际问题中运用两位数和三位数进行计算
4. 数量和对应关系的探讨
- 了解相等的概念,并通过具体例子进行对比
- 研究图表和表格的分析,找出其中的规律
- 运用对应关系解决实际问题,如物品的分组、排列等
5. 探究几何图形和图形的特征
- 了解常见的平面图形和立体图形,如三角形、四边形、圆、长方体、正方体等
- 掌握几何图形的命名及其特征
- 研究分析和比较不同几何图形的性质和关系
6. 数据的收集和分析
- 研究如何进行数据的收集、整理和表示
- 给出简单的表格和图表,进行数据的分析和总结
- 运用数据分析解决实际问题,如人数统计、天气变化等
以上是六年级数学上册的期末复习知识点汇总,希望同学们认真复习,并做好复习笔记和习题,以便顺利应对期末考试。
祝大家取得好成绩!。
(完整版)人教版六年级数学总复习资料
本文档是人教版六年级数学总复资料的完整版,旨在帮助学生全面复数学知识。
目录
1. 数的认识
2. 数的读写与数的大小比较
3. 数的运算
4. 简便计算法
5. 乘法
6. 除法
7. 解方程和表示思想方法
8. 长度单位
9. 面积与体积
10. 角与直线的认识
11. 同、异角的认识
12. 三角形与四边形
13. 分数的认识与运算
14. 概率
15. 数据的整理和分析
内容概述
本文档涵盖六年级数学各个模块的核心知识点。
每个模块都包含了相关概念、方法和例题,以帮助学生加深对数学知识的理解。
本文档的复资料是从人教版六年级数学教材中提炼出来的,结构简明清晰,适合学生进行系统性的复。
使用建议
学生可以按照目录中的顺序逐个模块进行复,先理解每个模块的基本概念和方法,然后通过例题进行练,加深对知识点的掌握。
建议学生在复过程中积极思考,加深对数学思维的培养。
可以利用课余时间进行复,逐步提高对数学知识的掌握和运用能力。
注意事项
本文档中的知识点都是经过精心整理和筛选的,但仍需注意一些重要的细节。
在研究过程中,遇到不理解的地方可以查阅相关教材进行进一步研究和理解。
建议学生在复过程中多做笔记,方便回顾和巩固知识。
结语
本文档是人教版六年级数学总复习资料的完整版,提供了全面的知识点和例题,旨在帮助学生系统复习数学知识,夯实基础,迎接考试。
希望同学们能够认真阅读、理解和运用本文档中的内容,取得优异的成绩!祝大家学习进步!。
第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义:(与整数乘法的意义相同) 就是求几个相同加数的和的简便运算。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。
例如:53×61表示: 求53的61是多少? A× 61表示: 求A 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
◆为了计算简便,能约分的先约分再计算。
3、分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:1、一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.2、一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).3、一个数(0除外)乘等于1的数,积等于这个数。
a ×b=c,当b =1时,c=a . ◆在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算1、分数合运算顺序:(与整数相同),先乘、除后加、减,有括号的先算括号里面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a ×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)分数乘法应用题 ——用分数乘法解决问题◆已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。
1、求一个数的几分之几是多少?(用乘法)例如:求25的5是多少? 列式:25×53=15甲数的53等于乙数,已知甲数是25,求乙数是多少? 列式:25×53=152、求比一个数多(少)几分之几的数是多少?例如:甲数比乙数多(少)53,乙数是25,求甲数是多少?甲数=乙数+乙数×53 即25+25×53=25×(1+53)=40(或10)◆巧找单位“1”的量:“的” 前 “比” 后,“的”字相当于“×”,“是”字相当于“=”3、求甲比乙多(少)几分之几? 多:(甲-乙)÷乙少:(乙-甲)÷乙第二单元 位置和方向1、确定位置的条件:相差数÷单位“1”当观测点(中心)确定以后,确定物体位置是条件是(方向:方位+角度)和(距离)。
六年级数学教案《整理和复习》6篇六年级数学教案《整理和复习》1复习内容:1、求一个数的百分之几是多少和已知一个数的百分之几是多少,求这个数的应用题。
(练习三十四第1、3、4题)2、折扣、纳税、利息复习目的:1、通过复习使学生进一步理解求一个数的百分之几是多少和已知一个数的几分之几是多少,求这个数的应用题的数量关系,能正确熟练地进行解答。
2、能正确熟练地解答有关税款、税后利息等实际应用问题。
复习过程:一、基本练习(只列式不计算)(1)10万元的5%是多少?(2)一个数的80%是100,求这个数。
(3)500减少20%后是多少?(4)1000元增加2%后是多少?(5)100比某数多10%,求某数?二、知识梳理1、某校男生人数比女生少10%。
①谁是单位1。
②男生人数是女生人数的百分之几?③已知女生有500人,求男生有多少人?④已知男生有450人,求女生有多少人?2、把③、④两题进行比较,然后小结。
3、课本104页第3题,105页第1题。
二、税款的计算方法,利息的计算公式。
1、复习税款的计算方法。
2、复习利息的计算公式:利息=本金利率时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)3、什么利息不纳税?利息与税后利息有什么不一样?三、巩固与深化练习1、课本104页的第4题。
2、课本105页的第6题。
四、作业课本105页练习二十四第2、3、5题六年级数学教案《整理和复习》2:知识整理1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。
汇报同学互相补充。
复习概念什么叫比?比例?比和比例有什么区别?什么叫解比例?怎样解比例,根据什么?什么叫呈正比例的量和正比例关系?什么叫反比例的关系?什么叫比例尺?关系式是什么?基础练习1填空六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。
大圆和小圆的周长比是()。
六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。
六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
小学六年级数学总复习的公式与概念第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
除以任何不是O 的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有x的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
六年级数学总复习知识点归纳一、常用的数量关系式1、每份数乘以份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数。
2、1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数,几倍数除以倍数等于1倍数。
3、速度乘以时间等于路程,路程除以速度等于时间,路程除以时间等于速度。
4、单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。
5、工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于工作时间,工作总量除以工作时间等于工作效率。
6、加数加上加数等于和,和减去一个加数等于另一个加数。
7、被减数减去减数等于差,被减数减去差等于减数,差加上减数等于被减数。
8、因数乘以因数等于积,积除以一个因数等于另一个因数。
9、被除数除以除数等于商,被除数除以商等于除数,商乘以除数等于被除数。
二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长等于边长乘以4,C=4a,面积等于边长的平方,S=a×a。
2、正方体(V:体积 a:棱长)表面积等于棱长的平方乘以6,S表=a×a×6,体积等于棱长的立方,V=a×a×a。
3、长方形(C:周长 S:面积 a:边长)周长等于长和宽的和乘以2,C=2(a+b),面积等于长乘以宽,S=ab。
4、长方体(V:体积 s:面积 a:长 b:宽 h:高)表面积等于长乘以宽加上长乘以高加上宽乘以高的和乘以2,S=2(ab+ah+bh),体积等于长乘以宽乘以高,V=abh。
5、三角形(s:面积 a:底 h:高)面积等于底乘以高除以2,s=ah÷2,三角形的高等于面积乘以2除以底,三角形的底等于面积乘以2除以高。
6、平行四边形(s:面积 a:底 h:高)面积等于底乘以高,s=ah。
7、梯形(s:面积 a:上底 b:下底 h:高)面积等于上底加下底的和乘以高除以2,s=(a+b)×h÷2.8、圆形(S:面积 C:周长 d:直径 r:半径)周长等于直径乘以π或者半径乘以2π,C=πd=2πr,面积等于半径的平方乘以π,S=πr²。
1.正整数,负整数和0都是整数。
2.自然数:用来表示物体个数的0,1,2,3……叫做自然.自然数包括0和正整数。
最小的自然数是0。
3计数单位:个、十、百、千、万、十万、百万、千万、亿……都是计数单位。
4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
6.多位数的读法和写法:(1)整数的读法:①从高位起,一级一级地往下读;②读亿级或万级的数时,要按照个级的读法来读,再在后面加上“亿”或“万”字。
③每级末尾的“0”都不读,其它数位有一个“0”或连续有几个“0”都只读一个“零”。
(2)整数的写法:从高位写起,一级一级的写,哪一个数位上一个数字也没有,就在那个数位上写08.数的改写和省略尾数:(1)改写成用“万”或“亿”做单位的数。
先要找出亿位或万位,在亿位或万位的右下角点上一个小数点,再写上“万”或“亿”字。
(改写要用“=”,因为没有改变数的大小。
)(2)省略“万”或“亿”位后面的尾数:先找到万位或亿位,看他后面的那一位数字,用四舍五入法取近似值,再写上万字或亿字。
(省略尾数后用“≈”)9.数的整除:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
10.倍数,因数:如果a×b=c,c就叫做a和b的倍数,a和b就叫做c的因数。
(倍数和因数是相互依存的。
)注意:(1)因数和倍数是互相依存的,因数和倍数必须以整除为前提。
(2)在正整数范围内倍数和因数。
如:1、因为15÷5=3,所以15是倍数,5是约数。
(缺少相互依存)2、因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的倍数。
(没在整除范围内)11.找因数的方法:(1)根据乘法口诀,一对一对的找。
找倍数的方法:就用从1开始的自然数去乘一个数,积就是它的倍数。
12.因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
13.倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
13.偶数:能被2整除的数叫做偶数。
最小的偶数是0。
奇数:不能被2整除的数叫做奇数。
最小的奇数是1.14.质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
注意:1不是质数也不是合数,自然数除了1外,不是质数就是合数。
15.自然数的分类:奇数质数按是否被2整除(按因数的个数)合数偶数1和0 16.能被2 整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5 整除的数的特征:个位上是0或5的数,都能被5整除,能被3 整除的数的特征:一个数的各个数位上的数字之和能被3整除,这个数就能被3整除。
能被9 整除的数的特征:一个数各位数上数字之和能被9整除,这个数就能被9整除。
注意:能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
小知识:(1)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
(2)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
17.质因数:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
分解质因数的方法:把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
例如:24=2×2×2×3 分解质因数一般要从小往大排。
18.公因数:几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
(注:1是所有自然数的公因数)公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
19.互质数:公因数只有1的两个数,叫做互质数。
注:成互质关系的两个数,有下列几种情①1和任何自然数互质。
②相邻的两个自然数互质。
③两个不同的质数互质。
④当合数不是质数的倍数时,这个合数和这个质数互质。
⑤两个合数的公约数只有1时,这两个合数互质。
两两互质:如果几个数中任意两个都互质,就说这几个数两两互质。
20.最大公因数的求法:①列举法:分别找因数,再找因数中最大的一个。
②短处法:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,积就是这几个数的的最大公因数。
③分解质因数:分别分解质因数,公有质因数的乘积就是这几个数的最大公因数。
④特殊关系:A.如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
B.如果两个数是互质数,它们的最大公约数就是1。
21.最小公倍数的求法:①列举法:分别找倍数,再找倍数中最小的一个。
②短处法:先用这几个数的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,积就是这几个数的最小公倍数。
③分解质因数:分别分解质因数,所有的公有质因数和独有质因数的乘积就是最小公倍数,④特殊关系:A.如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
B.如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
22.公因数和公倍数的特征:几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数部分纯小数:整数部分是0的小数,叫做纯小数。
例如: 0.25,0.768带小数:整数部分不是0的小数,叫做带小数。
例如: 3.25 、 5.26有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 、 25.3 无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 ……3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:π无限循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 …… 0.0333 …… 12.109109 ……循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 ……循环小数的写法:①用省略号表示:要写出两个循环节后再写上省略号.如:12.109109 …….②用循环节表示:为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
4.小数、分数和百分数之间的互化(1)小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
(2)分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
(3)一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
(4)小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
(5) 百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。
(6)分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数,百分数保留一位小数。
(7)百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
倒数:乘积是1 的两个数互为倒数。
二、 性质和规律(一)商不变的规律:被除数和除数同时乘以或者除以相同的数(0除外),它们的商不变。
(二)小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
(三)小数点位置的移动引起小数大小的变化:小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍…… 小数点向左移动一位,就缩小到原来的101;小数点向左移动两位,就缩小到原来的1001;小数点向左移动三位,就缩小到原来的10001。
(四)分数的基本性质:分数的分子和分母同时乘或除以同一个不为0的数,分数的大小不变。
(五)比的基本性质:比的前项和后项同时乘或除以同一个不为0的数,比的大小不变。
怎样判断某一年是平年还是闰年?公历年份是4的倍数的,一般都是闰年,公历年份是整百数的,必须是400的倍数的才是闰年,分数乘法的意义分为两种:(1)分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(2)一个数乘以分数的意义,就是求这个数的几分之几是多少。
3 用字母表示数的写法:数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
(三)方程比和比例方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边相等的未知数的值叫方程的解解方程:求方程的解的过程叫解方程。
比:两个数相除又叫做两个数的比。
比值:比的前项除以后项所得的商叫做比值。
比例:表示两个比相等的式子叫做比例。
(2)求比值和化简比求比值:用比的前项除以后项。
(它的结果是一个数,可以是整数,也可以是小数或分数)。
化简比:根据比的基本性质可以把比化成最简单的整数比。
(可以用求比值的方法)(它的结果必须是一个最简比,即前、后项是互质的数。
)(3)比例尺 :图上距离和实际距离的比角比例尺。
图上距离:实际距离=比例尺实际距离=图上距离÷比例尺图上距离=实际距离×比例尺比例尺分为数值比例尺和线段比例尺。
(4)按比分配方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
(5) 正比例和反比例正比例 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。