1.2直角三角形全等的判定(1)作业
- 格式:doc
- 大小:43.00 KB
- 文档页数:2
1.2.2 直角三角形全等的判定1.如果两个直角三角形的两条直角边对应相等,则这两个直角三角形全等的依是(C)A.SSSB.AASC.SASD.HL2.如图,∠C=∠D=90°,若利用“HL”可以判定Rt△ABC≌Rt△ABD,则还需要添加的条件是(B)A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.以上都不正确3.下列条件中,不能判定两个直角三角形全等的是(B)A.两条直角边对应相等B.两个锐角对应相等C.一个锐角和一条直角边对应相等D.斜边和一条直角边对应相等4.如图,在△ABC中,∠C=90°,E为AC上一点,ED⊥AB于点D,BD=BC,连接BE,若AC=6 cm,则AE+DE等于(C)A.4 cm B.5 cm C.6 cm D.7 cm【点拨】由已知可证Rt△BDE≌Rt△BCE,∴DE=CE.∴AE+DE=AE+CE=AC=6 cm.5.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=134°,则∠EDF的度数为(A)A.44° B.36° C.46° D.34°【点拨】∵BD=CF,BE=CD,FD⊥BC,DE⊥AB,∴Rt△BDE≌Rt△CFD(HL).∴∠BDE=∠CFD.又∵∠CFD=180°-∠AFD=46°,∠EDF+∠EDB=90°,∴∠EDF=90°-46°=44°.【答案】A6.如图,在△ABC中,△C=90°,AD=AC,DE△AB交BC于点E.若△B=28°,则△AEC=(B)A.28°B.59°C.60°D.62°7.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD,CE 相交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D) A.3对B.4对C.5对D.6对8.如图,H是△ABC的高AD,BE的交点,且DH=DC.下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD.其中正确的有(B)A.1个B.2个C.3个D.4个9.(中考·凉山州)如图,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①EM=FN;②CD=DN;③∠F AN=∠EAM;④△ACN≌△ABM.其中正确的有(C)A.1个B.2个C.3个D.4个10.(中考·南京)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(D)A.a+c B.b+cC.a-b+c D.a+b-c【点拨】∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°.∴∠A=∠C.又∵AB=CD,∴△ABF≌△CDE(AAS).∴AF=CE=a,DE=BF=b.∵EF=c,∴AD=AF+DF=a+(b-c)=a+b-c.【答案】D二.填空题11.如图所示,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件__AB=AC__ ,若加条件∠B=∠C,则可用_______AAS__________判定.第11题图第12题图第13题图12.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是____HL或斜边直角边定理_____13.如图所示,已知AB⊥CD,垂足为点B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是__AC=DE____14.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=___7_____.【点拨】∵MN∥PQ,AB⊥PQ,∴∠DAE=∠EBC=90°.∵AD=BE,DE=EC,∴Rt△ADE≌Rt△BEC.∴AE=BC.∵AD+BC=7,∴AB=AE+BE=BC+AD=7.三.计算证明题15.如图,在△ABC中,AB=42,D为BC上一点,AD=BD=4,在AD上找一点E,使BE=AC.(1)判断△ABD的形状,并说明理由;(2)求证:△BDE≌△ADC.解:(1)△ABD是等腰直角三角形.理由:在△ABD中,∵AD=BD=4,∴AD2+BD2=32.又∵AB=42,∴AB2=32,∴AD2+BD2=AB2,∴△ABD为等腰直角三角形.(2)证明:∵∠ADB=90°且∠ADB+∠ADC=180°,∴∠ADC=∠ADB=90°,∴△ADC 和△BDE 为直角三角形.在Rt △ADC 和Rt △BDE 中,⎩⎨⎧AC =BE ,AD =BD ,∴Rt △ADC ≌Rt △BDE (HL).16.如图,AC △BC ,AD △BD ,AD =BC ,CE △AB ,DF △AB ,垂足分别是E ,F .求证:CE =DF .证明:∵AC ⊥BC ,AD ⊥BD ,CE ⊥AB ,DF ⊥AB ,∴∠ACB =∠ADB =∠AEC =∠BFD =90°.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,BC =AD ,∴Rt △ABC ≌Rt △BAD (HL),∴AC =BD ,∠CAE =∠DBF .∵在△ACE 和△BDF 中,⎩⎨⎧∠CAE =∠DBF ,∠AEC =∠BFD ,AC =BD ,∴△ACE ≌△BDF (AAS),∴CE =DF .17.如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE=30°,求∠ACF的度数.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF,AB=CB,∴Rt△ABE≌Rt△CBF(HL).(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∴∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.18.【中考·哈尔滨】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1) 如图①,求证:AE =BD ; (2) 如图②,若AC =DC ,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.(1)证明:∵△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD ,∴∠BCD =∠ACE ,在△ACE 与△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD (SAS),∴AE =BD .(2)解:△ACB ≌△DCE ,△EMC ≌△BNC ,△AON ≌△DOM ,△AOB ≌△DOE.19.如图,∠C =∠D ,AC =AD .求证:BC =BD .【思路点拨】当图中的一对三角形根据已知条件无法证明全等时,可通过作辅助线将图形进行分割或添补,构造全等三角形.本题可过点A 分别作BC ,BD 的垂线,构造出几组全等的直角三角形.证明:过点A 作AM ⊥BC ,AN ⊥BD ,分别交BC ,BD 的延长线于点M ,N ,∴∠M =∠N =90°.∵∠ACB =∠ADB ,∴∠ACM =∠ADN .在△ACM 和△ADN 中,⎩⎨⎧∠M =∠N ,∠ACM =∠ADN ,AC =AD ,∴△ACM ≌△ADN (AAS).∴AM =AN ,CM =DN .在Rt △ABM 和Rt △ABN 中,⎩⎨⎧AB =AB ,AM =AN ,∴Rt △ABM ≌Rt △ABN (HL).∴BM =BN .∴BM -CM =BN -DN ,即BC =BD .20.如图,在△ABC 中,AB=AC,点P 从点B 出发沿线段BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,点P,Q 移动的速度相同,PQ 与直线BC 相交于点D.(1)如图①,求证PD=QD.(2)如图②,过点P 作直线BC 的垂线,垂足为E,当P,Q 在移动过程中,线段BE,ED,CD 中是否存在长度保持不变的线段?请说明理由.图3 图4(1)证明:如图3,过点P作PF//AC交BC于点F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∴PF//AQ,∴∠PFB=∠ACB,∠DPF=∠CQD.∵AB=AC,∴∠B=∠ACB.∴∠B=∠PFB.∴BP=FP.∴FP=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,FP=CQ,∴△PFD≌△QCD(AAS),∴PD=QD.(2)解:ED的长度保持不变.理由如下:如图4,过点P作PF//AC交BC于点F.由(1)知PB=PF.△PE△BF,△BE=EF.由(1)知△PFD△△QCD,△FD=CD.△ED=EF+FD=BE+CD=1BC.2△ED的长度为定值.。
全等直角三角形的判定要点一:判定直角三角形全等的一般方法;由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二:判定直角三角形全等的特殊方法——斜边,直角边定理。
在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”例1. 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF 是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,例2.如图AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【思路点拨】若能证得AD=AE,由于∠ADB、∠AEC 都是直角,可证得Rt△ADF≌Rt△AEF,而要证AD=AE,就应先考虑Rt△ABD与Rt△AEC,由题意已知AB=AC,∠BAC是公共角,可证得Rt△ABD≌Rt△ACE.【答案与解析】证明:在Rt△ABD与Rt△ACE中∴Rt△ABD≌Rt△ACE(AAS)∴AD=AE(全等三角形对应边相等)在Rt△ADF与Rt△AEF中∴Rt△ADF≌Rt△AEF(HL)∴∠DAF=∠EAF(全等三角形对应角相等)∴AF平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.例3、如图,△ABC中,∠ACB=90°,AC=BC,AE 是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD ⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12图片,求BD的长.【答案与解析】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL )∴BD =EC =21BC =21AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件。
1.1 探索勾股定理1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.ACB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?16.如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.观测点A17.如图,在四边形ABCD 中,∠BAD=90°,∠DBC=90°,AB=3,AD=4,BC=12,求CD 的长。
第一章 图形与证明(二)第二章 直角三角形全等的判定第一课时教学目标1、 了解直角三角形是特殊的三角形,除具有一般三角形的全等的判定方法外,还具有特殊的全等判定方法;2、 能证明直角三角形全等的“HL ”判定定理;3、 了解特殊的直角三角形(一个角是30°)具有一般具有一般直角三角形所没有的特殊性质;4、 学生逐步学会分析的思考方法,发展演绎推理的能力。
教学重点1、 证明直角三角形全等的“HL ”判定定理 ,体会拼拆的构造方法,运用此法证明直角三角形全等;2、 掌握一个角是30°直角三角形的性质;3、 学习分析的思考方法 ,发展演绎推理的能力。
教学难点拼合的方法证明“HL ”定理。
教学方法自主学习,合作探究教学程序设计一、创设情境问题一:直角三角形全等的条件有哪些?一般三角形全等的判定方法可以判定直角三角形全等,由于直角三角形是特殊的三角形,所以还有一般三角形所没有的特殊性的判定方法。
问题二:你认为具备这样条件的两个直角三角形一定全等吗?为什么?即,斜边和一条直角边对应相等的两个直角三角形全等吗?二、探索活动1、 用操作的方法证实你的猜想(按条件作一个直角三角形,然后相互比较是否一样,合情推理)。
2、 如何证明你的结论引导学生根据命题画出图形C A B C' A'B'写出已知、求证已知:如图,在△ABC 和△A ’B ’C ’中,∠ACB=∠A ’C ’B ’=90°,AB=A ’B ’,AC=A ’C ’, 求证:△ABC ≌△A ’B ’C ’分析:上节课我们是用什么方法来证明等腰三角形的性质和判定的(把等腰三角形拆分成两个直角三角形,然后证它们全等),那么我们现在根据这两个直角三角形的具备的条件,可以考虑怎样证明它们全等 ?(把两个直角三角形拼合成一个等腰三角形,再运用等腰三角形的性质)C(C') B' B A(A')引导学生分析证题思路,并完成证明过成。
学习过程一.【预习指导】1、直角三角形全等的条件有哪些?2、你认为具备这样条件的两个直角三角形一定全等吗?为什么?思考: 我们知道:斜边和一对锐角相等的两个直角三角形,可以根据“AAS ”判定它们全等;一对直角边和一对锐角相等的两个直角三角形,可以根据“ASA ”或“AAS ”判定它们全等;两对直角边相等的两个直角三角形,可以根据“SAS ”判定它们全等.如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否可能全等呢?二.【效果检测】1.如图1 (1),在△ABC 与△A 'B 'C '中,若AB =A 'B ',AC =A 'C ',∠C =∠C '=90°,这时Rt △ABC 与Rt △A 'B 'C '是否全等?导学: 把Rt △ABC 与Rt △A 'B 'C '拼合在一起 ,如图1(2),因为 ∠ACB =∠A 'C 'B '=90°,所以B 、C(C ')、B '三点在一条直线上, 因此,△ABB '是一个等腰三角形,可以知道∠B =∠B '.根据AAS 公理可知Rt △A 'B 'C '≌Rt △ABC 。
感悟栏CF 请你按照上面的分析,尝试着完成本题的证明过程。
证明:反思:1.为什么要说明B 、C(C ')、B '三点在一条直线上呢?2.前面我们曾用画图剪拼的方法,比较感性的获得“斜边和一条直角边对应相等的两个直角三角形的全等。
”但是,由于观察并不一定可靠,通过今天严谨的逻辑证明,我们确信这是一条数学真理。
3.根据勾股定理、SAS 公理你还有其他证明方法吗?三.【小组检查】小组内成员就上题的证明过程进行讨论、修正。
四.【布置任务】师生互动探究问题1. 证明:在直角三角形中,30°角所对的直角边等于斜边的一半。
点拨:1.我们可以构造如图1(2)的图形中,在等边三角形AB B '中,如果 ∠BA C =30°,那么△ABC 是一个直角三角形,且BC =21AB 。
第一章 图形与证明(二)1.2 直角三角形全等的判定(1)scg
班级 姓名
1. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩
形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是 ( )
A 、(1)(2)(4)
B 、(2)(3)(4)
C 、(1)(3)(4)
D 、(1)(2)(3)
2. 两个直角三角形全等的条件 ( )
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条边对应相等
3.如图,有一个直角△ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点
A 且垂直于AC 的射线AX 上运动,当AP= 时,才能使ΔABC 和ΔPQA 全等.
第3题 第4题 第5题
4. 如图,⊿ABC 中,AC=BC,∠ACB=1200,D 是AB 的中点,DE ⊥AC 于点E ,则CE:AE=____________
5. 如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条件 或 .
6. 在⊿ABC 中,D 是BC 的中点,DE ⊥AB,DF ⊥AC,垂足分别为E 、F ,且DE=DF.求证:⊿ABC 是等腰
三角形.
B
A
l
7. 如图,A ,F 和B 三点在一条直线上,CF ⊥AB 于F , AF =FH , CF =FB .求证: BE ⊥AC .
8.如图,在等腰直角三角形ABC 中,∠ACB=90O ,直线l 经过点C ,AD ⊥l , BE ⊥l ,垂足分别为D 、E. 求证:AD=CE。