15_高中数学(1)习作甲_第4章 综合演练[5页]
- 格式:doc
- 大小:447.00 KB
- 文档页数:5
第四章 习题解答习 题 4-11.求下列不定积分:(1);(2) 2(23)d x x x +⎰;(3)⎰+)1(d 22x x x;(4) 2cot d x x ⎛⎫+⎪⎭⎰;(6) 21(1)x x -⎰; (7)1d 1cos 2xx +⎰;(9)221d sin cos x x x ⎰;(10){}max ||,1d x x ⎰.2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.解答:1.求下列不定积分: (1)解53225125212d 1()3x x x C x C --+-==+=-++-⎰. (2)解:⎰+x x xd )32(2C xx x +3ln 29+6ln 62+2ln 24=(3)=+-=+⎰⎰⎰22221d d )1(d x x x x x x x C x x+--arctan 1(4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x xx +cot arcsin(5)1131352222222242(2)d 235x x x x x x x x x C -==-+=-++⎰⎰(6) 33571244444214(1)(1)d ()d 47x x x x x x x x x C x ----=-⋅=-=++⎰⎰⎰(7) 解2111d d tan 1cos 22cos 2x x x C x x ==++⎰⎰ (8) 解:⎰x x x x d sin cos 2cos 22⎰⎰-=-=x xx x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解:222222221sin cos 11d d d d sin cos sin cos cos sin x x x x x x x x x x x x +==+⎰⎰⎰⎰ 22sec d csc d tan cot x x x x x x C =+=-+⎰⎰(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,1>,+211≤≤1,+1<,+21=)(32212x C x x C x x C x x F 须处处连续,有又)(x F)+21(lim =)+(lim 121→21→+C x C x x x ,,21112C C +-=+-即 )(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d .由0)0(=y ,得0=C ,因此所求曲线方程为441x y =. 3.解:x 2sin 21x x cos sin =, x x x sin cos cos 212='⎪⎭⎫ ⎝⎛- x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-2 1.求下列不定积分: (1) 1d 12x x -⎰; (2) 100(23)d x x -⎰;(3) 12ed xx x ⎰; (4)211sin()d x x x ⎰;(5) ⎰-294d x x;(7) 1d ln lnln x x x x⎰;(8)x e x d 11⎰+;(9)⎰+3xx dx ; (10)x x x x x d )cos 2(sin sin 2cos 2⎰+-; (11)3cos d x x ⎰; (12)⎰+x x d 412;(14)2sin d cos 6cos 12x xx x -+⎰;(15)x ; (16) dx x ⎰5cos(17) ⎰x x x d cos sin 52(18)cos5sin 4d x x x ⎰;(19)⎰+x xx d sin 1sin ; (20)x exd 112⎰+(21) xx ⎰;(22)x x⎰. 2. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.3.已知x x f 22tan )(sin =',求函数)(x f .4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 5. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.6. 已知)(u f 有二阶连续的导数,求∫d )e (′′e2x f x x;解答:1.求下列不定积分:(1) 解: 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+. (2) 解 10010010111(23)d (23)d(23)(23)3303x x x x x C -=---=--+⎰⎰ (3) 解:⎰x xexd 21C e x e x x +=)1-d( =11∫(4) 解:211111sin()d sin d()cos x C x x x x x=-=+⎰⎰ (5) 解:=-⎰294d x xc xx x x x +|323+2|ln 121=d 321+3+2141∫ (6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12(7) 解:x x x x d ln ln ln 1⎰C x x x x x x +===⎰⎰ln ln ln )ln d(ln ln ln 1)d(ln ln ln ln 1(8) 解:x ee x e e e x e xxx x x x d )11(d 11d 11⎰⎰⎰+-=+-+=+=C e x x ++-)1ln( (9) 解 令)0( 6>=t t x ,则⎰⎰+=+23536t t dtt x x dxdt tt t )111(62⎰+-+-=C t t t t ++-+-=))1ln(23(623C x x x x ++-+-=)1ln(6 6 32663(10) 解:)cos 2+(sin d )cos 2+(sin 1 =d )cos 2+(sin sin 2cos∫∫22x x x x x x x x x =C xx ++-cos 2sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (12) 解:∫∫2d 2+1121=d +4122x xx x =C x +2arctan 21. (13)解:2x 231arcsin d(arcsin )(arcsin )3x x x C ==+⎰.(14)解:22sin d d(cos 3)cos 6cos 12(cos 3)3x x x C x x x -=-=-+-+⎰⎰ (15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d 1arctan 22x x xx x x ⎰⎰+=+=C x x x +==⎰2)(arctan)d(arctan arctan2(16) x x x x x x sin d )sin -1( =sin d cos =d cos ∫∫∫2245=C x x x ++-52sin 51sin 32sin .(17) ⎰⎰⎰+-=-=x x x x x x x x x x sin d )sin sin 2(sin sin d )sin 1(sin d cos sin 64222252c x x x ++-=753sin 71sin 52sin 31 (18) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos (19) 解:∫∫∫d )tan +sec (tan =d sin -1)sin +1(sin =d sin +1sin 22x x x x x xx x x x x ⎰-+=x x x x d )1sec sec (tan 2=C x x x +-+tan sec .(20) 解:令)1ln(212-=t x ,则t t t x d 1d 2-=,于是C t t t t t t t t x ex ++-=-=-⋅=+⎰⎰⎰11ln 21d 11d 11d 11222 =C x e e x x +-++-)212ln(2122(21) 解:设sin (0)2x a t t π=<<,d cos d x a t t =,则22421sin cos cos d sin 2d 4x x a t a t a t t a t t =⋅⋅=⋅⎰⎰⎰ 444111(1cos 4)d sin 48832a t t a t a t C =-=-+⎰ 44211sin cos (12sin )88a t a t t t C =--+42211arcsin 2)88x a a x C a =--+. (22) 解:令sec x a t =,d sec tan d x a t t t =⋅,则22tan sec tan d tan d (sec 1)d sec a t a t t t a t t a t t a t =⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )a a C x=-+.2.求下列不定积分(1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222 ()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰.(11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d3.已知x x f 22tan )(sin =',求函数)(x f .解 依题求得xx x f -='1)(,因此 C x x x x xx x x x f +---=--=-=⎰⎰⎰|1|ln d d 11d 1)(. 4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 解=+='='⎰⎰C x f x x f x xx f )(ln ln d )(ln d )(ln C x +1.5. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)6. 解⎰''x f x xd )e (e2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e习 题 4-31. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.2. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.3. 已知)(u f 有二阶连续的导数,求⎰''x f x xd )e (e2;解答1.求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰. (11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d2. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)3. 解⎰''x f x x d )e (e 2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e .习题4-4求下列不定积分:(1)23d 56x x x x +-+⎰; (2)21d (1)x x x -⎰;(3)22d (1)(1)xx x x +++⎰; (4)3224d 56x x x x x +++⎰.x x x d )+1(1 5∫28)(; (6)2d 3sin xx+⎰;(7)⎰++311d xx(8)sin d 1cos x xx x ++⎰.解答 (1) 解233(3)(2)56(2)(3)23(2)(3)x x A B A x B x x x x x x x x x ++-+-==+=-+------,即3(3)(2)x A x B x +=-+-,比较系数知1323A B A B +=⎧⎨--=⎩(或者用赋值法:分别在3(3)(2)x A x B x +=-+-中令3x =与2x =,也可解出A 与B ),解之得56A B =-⎧⎨=⎩,于是62356d ()d ln(3)5ln 25623x x x x x C x x x x +-=+=---+-+--⎰⎰65(3)ln 2x C x -=+-.(2) 解 令221(1)1(1)A B Cx x x x x =++---,用待定系数法或者用赋值法可求出1A =,1B =-,1C =,故221111d []d (1)1(1)x x x x x x x =-+---⎰⎰2111d d d 1(1)x x x x x x =-+--⎰⎰⎰1ln ln 11x x C x =---+-. (3) 解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以 2222d 1()d (1)(1)11x x x x x x x x x x -+=+++++++⎰⎰222221d(1)1d(1)1d 212121x x x x x x x x x +++=-+++++++⎰⎰⎰2221d()1112ln(1)ln(1)13222()24x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.(4) 解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498d (1)d 5632x x x x x x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. (5)解 ⎰⎰⎰+=+=+2888288728)1()1()1(1x x dx dx x x x dx x x =C xx +)1+1ln(+118188(6)解⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u ⎰+=2)32(1d 31u uC x +=3tan 2arctan 321(7)解 ⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232 (8)解 注意到sin d d(1cos )x x x =-+及211d d d(tan )1cos 22cos2xx x x x ==+,可将原来的积分拆为两项,然后积分,即sin sin d d d 1cos 1cos 1cos x x x x x x x x x x +=++++⎰⎰⎰1d(tan )d(1cos )21cos x x x x=-++⎰⎰tantan d ln(1cos )22x xx x x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan 2ln cos ln(2cos )222x x xx C =+-+1tan (ln 2)2x x CC C =+=-.习题4-5利用积分表计算下列不定积分: (1);(2)3ln d x x ⎰; (3)221d (1)x x +⎰;(4);(5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.解答 (1)解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x xC x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1 现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)=+⎰x x d )1(122解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x xd 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31dC a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----= C a x a x x a +--+--+--322222])1[(31)1(1ln 85. (6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x x x⎰-+-12d 12x x xx x C x x x +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n n d cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C x x x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e xd 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e axax +-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx+--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131复习题A一、选择题1. 设)(x F 是)(x f 的一个原函数,则等式( )成立。
高中数学必修范文测试题及答案详解Document number【980KGB-6898YT-769T8CB-246UT-18GG08】特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错计算错误还是方法上的错误对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
本套资料酌收复印工本费。
李传牛老师保留本作品的着作权,未经许可不得翻印!联络方式:(移动电话),李老师。
(电子邮件)目录:数学4(必修)数学4(必修)第一章:三角函数(上、下)[基础训练A组] 数学4(必修)第一章:三角函数(上、下)[综合训练B组] 数学4(必修)第一章:三角函数(上、下)[提高训练C组] 数学4(必修)第二章:平面向量 [基础训练A组]数学4(必修)第二章:平面向量 [综合训练B组]数学4(必修)第二章:平面向量 [提高训练C组]数学4(必修)第三章:三角恒等变换 [基础训练A组]数学4(必修)第三章:三角恒等变换 [综合训练B组]数学4(必修)第三章:三角恒等变换 [提高训练C组]新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
高中数学人教b版高一必修4章末综合测评3 含解析章末综合测评(三)三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为()A.12 B.13C.14 D.16【解析】由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=13,所以cos αcos β=1 6.【答案】 D2.已知tan(π+α)=2,则1sin αcos α等于()A.52 B.75C.-52 D.-7 5【解析】由tan(π+α)=2,得tan α=2,∴1sin αcos α=sin2α+cos2αsin αcos α=tan2α+1tan α=52.【答案】 A3.若tan α=2tan π5,则cos⎝⎛⎭⎪⎫α-3π10sin⎝⎛⎭⎪⎫α-π5=()A.1B.2C.3D.4【解析】 ∵cos ⎝ ⎛⎭⎪⎫α-3π10=cos ⎝ ⎛⎭⎪⎫α+π5-π2=sin ⎝ ⎛⎭⎪⎫α+π5, ∴原式=sin ⎝ ⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tanπ52tan π5-tanπ5=3.【答案】 C4.2cos 10°-sin 20°cos 20°的值为( )A. 3B.62C.1D.12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A5.cos 4π8-sin 4π8等于( )A.0B.22C.1D.-22【解析】 原式=⎝⎛⎭⎪⎫cos 2π8-sin 2π8⎝⎛⎭⎪⎫cos 2π8+sin 2π8=cos 2π8-sin 2π8=cos π4=22.【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝ ⎛⎭⎪⎫π12,0,则φ的值可以是( ) A.-π6B.π6C.-π12D.π12【解析】 由题得tan ⎝ ⎛⎭⎪⎫2×π12+φ=0,即tan ⎝ ⎛⎭⎪⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z ,当k =0时,φ=-π6,故选A.【答案】 A7.若θ∈⎝ ⎛⎭⎪⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B.-32C.±32D.±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝ ⎛⎭⎪⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 【答案】 B8.已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32【解析】 由sin θ-cos θ=-144得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32. 【答案】 D9.已知cos ⎝ ⎛⎭⎪⎫x +π6=35,x ∈(0,π),则sin x 的值为( )A.-43-310B.43-310C.12D.32【解析】 由cos ⎝ ⎛⎭⎪⎫x +π6=35,且0<x <π,得π6<x +π6<π2, 所以sin ⎝ ⎛⎭⎪⎫x +π6=45,所以sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π6-π6=sin ⎝ ⎛⎭⎪⎫x +π6cos π6-cos ⎝ ⎛⎭⎪⎫x +π6sin π6=45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值是( )A.2- 2B.2+ 2C.3D.1【解析】 由y =2sin ⎝ ⎛⎭⎪⎫x +π4+2,且0≤x ≤π2, 所以π4≤x +π4≤34π,所以22≤sin ⎝ ⎛⎭⎪⎫x +π4≤1,所以3≤y ≤2+2. 【答案】 C11.已知函数f (x )=3sin w x +cos w x (w >0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C.πD.2π【解析】 由曲线f (x )=2sin ⎝ ⎛⎭⎪⎫w x +π6与y =1交点中相邻交点最小值为π3正好等于f (x )的周期的13倍,设f (x )的最小正周期为T ,则13T =π3,故有T =π.【答案】 C12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝ ⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4=( )A.17 B.-17C.27D.-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝ ⎛⎭⎪⎫0,π2, 所以sin α=35,cos α=45,tan α=34,所以tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=34-11+34=-17.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________. 【解析】 因为f (x )=2sin ⎝⎛⎭⎪⎫x -π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3的最小正周期为T =2π,最大值为2.【答案】 2π 214.tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θ·tan ⎝ ⎛⎭⎪⎫π6+θ的值是________.【解析】 ∵tan π3=tan ⎝ ⎛⎭⎪⎫π6-θ+π6+θ=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ1-tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ=3,∴3=tan ⎝ ⎛⎭⎪⎫π6-θ+tan ⎝ ⎛⎭⎪⎫π6+θ+3tan ⎝ ⎛⎭⎪⎫π6-θtan ⎝ ⎛⎭⎪⎫π6+θ. 【答案】 315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________.【解析】 因为tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,②由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0,又∵0<C <π2,∴π2<A +B +C <32π,∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值.【解】 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎪⎫x +π3-3,所以f (x )的最小正周期为2π. (2)因为0≤x ≤2π3,所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的最小值为f ⎝ ⎛⎭⎪⎫2π3=- 3.18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β,所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β. 19.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.【解】 (1)f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x=cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝ ⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.【解】 (1)由已知, 有f (x )=1-cos 2x2-1-cos ⎝ ⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.21. (本小题满分12分)陵中学第四次模拟)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值;(2)若π2<α<π,0<β<π2,求α+β.【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.又由三角函数线知sin β=210,∵β为第一象限角,∴tan β=17, ∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4.22.(本小题满分12分)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.【解】 (1)f ⎝ ⎛⎭⎪⎫5π4=2cos5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2 x =sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以T =2π2=π,故函数f (x )的最小正周期为π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .第11页 共11页 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .。
练习(第5页》1. 锐角是第一象限你第•象限你不一定是锐角;直角不膩于任何一个象限•不属于任何•个象限的角不一・定丛亢如:饨介迢第二象Wfft.第二绘限角不一定址钝介.说阴认识•说升广、-直角”•“mr和係限角”的区别埒联系.2•三•三• it.说明本題的II的足将终边相同的仰的符',;哦示应川到找他周期件何題匕题||联系实臥把教科筋中的除数360换戍毎个凡期的夭数7.利川了-M余”(这里余数是3)來确定7怡无氐7 k JjiU 也祁見川期•.这样的练习不难.町以II答.3•⑴第一魏探伽(2)第阿糾W伽(3)第二録限角$⑷第三簽限如.说明能作出结定的仰.并判定是第儿feRlfft・用略.4. ⑴305°・挖・第冋象Oh <2) 35鴛・第一象限伽⑶24『30'・第垛限处•说明能住给定范鬧内找出勺指定的角终边相同的角•并判定圧笫儿象瞅也・5. (1) «0|0 1303m 360°. AW引.-496*42\ —136°42‘・ 223。
叭(2) 〃|0= 225°M • 360°. W \、585°. - 225\ 135:说明用集合花示法和符号指定和终边柜同的介的集令•并在给定范田内找;l「j描定的角终边HI同的介. 练习C第9页)1. (1)令. (2)孕⑶攀说明能进行度U加度的换贰2. (!) 15°;<2) 210°€Ci) 54°.说明能进行瓶度9度的换◎・3. (I) {a | o= kK. it^Z}: (Z) ”!a=专十阪点€紂・说明川弧废;《丧示终边分别轴和y轴I:的"啲集舍.4. (I) cos 0. 75°・cos (L 75; (Z) tan L 2°"<^nni L 2$说明体会1诃数値不同的位的角对应的三角函数値町能不同•并进-步认识两种尬位制.注盘先用计算器求Jh函数血之前.耍先对il•算器中和的模式进行设證.如求cox«.75^i%•變将仰模人设比为"EG(用处制);求CON O.75之|條賞将巾校成设汽为RAIN丸懐制).r w5盲机说明通过分别込川佝加制和软度制下的孤氏公儿体会引人毎度制的必茨性・6. 如度数为1.2.说明进•少认沢弧直数的绝对備公式.匀題I. 1 (第9贡》A俎1. (I)95\第二彖服(2) «0\第一彖服(3) 236W.第三象Rh ⑷:iOO\第四象限.说明能任给定范附内找出习指定的角终边相同的角,并判定是第儿彖限角.2. S I cr A • |&)°・ itez}.说明将终边相I同的仰用集介表斥.3. ( I) {fl\p 60° + k - 360'• k^Z}.— 30O\ 60°;⑵ SI" -75+. 360°. «eZh 一75°. 285•:(3) SI” 一82十3()+・36(汽JtGZ). — 1(M'3()\ 255°30气⑷{p\p 475+• 3$(几翳幼-215% 115^⑸ }屮=90°+£・ 360°. &WZ). - 270°, 90°;<«)270° + 女• :<6(代JteZ}. - 90\ 270%(7){P\P IKO Q I - 360°, XZ}・ 1«0\ 18(f|(«)出|陰*任(几圧2}・-360°. 0°.说明川集伶衣〃湫和符号诸护孑出与能定角终边郴何的角的集合•并住绻定范IR内找出号指崔的角终边柏胡的角.5. (1> (:.说明14 为 <^< aV9O°・所以0°V 2a< 180\(2> I).说明冈为◎ • 360°0<90°十& • 360\ Jt€Z.所以k• 180'V号<45°十点• 1«()\ k"、半k为奇数时•;址第垛限伽臥为偶数时.号是第一象限角.6. 不等『1知址这是因为等于半轻长的弧所对的阀心角为】孤度•而零干半径氏的弦所对的弧比半径长.说明了解瓠度的槪念.说明能逬行麼吋加度的换算.& (1)— 210°; (2)600°;(3) 80.21\ (4) 3& 2°.说明能进行加度勺度的换算.9. 61°.说明町以先运用麵度制下的如氏公式求岀関心介的弧度数•卩術弧度换算为度・也町以K接运川血度制下的就尺公式.10. 11 CDL说明町以先将度换笫为匏度•再运川弧度制下的如氏公式•也可以M接运川角皮制卜的颅辰公式.1. <1)〈略)<2)设m子的阀心巾为0•山-7—52--------- =0.618.討(2兀一4〉0=0・ 618(2 穴一0).说明水題址一个数学实嘶动.Mil对“芙观的阳子"并没右给出标准.II的址止学生先占体验.然麻评运川所学知讲发现.大寥数血子之所以“芙观”是冈为射都満足舟Q・GI8(黄金分割比)的逍理.2. ⑴时针转了120\等于一竽弧喪)分针转了一14彳0°・筹于一&瓠度.(2)设经过八nin分针就9时针改合.川为两针31合的次数.因为分针旋转的如速朋为时什施转的如速度为矗5=盏(rad/min>-(計—希)用计算机或计算需作出函效戶誥的图象(如下页图)或汲格.从屮吋淸楚地介列时什'j分针每次1R 合所尙的吋间.因为HHI&E 转一夭所需的时何为24X60=1 440(min).所以等曲440. 川W22・故时fl 七分针一天内只会磴合22次.说明 通过时什与分针的旋转问題进…步地认识弧度的概念•并将何題引向深入•用南数思想进行 分析.在研究时针与分针一犬的亟合次数时.可利用计算器或计算机•从模拟的图形、衣格中的数 据.换数的解析式或图象等角度.不堆得到正确的结论.3・ 864\ 警• 15l ・27rna说明 通过W 轮的转动何题进一步地认识弧度的概念和弧长公式•当大垢轮转动•周时•小片轮转 动的加处器 X 360。
人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。
一、选择题:(共12小题,每小题5分,共60分。
)1.sin300°的值为A。
-31 B。
3 C。
22 D。
1/22.角α的终边过点P(4,-3),则cosα的值为A。
4 B。
-3 C。
2/5 D。
-4/53.cos25°cos35°-sin25°sin35°的值等于A。
3/11 B。
3/4 C。
2/11 D。
-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。
AB+BC=AC B。
AB-AC=BCC。
AB-BC=BC D。
AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。
[0,π] B。
[π,2π] C。
[-π/2,π/2] D。
[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。
4/3 B。
-3/5 C。
-5/3 D。
-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。
y=sin(2x+π/3) B。
y=sin(2x+2π/3)C。
y=sin(2x-π/3) D。
y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。
1个 B。
2个 C。
3个 D。
4个9.下列命题中,正确的是A。
|a|=|b|→a=b B。
|a|>|b|→a>bC。
|a|=0→a=0 D。
a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。
第3章 多項式函數 ____________________________________3-2 簡單多項式函數及其圖形重點整理一、坐標圖形的對稱性1.設(),P a b 為坐標平面上的一個點,則關於 x 軸、y 軸、直線 x -y =0 及原點()0,0O 的對稱點坐標,結果如下: 給定點坐標 (),P a b 例:()3,2P 關於 x 軸的對稱點 (),A a b -()3,2A - 關於 y 軸的對稱點 (),B a b -()3,2B -關於直線 x -y =0 的對稱點 (),C b a ()2,3C 關於原點 ()0,0O 的對稱點(),D a b --()3,2D --2.坐標圖形的對稱性以 y 軸及原點 ()0,0O 為例,說明平面圖形的對稱性。
條 件舉 例以 y 軸為對稱軸圖形上任一點(),a b 關於 y 軸的對稱點(),a b -也在圖形上以 ()0,0O 為對稱中心 圖形上任一點(),a b 關於原點()0,0O 的對稱點(),a b --也在圖形上二、函數函數是一個對應關係。
如果對給定的實數 x ,都可以找到唯一的實數 y 與它對應,我們就說 y 是 x 的函數。
若用 f 表示函數,可以寫成 y =f (x )。
同理,用 g 表示函數,就寫成 y =g (x )。
使用多項式來定義函數的對應規則時,稱此函數為多項式函數。
例:y =f (x )=3,y =g (x )=2x +1,()2323y h x x x -==+,這些都是多項式函數。
三、常數函數與一次函數1.常數函數的圖形(1)常數也是多項式的一種,使用常數定義函數時,稱為常數函數。
例:y =f (x )=3,y =f (x )=-2。
(2)常數函數以 y =f (x )=c 表示,它的圖形是一條水平的直線且必過()0,c 。
例:y =f (x )=2 是一條水平線且必過()0,2。
2.一次函數的圖形一次函數通常以 y =f (x )=ax +b 表示,其中 a ,b 是實數且 a ≠0。
第3章 綜合演練 ____________月 日 ___ 得分 ______________________一、單選題(每題 10 分,共 20 分)1.已知多項式()43235271f x x x x x =+++-,則()()2f x 的次數為?(A)2 (B)4 (C)6 (D)8 €10。
解 ()()()2243235271f x x x x x -=+++最高次項為 89x 故選(D)2.已知三次函數()()332341312y x x x x =--=+++-,則此三次函數圖形的對稱中心坐標為? (A)()1,1 (B)()1,1-- (C)()1,2- (D)()1,2-- (E)()3,2--。
解 ∵()()332341312x x x x +=++---∴將 33y x x =-的圖形向左平移 1 單位,向下平移 2 單位,可以得到3234y x x =+-的圖形由於33y x x =-的對稱中心在原點 ()0,0O ∴所求對稱中心坐標為()1,2-- 故選(D)二、多選題(每題 8 分,所有選項均答對者,得 8 分,錯一個選項得 5 分,錯兩個選項得 2 分,其餘不給分,共 16 分) 3.下列哪些選項是多項式?(A)22x x x++ (C)0 (D)221x x -+解 (A) ×:2x不為多項式(B)○ (C)○ (D)○(E) 故選(B)(C)(D)4.已知()32252f x x x x -=++,試判斷哪些選項是 f (x )的因式? (A)x +2 (B)x +1 (C)x -1 (D)x -2 (E)2x -1。
解 利用因式定理即可判別(A)○:()()()3222225(221641020)f -=-+--+=-+++=- (B) ×:1216)20(5f ≠-=-+++= (C)○:f (1)=2+1-5+2=0(D) ×:()2164102120f ≠=+-+=(E)○:()1111115252202842442f ⨯⨯=+-+=+-+=故選(A)(C)(E)三、填充題(每格 6 分,共 42 分)5.一多項式()()322133ax x x x c b x cx d +++=+++-,則序組(),,,a b c d =()32223ax x x c b x cx d ++=+++-對應項相等,得 0231a b c c d⎧⎪⎪⎨⎪⎪⎩=-=+==⇨0511a b c d ⎧⎪⎪⎨⎪⎪⎩====故得序組()()0,,,,51,1,a b c d =-6.已知多項式()4323f x x ax bx x =++--,若 x +3 與 x -1 都能整除 f (x ),則數對(),ab = 。
【优化指导】高中数学1-1-2课时演练(含解析)新人教版必修4第一章 1. 1 1. 1.21.15°的弧度是()A.C.兀12 n 63 兀B. 125 nD. 12n Ji 解析:15° =15X. 18012答案:A2.8 n () 5B.280°D.318° A. 278° C. 288°解析:rad =・・・180° , n 8JI8H 180 °8H X180° = =288° .55 兀5X n答案:C3.设扇形的周长为8 cm,面枳为4 cm,则扇形的圆心角的弧度数是()A. 1C.4 B・ 2D. 8 2112 解析:S —2r)r=4, r —4r + 4 = 0, r = 2, 1 = 4, | a | ==2. 2r 答案:B4.将一1 485°化为2kn + a (0^a<2n, kGZ)的形式是___________ .n 解析:一1 485° =-1 485X 180°33 兀7H=—= —10 开+44 7 31 答案:-ion + 45.圆的半径变为原來的3倍,而所对的弧长不变,则该弧所对圆心角是原來圆弧所对圆心角的____ 倍.解析:设原來圆的半径为R,弧长为1,圆心角为变化后圆的半径为3R,圆心角为- 1 -111e z,则o' ==&,・・・该弧所对圆心角是原来圆弧所对圆心角的.3R331答案:36.已知扇形OAB的圆心和a为120°,半径长为6. (1)求AB的弧长;(2)求扇形0AB 的面积.口2解:(l)・.・a=120° =120X JI , r = 6,18032/.AB= Ji X6 = 4 n .311(2)S 扇形0AB=lr n • 6=12n>过关测评:鼻■(时间:30分钟满分:60分)1 •下列各对角中,终边相同的是()33A.和2kn -(keZ) 22711C.—兀99117解析:兀=2 n ,故终边相同.99答案:C2.下列转化结果错误的是()3nA. 67° 30'化成弧度是87 JIC.—150°化成弧度是一610 兀B. —3 nD.化成度是15°12n22B. - JI 5520122D.兀和n 39解析:对=1808- 2 -10 Ji 10 Ji 180°对B, —=-600°,正确;33 兀n5 Ji 对C, -150° =-150X=-,错误;1806兀Ji 180°对D, = =15°,正确.1212 Ji答案:C3•若a =—4.72,贝IJ a 是()A.第一象限角C.第三彖限角B.第二象限角D.第四彖限角3只解析:V-4. 712 4>-4. 72,且一4.72> — 2兀,二c(是第一象限角.2答案:A4.圆的一条弦的长等于半径,则这条弦所对的圆周角的弧度数为()A. 1C.兀5 兀661B. 2 n 5 兀D.或33解析:设该弦所对的圆周角为则其圆心角为2 a或2JI-2a ,由于弦长等于半径,n Ji n 5 n所以可得2 a =或者2兀一2 a =,解得a =或a . 3366答案:C二、填空题(每小题4分,共12分)5.半径为12 cm的圆中,弧长为8只cm的弧,其所对的圆心角为a ,则与a终边相同的角的集介为_________ .8兀2兀2肌解析:圆心角a = a =2k兀+kw乙12332兀答案:a a =2k n , k^Z 36.已知a是第二象限角,且|a+2|W4,则a的取值范围是 _______________ .解析:・・・|a+2|W4, ・・・一4Wa+2W4,二一60 a W2.又Ta是第一象限角,.•. 一3兀兀a <—Ji a W2. 223n Ji 答案:一兀U , 2 2 27.在直径为10 cm的轮上有一长为6 cm的弦,P是该弦的中点,伦子以每秒5弧度的速度旋转,则经过5秒后点P转过的弧长是 _______ cm.-3 -解析:如图,连接0P且延长到圆点A,CD = 6 cm, OD=5 cm易知0P = 4 cm; A、P两点角速度和同,故5秒后P点转过的角度为25弧度,从而P转过的弧长为25X4= 100 (cm).答案:100三、解答题8.(10分)把下列角化成2k* + a (OWa <2兀,keZ)的形式,并指出它们是第几象限角,写出与其终边相同的角的集合.46 Ji (1)-; (2)-20 ・ 346 兀2 兀解:(l) —:n+332H46JT与一终边相同的角的集介为a ci=2kn,kWZ 33(2)—20=—4X2 n +(8 JI -20).3 而V8 兀—20<2 兀,2・・・一20是第四象限角,与一20终边相同的角的集合为{a | a =2kn+(8n-20), kGZ}.Ji n9. (10 分)集合A= x kJi+Wx〈kn+, keZ 42 ,集1>B={x|—2WxW3},求AQB.n 兀解:对k Ji +^x<k Ji +, 42Ji JI 3 Ji n 収k=0,有Wx〈k = —lx<4242当k取具他值时,kn+, kn+与[一2, 3]没有公共元素.3n -242n JI JI故由图可知AAB= x —2Wx〈一或x<242 .10. (12分)已知扇形的周长为6,该扇形的中心角为1,求弓形的而积. 解:法一:设扇形的半径为「弧长为1,则由已知可得2r+l=6, 11, r 解得(r=2, 1 = 2.(1)JI JI2. 2- 4 -过A作AD丄OB于D,如图⑴所示,则在RtAAOD 中,AD=r ・ sin l = 2sin 1,11 所以SAA0B= • AD=2sin l=2sin 1,22 所以 $弓=$ 扇一SAA0B=2(l —sin1),法二:如图(2)所示,过0作OC1AB于C,在RtAAOC中,0C = 0AXcosZA0C,由法一知0A=2, ZA0C=12 rad,所以()C=2cos 12且AC=OA ・ sin 112=2sin 2,所以S11AAOB=2 ・ 0C2AC ・ OC= 1212124sin 1122,而由法一知S扇=2,所以S-Sll 弓=5扇厶AOB = 2-4sin 22一 5 一。
高二数学必修4 综合练习姓名一、选择题1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的. (2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD =,AB DC =,那么四边形ABCD 的形状是 A.矩形 B.菱形 C.正方形 D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形 10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于 点G ,则下列各等式中不正确的是A.23BG BE = B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a =,1),(sin b α=,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形. (3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+. 以上命题中,正确的命题序号是 . 三、解答题15.已知3sin 25α=,53[,]42αππ∈. (1)求cos2α及cos α的值;(2)求满足条件sin()sin()2cos x x ααα--++=的锐角x .16. 设两个非零向量1e 和2e 不共线.(1) 如果AB =1e +2e ,BC =128e +2e ,CD =133e -2e ,求证:A 、B 、D 三点共线; (2) 若||1e =2,||2e =3,1e 与2e 的夹角为60,是否存在实数m ,使得m 1e 2e +与1e -2e 垂直?并说明理由.17.已知函数()sin 22x x f x =,x R ∈.(1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间;(2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.18.某港口海水的深度y (米)是时间t (时)(240≤≤t )的函数,记为:)(t f y = 已知某日海水深度的数据如下:)(t f y =b t A y +=ωsin (1)试根据以上数据,求出函数b t A t f y +==ωsin )(的振幅、最小正周期和表达式; (2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。
江苏省南通市2024年数学(高考)统编版模拟(综合卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题定义,若关于x的不等式在上恒成立,则实数a的取值范围为()A.B.C.D.第(2)题若,,,则下列结论正确的是()A.B.C.D.第(3)题正方体中,为的中点,则直线与所成角的正切值为()A.B.C.D.1第(4)题已知函数,,若关于的方程在区间内有两个实数解,则实数的取值范围是A.B.C.D.第(5)题定义域为的函数满足,当时,,若当时,不等式恒成立,则实数的取值范围是()A.B.C.D.第(6)题若甲组样本数据(数据各不相同)的平均数为4,方差为2,乙组样本数据的平均数为5,则下列说法错误的是()A.的值为7B.乙组样本数据的方差为18C.两组样本数据的样本中位数一定相同D.两组样本数据的样本极差不同第(7)题已知的三个内角A,B,C所对的边分别为a,b,c,满足,且,则的形状为()A.等边三角形B.顶角为的等腰三角形C.顶角为的等腰三角形D.等腰直角三角形第(8)题已知向量,,,,,则()A.B.2C.4D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题以下说法正确的是()A .若,,则B.随机变量,,若,则C.若,,,则D.若,且,则第(2)题已知甲盒中有2个红球,1个蓝球,乙盒中有1个红球,2个蓝球.从甲、乙两个盒中各取1个球放入原来为空的丙盒中.现从甲、乙、丙三个盒子中分别取1个球,记从各盒中取得红球的概率为,从各盒中取得红球的个数为,则()A. .B.C.D.第(3)题已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是()A.的最小值为B.椭圆的短轴长可能为2C.椭圆的离心率的取值范围为D.若,则椭圆的长半轴长为三、填空(本题包含3个小题,每小题5分,共15分。
第4章 綜合演練 ____________ 月 日 ___ 得分 ______________________
一、單選題(每題 8 分,共 16 分)
1.如圖正五邊形 ABCDE ,請選出斜率最大的直線為何?
(A)直線 AB
(B)直線 BC
(C)直線 CD
(D)直線 DE
(E)直線 EA 。
解 顯然,直線 BC 的斜率小於 0,直線 DE 的斜率小於 0,直線 EA 的斜率等於 0
故比較直線 AB 的斜率及直線 CD 的斜率即可
正五邊形內角為()1180521085
⨯︒︒-= ∴如圖所示,18010872α∠︒︒︒=-=
1087236β∠︒︒︒=-=
顯然直線 AB 斜率大於直線 CD 斜率
故選(A)
2.已知二元二次方程式22220x y x y k +-++=的圖形為一點,則 k =?
(A)-4 (B)-2 (C)0 (D)2 (E)4。
解 將方程式配方得
()()22
112x y k -++=-+
∵圖形為一點
∴-k +2=0 得 k =2
故選(D)
二、多選題(每題 8 分,所有選項均答對者,得 8 分,錯一個選項得 5 分,錯兩個選項得 2 分,
其餘不給分,共 16 分)
3.已知直線 L :2x +5y +10=0,請選出關於 L 的正確選項:
(A)斜率為52- (B)過原點()0,0 (C)x 截距為-5 (D)通過第二、三、四象限 (E)與坐標軸所圍的三角形面積為 5。
解 x 0
-5 y -2 0
(A) ×:斜率為52
- (B) ×:()0,0代入 2x +5y +10
2.0+5.0+10=10≠0
∴()0,0不在 L 上
(C)○:x 截距為-5
(D)○:如右圖,直線 L 過二、三、四象限
(E)○:面積為 15252
--= 故選(C)(D)(E)
4.已知圓2224110C x y x y :+---=,請選出關於圓 C 的正確選項:
(A)圓心()1,2 (B)半徑 11 (C)面積 16π
(D)點()4,5P 在圓內 (E)過點()5,5Q 的切線段長度為 3。
解 將圓配方得圓 ()()221216C x y :-+-=
∴圓心為 ()1,2A ,半徑 r =4
(A)○:圓心()1,2
(B) ×:半徑 4
(C)○:面積為 2416ππ⨯=
(D) ×:點()4,5P 代入 222411x y x y +---
16+25-8-20-11=2>0
∴()4,5P 在圓外
(E)○:設 R 為圓 C 上一點,QR RA ⊥,作圖如右,可得 1695QA =+=
∴切線段長 25163QR =-=
故選(A)(C)(E)
三、填充題(每題 8 分,共 48 分) 5.已知一直線 L :mx -y -3m +2=0 必過 P 點,則 P 點坐標為 。
解 整理直線 L 方程式得 mx -3m =y -2
()23y m x -=-
故知無論 m 為任何實數
直線 L 必過()3,2
故 P 點坐標為()3,2
6.坐標平面上兩點()1,4A 、()5,2B ,直線 L :y =mx +1。
若直線 L 與線段 AB 相交於一點,則 m 的範圍為 。
解 整理直線 L 方程式得 ()10y m x -=-
直線 L 必過()0,1P 且斜率為 m
直線 P A 的斜率為 41310
-=- 直線 PB 的斜率為 211505
-=- ∴135
m <<時,直線 L 與線段 AB 相交於一點
7.若點 P (k +1,k -3)在二元一次聯立不等式 3217040
x y x y ≤≥⎧⎨⎩+-+-圖形的內部,則 k 的範圍為 。
解 由已知
()()3123170k k ≤++--且()()1340k k ≥++--
整理得 520k ≤ 且 26k ≥
即 4k ≤且 3k ≥
故得 34k ≤≤
(本題答案亦可記為[]3,4)
8.坐標平面上圓 C 通過()0,1A -、()2,1B 兩點,且圓心在直線 L :2x -3y +13=0 上,則圓 C 方程式為 。
解 如右圖,弦AB 的中垂線 M 與 L 的交點 K 即為圓心
取 AB 中點 ()1,0C ∵直線 AB 的斜率為212
=,且中垂線 M AB ⊥su u r ∴兩者斜率的乘積為-1,即中垂線 M 的斜率為-1
故中垂線 M 方程式為 ()01y x -=--
得 M :x +y -1=0
解 M 與 L 交點
12313
x y x y ⎧⎨⎩+=-=- 得()(),2,3x y =-
故知圓心為()2,3K -
取圓上點 A
得圓 C 方程式為()()22
2341620x y ++-=+=
∴圓 C 為()()222320x y ++-=
9.已知圓()()22234C x y :-+-=,直線 L :3x +4y +2=0,則圓 C 上任一點到直線 L 的最長
距離為 。
解 由題意可推得圓心()2,3K ,半徑 r =2
則圓心 K 到直線 L 的距離為
612245
++= 如右圖,顯然點 A 到直線 L 距離最遠
∴所求為 4+2=6
10.已知點()2,3P -在圓22C x y k :+=的內部且()3,4Q -在圓 C 的外部,試求 k 的範圍為 。
解 點()2,3P -在圓內部
∴ 4+9<k 得 k >13
點()3,4Q -在圓外部
∴ 9+16>k 得 k <25
故得 13<k <25
四、計算題(每題 10 分,共 20 分)
11.試求二元一次聯立不等式3212020x y x y ≤≥⎧⎨⎩
+-+-的圖形在第一象限內之區域的面積。
解 作 32120200
x y x y x y ≤≥⎧⎪⎪⎨⎪⎪⎩≥≥+-+-的圖形
並取共同的部分如右圖
所求為△OBC 面積△OAD 面積
即 1146221221022
⨯⨯⨯⨯-=-=
12.已知圓229C x y :+=,直線 L :3x +4y -7=0,試求平行於直線 L 且與圓 C 相切的直線方
程式。
解 設所求切線方程式為 3x +4y +k =0
圓 C 的圓心()0,0K ,半徑 r =3
∴
35
k =⇨15k = ⇨k =±15 ∴所求為 3x +4y +15=0 或 3x +4y -15=0。