圆周角教学设计
- 格式:doc
- 大小:425.00 KB
- 文档页数:8
•••••••••••••••••关于圆周角教案四篇关于圆周角教案四篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。
来参考自己需要的教案吧!下面是小编为大家收集的圆周角教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆周角教案篇1教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.掌握圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学流程安排活动流程图活动内容和目的活动1 创设情景,提出问题活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动5小结,布置作业从实例提出问题,给出圆周角的定义.通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.反馈练习,加深对圆周角定理的理解和应用.回顾梳理,从知识和能力方面总结本节课所学到的东西.教学过程设计问题与情境师生行为设计意图[活动1 ]问题演示课件或图片(教科书图24.1-11):(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.本次活动中,教师应当重点关注:(1)问题的提出是否引起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义.(4)学生是否清楚了要研究的数学问题.从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的`关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;3.改变圆的半径大小.本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的过程和结果.(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性.(3)学生是否会利用问题2的结论进行证明.数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题[活动4]问题(1)半圆(或直径)所对的圆周角是多少度?(2)90°的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.学生独立思考,回答问题,教师讲评.对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.对于问题(6),教师应重点关注(1)学生是否能由已知条件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解.(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.[活动5]小结通过本节课的学习你有哪些收获?布置作业.(1)阅读作业:阅读教科书P90—93的内容.(2)教科书P94 习题24.1第2、3、4、5题.教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.圆周角教案篇2教学目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号“”应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8圆周角教案篇3教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
《圆周角》教学设计一、教学目标1、知识与技能目标理解圆周角的概念,掌握圆周角的两个特征。
经历探索圆周角定理的过程,理解并掌握圆周角定理及其推论。
能运用圆周角定理及其推论进行简单的计算和证明。
2、过程与方法目标通过观察、比较、分析圆周角与圆心角的关系,发展学生的合情推理能力和演绎推理能力。
通过小组合作交流,培养学生的合作意识和创新精神。
3、情感态度与价值观目标让学生在探索圆周角定理的过程中,体验数学活动的乐趣,激发学生学习数学的兴趣。
通过数学知识的实际应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。
二、教学重难点1、教学重点圆周角的概念和圆周角定理。
圆周角定理的推论及其应用。
2、教学难点圆周角定理的证明。
圆周角定理推论的灵活应用。
三、教学方法讲授法、探究法、练习法相结合四、教学过程1、导入新课展示生活中常见的含有圆周角的图片,如摩天轮、自行车车轮等,引导学生观察并思考这些图片中角的特点。
提出问题:这些角与我们之前学过的圆心角有什么不同?从而引出课题——圆周角。
2、讲授新课(1)圆周角的概念结合图形,给出圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
强调圆周角的两个特征:顶点在圆上;两边都与圆相交。
让学生通过观察、比较,判断一些角是否为圆周角,加深对概念的理解。
(2)圆周角定理的探究提出问题:在同圆或等圆中,同弧或等弧所对的圆周角与圆心角有什么关系?让学生动手画一画,量一量,通过测量同弧所对的圆周角和圆心角的度数,猜测它们之间的关系。
小组交流讨论,展示测量结果和猜测。
(3)圆周角定理的证明引导学生将圆周角的顶点进行移动,分三种情况进行讨论:圆周角的顶点在圆心处;圆周角的顶点在圆内;圆周角的顶点在圆外。
分别证明这三种情况下圆周角与圆心角的关系,从而得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半。
(4)圆周角定理的推论由圆周角定理,引导学生思考并得出推论 1:同弧或等弧所对的圆周角相等。
2024年浙教版数学九年级上册3.5《圆周角》教学设计一. 教材分析《圆周角》是浙教版数学九年级上册第三章第五节的内容,主要讲述了圆周角定理及其推论。
本节内容是在学生已经掌握了圆的基本概念、圆的性质、弧、弦等知识的基础上进行学习的,是进一步研究圆的性质和解决与圆相关问题的重要基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于圆的相关知识也有一定的了解。
但在学习圆周角定理时,需要学生能够理解和证明圆周角定理,并能够运用到实际问题中。
因此,在教学过程中,需要关注学生的理解程度和接受能力,引导学生通过观察、思考、推理等方式掌握圆周角定理。
三. 教学目标1.知识与技能:让学生理解和掌握圆周角定理,能够运用圆周角定理解决实际问题。
2.过程与方法:通过观察、思考、推理等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.圆周角定理的证明。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.引导发现法:通过引导学生观察、思考、推理,发现圆周角定理。
2.小组合作法:让学生在小组内讨论、交流,共同解决问题。
3.实例讲解法:通过具体实例,讲解圆周角定理的应用。
六. 教学准备1.教学PPT:制作包含圆周角定理内容的教学PPT。
2.实例素材:准备一些与圆周角相关的实例,用于讲解和练习。
3.练习题:准备一些有关圆周角的练习题,用于巩固和拓展。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆周角相关的实例,引导学生思考圆周角的特点,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT呈现圆周角定理的内容,让学生观察和思考,引导学生发现圆周角定理。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,运用圆周角定理进行解释。
然后,各组汇报交流,互相评价。
4.巩固(10分钟)让学生独立完成一些有关圆周角的练习题,巩固所学知识。
玻璃乙圆周角的定理 教学目标(一)知识与技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。
(二)过程与方法1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。
2、通过观察图形,提高学生的识图的能力3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。
(三)情感与价值观1、经过探索圆周角定理的过程,发展学生的数学思考能力。
2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。
教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点1.认识圆周角定理需要分三种情况逐一证明的必要性。
2.推论的灵活应用以及辅助线的添加教学突破让学生学会分类讨论、转换化归是教学突破的关键教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容,制作圆形纸片教学过程活动1: 创设情景,引入概念师:课件(出示圆柱形海洋馆图片)右图是圆柱形海洋馆的俯视图.海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物.如图是圆柱形的海洋馆横截面的示意图, AB⌒表示圆弧形玻璃窗.同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,师:同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角.师:提出问题问题1:观察∠ACB、∠ADB和∠AEB的边和顶点与圆的位置有什么共同特点?问题2:∠ACB、∠ADB和∠AEB与∠AOB有什么区别?问题3:∠ACB、∠ADB和∠AEB有哪些共同点?(教师引导学生进行探究,并关注以下问题)1、问题的出示是否引起学生的兴趣2、学生是否理解示意图3、学生是否理解圆周角的定义4、学生是否清楚了要探究的数学问题生:这三个角的共同点有两个:①顶点都在圆周上;②两边都与圆相交.师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.)设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?(学生思考片刻之后,教师就每个图形分别请一位学生作答.)玻璃乙(C)设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较.活动2:问题探究探究同弧所对圆周角及圆周角与圆心角的关系师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景象范围更广一些?预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了.师提出:你是如何知道的?预设生1:因为我发现∠AOB 比∠ACB 、∠ADB 和∠AEB 都大.预设生2:因为发现在圆内当角的顶点距离弧越近角就越大师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的. 师提出问题:1、弧AB 所对的圆周角的个数有多少个?2、弧AB 所对的圆周角的度数是否发生变化?预设生:有无数个,度数相等师:你是怎么知道的?预设生:观察猜到的。
圆周角教学设计(第一课时)汕头市濠江区葛洲学校:林则亮【教学目标】:一、知识与技能1、理解圆周角的概念,能运用概念辩识圆周角。
2、探索圆周角与圆心角及其所对弧的关系。
3、经历探索过程,体会分类、化归和完全归纳等数学思想方法。
4、会运用圆周角定理解决简单问题。
二、过程与方法1、通过定理探索,培养学生的动手操作、自主探索和合作交流的能力.2、让学生口述,培养学生的表达能力,使学生的个性得到充分的展示.三、情感态度与价值观目标1、通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神。
2、培养学生学习数学的兴趣。
【学习重点】:圆周角概念及圆周角定理.【学习难点】:圆周角定理的探索过程。
【教法学法分析】一、教学方法本课时采用学案导学,让学生在学案的引导下去量一量、议一议,自主探索,去发现、验证圆周角定理。
教师采用几何画板直观演示、启发式设疑诱导为辅的教学方法,帮助学生发现和验证圆周角定理二、学情分析本课时针对学生基础知识较扎实,有较为良好的学习习惯,课堂参与性强。
结合个人教学特点,选用学案导学,目的是希望通过学生活动,引导学生积极思考、主动探索获取圆周角定理相关知识。
三、教学活动设计【教学过程】专题一:课前预习:∠AC'B = 35.37°∠ACB = 35.37°活动一:创设情景,引入概念1.1、师:海洋的生物是多彩多姿的,今天,老师带你们走进海洋去观察这奇妙的海洋世界。
(教师开始在计算机上出示海洋馆外图,海洋馆内图)1.2、师:设置场景:同学甲的视角∠AOB 的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠C 、同学丙的视角∠D 和同学丁的视角∠E 不同于圆心角,是与圆有关的另一类角,我们称这类角为--------(圆周角,板书课题). 1.3、右图中∠C,∠D 和∠E 有什么共同特点?2、★圆周角定义:阅读教材P84内容,回答下列问题 2.1什么是圆周角?2.2你觉得像什么样的角是圆周角?(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.) 2.3运用圆周角的定义,判断下列各图中,各图中的角是不是圆周角?并说出判断理由.......(1)(2)(3)(4)(5)(学生思考片刻之后,教师就每个图形分别请一位学生作答.)专题二:新知探究 3. ★探究圆周角定理 3.1 :量一量师:下面我们继续研究海洋馆的问题,设想你是一名游客,要想背靠墙透过玻璃观察,除了乙、丙、丁三位同学的位置供你选择,还有位置可看到海洋景象吗? 请在右图背靠墙的地方选择位置画一个与∠C 具有共同特点的角。
(教师开始在计算机上进行验证.)【1】同弧所圆周角有无数个结论:在同一个圆中,同弧所对的圆周角有_____个。
师:你觉得你选择的位置与乙、丙、丁三位同学的位置 相比较,谁看到的海洋景象范围更大?如何比较? (学生开始动手操作验证:有的借助量角器,用度量的方法进行验证;有的采用折叠重合的方法进行验证……)(教师开始在计算机上进行验证.)【2】同弧所圆周角相等。
结论:在同一个圆中,同弧所对的圆周角________。
玻璃丁乙演示一OAB师:如果让你在甲、乙、丙、丁四位同学的位置供你选择,你选择?你选择的甲位置与乙、丙、丁三个位置的观察角度大小有什么关系吗? (学生开始动手操作验证:有的借助量角器,用度量的方法进行验证) (教师开始在计算机上进行验证.) 【3】同弧所圆周角与圆心角的关系。
① 拖动圆周角的顶点使其在圆周上运动; ② 改变圆心角的度数;③ 改变圆的半径大小. 结论:同弧所对的圆周角等于这条弧所对的圆心角的_______.师:既然这样,我们请一位同学把今天所有发现的结论用文字语言表述一下.根据度量结果和观察结论猜想::在同圆或等圆中,同弧或等弧所对的圆周角_____ ,并且都等于这条弧所对的圆心角的__________。
师:有句话说“看到的未必是真实的”,为了更好地说明结论的正确性,下面我们探究其论证方法.首先,观察AB⌒所对的圆周角,并思考圆心与圆周角有哪几种位置关系? (学生画图,教师巡视,在同学们所画的图形中发现圆心与圆周角的三种位置关系的例子,并在展示台上演示.)师:下面老师借助计算机进行动画演示,观察并验证你发现的三种位置关系. (教师开始在计算机上进行验证.) 【4】圆周角与圆心的位置关系。
教师演示,并依次归纳出三种位置关系:师:圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;师:在上述三种情况中你觉得哪个图形较特殊一点,你能利用该图来证明刚才我们发现的同弧所对的圆周角与圆心角的大小关系吗?(学生先独立思考, 然后在同伴间悄悄交流自己的思路.) 师:请在学案上写出这种特殊情况的证明过程3.2 定理证明图1图2图3=1229.93°59.87°= 29.93°即:∠ACB=2∠AOB同弧所对圆周角等于它所对圆心角的一半与∠AOB 的比值已知:在⊙O 中,BC 所对的圆周角是∠A ,圆心角是∠BOC求证:1= BOC 2A ∠∠证明:Ⅰ:圆心在圆周角一边上时(图1)证明:如图1师:当圆心在圆周角的一边上的时候,圆周角∠BAC 的边 AB 部分就是⊙O 的直径,因此给证明思路的寻找带来了不少(“红旗”图案)当圆心不在圆周角的边上时,比如在角的内部,(教师开始在计算机上进行验证.)【5】圆周角与圆心的位置关系二。
你能发现几杆类似的“红旗”图案?这些对该情况下命题的证明有哪些启示?师:当圆心在角的外部,(教师开始在计算机上进行验证.)【6】圆周角与圆心的位置关系三。
你能发现几杆类似的“红旗”图案? 这些对该情况下命题的证明有又有哪些启示? 请同学们在学案上写出这种情况下的证明过程Ⅲ:圆心在圆周角外部时(图3)____(1)____(2)O 于点D 1____=____(1)2I ∠∠连接AO 并延长交O 于点D由证明易得:_________21_____2O OA OC A BOC A BOC A A =∴∠=∠=∠+∴∠=∠∠=在中即:闪动角撤消辅助线作辅助线分离右旗还原右旗分离左旗还原左旗871DA师:通过上面的证明,我们得到:同弧所对的圆周角等于这条弧所对的圆心角的一半.其实,等弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?(教师板书)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.师:讨论圆周角定理的使用范围和条件,有几个结论? 【7】(教师开始在计算机上进行验证.)圆周角定理解析一【8】(教师开始在计算机上进行验证.)圆周角定理解析二 师:圆周角定理的三种语言(学生在学案上填写):定理辩析:1、圆周角定理使用条件是什么?2、结论有几个?3、它们是?圆周角定理的三种语言:(1)文字语言:(在上面)(2)图形语言(如右图) (3)符号语言师:接下来我们来试试同学们对圆周角定理的理解程度。
3.3 及时反溃1、如图,点A 、B 、C 、D 在⊙O 上,若∠C=60°,则∠D=____,∠O=____.DOD CBA______O AB∴∠=∠在中1______21___2O ABD AOB∴∠=∠∠=∠在中2、如图,点A 、B 、C 、D 在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?师:老师接下来考考你。
3.4 例题讲解:例1:在⊙O 中, AB 是⊙O 的一条弦,圆周角∠CBD=30° ,∠BDC=20°, 求∠A师:让学生发现,连接OD 、OC ,则2COD CBD ∠=∠;连接OB ,则2COB CDB ∠=∠; 所以12A BOD∠=∠ 师:这里是用到??(在同圆或等圆中,都等于这条弧所对的圆心角的一半.)师:再引导让学生发现,连接AC ,则CAD CBD ∠=∠;CAB CDB ∠=∠; 所以12A BOD ∠=∠ 师:这里是用到??(在同圆或等圆中,同弧或等弧所对的圆周角相等.)结合上述例题想一想:(1)在圆周角定理中,能把 “同弧”能否改成“同弦”吗?为什么?专题三:学习小结请你选择下面一个或几个关键词谈本节课的体会:知识、方法、思想、收获、喜悦、困惑、成功……作业:必做:①87页 87页 习题21﹒4 第 4题、第5题 ②完成例1的解题过程;③选做:88页 第12题专题四:尝试练习1、如图1,AB 是⊙O 的直径,BC BD ,∠A=30°,则∠BOD=_______。
图1 图22、如图,∠A 是⊙O 的圆周角,∠A=40°,求∠OBC 的度数。
3、已知⊙O 中弦AB 的等于半径,求弦AB 所对的圆心角和圆周角的度数。
【教学后记】《圆周角》第1课时是新人教版版数学教材九年级上册第24章的内容,是在学生学习了圆、弦、弧、圆心角等概念和相关知识的基础上出现的,圆周角定理及其相关推论在圆的有关证明、作图、计算中应用比较广泛。
所以这一节课既是前面所学知识的继续,又是后面研究圆与其它平面几何图形的桥梁和纽带。
我把《圆周角》这节分为两个课时进行教学,第一课时是了解圆周角定义、探索圆周角定理以及简单应用。
本节课安排整个教学活动从学生的认知规律出发,从参观海洋馆引发的问题出发,创造出富有挑战性的问题链,激发学生的主动性与创造力。
根据学生实际情况编定的导学案体现了教师的主导作用和学生的主体作用。
合理设计使用多媒体,增大课堂容量,提高课堂效率,能有效地突出重点,突破难点,使教学过程轻松自如,学生易于并乐于接受。
整个课堂让学生在民主和谐的课堂氛围中探索知识,感受数学创造的乐趣;提高能力,体验获得成功的喜悦。
从而更为全面地喜爱数学,获得更大的发展。
有利于培养学生正确的情感态度和价值观。
思维导图不仅是文本信息和知识点的归纳和发散,教师在学生思维导图的基础上进行及时的引导,将文化意识,情感态度,价值观念包括实际的生活能力都进行相关的渗透和引导,从而达到培养学生正确情感态度和价值观的目的。
有助于培养学生的自主学习能力。
教师可以将思维导图的绘制任务前置,放在学生的预习作业里,这样学生可以先通过自主先学来初步了解文本信息,梳理文本脉络,并以思维导图的方式呈现出来。
这对于教师了解学生的学情也是一个有利依据,便于教师及时发现问题,从而在后续的课堂中调整教学方案和重置学习任务。
AB2、有利于发展学生的思维能力。
使用思维导图可以很好地促使学生进行思维的发散,了解学生不同的思维发散点推证圆周角定理的思维轨迹,促使学生发散思维能力的提升。
加深学生对圆周角定理的理解与运用。