中考数学复习课一次函数与反比例函数综合学案[1]
- 格式:doc
- 大小:268.00 KB
- 文档页数:4
《反比例函数与一次函数的综合运用》教学设计【教材】新人教版数学九年级【课时安排】1 课时【教学对象】九年级【教材分析】学生已经学过反比例函数和一次函数,有了一定的了解,但是综合性有待提高。
本节课的内容结合了七年级下册二元一次方程,八年级上册最短路径问题,八年级下册一次函数以及九年级下册反比例函数的内容,包含着初中数学三年里的部分内容,综合性强。
通过本节课的学习可以使学生思维变得更开阔,也对以后更好的学习各种科学知识有很大的帮助。
本节课的学习渗透数形结合、方法归纳等数学思想,培养学生实践能力、概括能力,也培养学生的合作交流意识和探索精神。
【学情分析】学生对反比例函数和一次函数的概念、图象和性质已经基本掌握,但综合起来,就要考验学生的计算能力、读图能力和分析能力了,这对于我校的学生来说是有待提高的。
因此我选择了从稍微简单的题目入手,进而突破中考 9 分题的第一题函数问题,再利用变式训练进行强化,意在让学生提高能力的同时更能增强学生学习数学,解决综合题,提高中考数学成绩的信心。
【教学目标】✧知识目标(1)理解并掌握用待定系数法确定一次函数、反比例函数的解析式;(2)已知一次函数与反比例函数的解析式,求它们图象的交点坐标;(3)能利用轴对称变化解决最短路径问题;(4)会解决一次函数与反比例函数相结合的综合问题。
✧能力目标(1)通过对一次函数与反比例函数综合问题的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;(2)培养学生数形结合思想、方法归纳思想等。
情感目标通过解题进一步理解数形结合的数学思想在函数中的应用。
【教学重点】灵活掌握求反比例函数的解析式,求一次函数与反比例函数图象的交点坐标。
【教学难点】利用数形结合的思想方法解一次函数、正比例函数的综合题以及最短路径问题。
【教学方法】采用“学案导学、小组合作”的探究式教学方法:以导学案为辅助手段,通过小组合作探讨等方式解一次函数、正比例函数的综合题。
精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
中考数学基础知识要点复习教案中考数学基础知识要点复习教案作为一名人民教师,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。
那要怎么写好教案呢?以下是小编为大家收集的中考数学基础知识要点复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
中考数学基础知识要点复习教案篇16.6 函数的应用(1)一、知识要点一次函数、反比例函数的应用.二、课前演练1.(2010上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示当时0≤x≤1,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为_____ _______________.2.(2012丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动. 图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.三、例题分析例1 (20xx南京)小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是_______㎝,他途中休息了______min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?例2(20xx成都)如图,反比例函数y=kx(k≠0)的图象经过点(12 ,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.四、巩固练习1. 拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是( )2. 已知等腰三角形的周长为10㎝,将底边长y㎝表示为腰长x㎝的关系式是y=10-2x,则其自变量x的取值范围是( )A.003.(2012连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,(1)分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?4. 制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?海南初中数学组§6.7 函数的应用(2)一、知识要点二次函数在实际问题中的应用.二、课前演练1.(20xx株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.(20xx梧州)20xx年5月22日—29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是( )A.y=-14x2+34x+1B.y=-14x2+34x-1C.y=-14x2-34x+1D.y=-14x2-34x-1三、例题分析例1(20xx沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0(1)用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.四、巩固练习1.(20xx西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为12米,在如图所示的坐标系中,这个喷泉的函数关系式是( )A.y=-(x-12)2+3B.y=-3(x+12)2+3C.y=-12(x-12)2+3D.y=-12(x+12)2+32.(20xx聊城)某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m3.(20xx甘肃)如图,正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE 为x,则s关于x的函数图象大致是( )4. 某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图).(1)根据图象,求出一次函数的解析式;(2)设公司获得的毛利润为S元.①试用销售单价x表示毛利润S;②请结合S与x的函数图象说明:销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时销售量是多少?5.(20xx曲靖)一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-112 x2+23 x+53 ,铅球运行路线如图.(1)求铅球推出的水平距离;(2)通过计算说明铅球行进高度能否达到4m.中考数学基础知识要点复习教案篇2课型复习课教法讲练结合教学目标(知识、能力、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。
中考数学一次函数与反比例函数的综合运用复习文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]2016中考数学一次函数与反比例函数的综合运用复习本专题是对一次函数与反比例函数的综合问题进行复习与深化,这类综合题考查的知识点多,能力要求强.试题呈现形式活泼多样,既有一次函数、反比例函数与代数的综合又有与空间几何的综合.解决这类问题首先要理清头绪,挖掘题目中的已知条件和隐含条件,根据实际问题情境或图象列出相应关系式,从而建立函数模型.例 1 (2015·成都)如图,一次函数y=kx+5(k 为常数,且k ≠0)的图象与反比例函数y=-的图象交于A(-2,b),B 两点. (1)求一次函数的表达式; (2)求B 点的坐标. 针对训练1.(2014·菏泽)如图,在平面直角坐标系xOy 中,已知一次函数y =kx+b 的图象经过点A(1,0),与反比例函数y =(x >0)的图象相交于点B(2,1). (1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式kx+b>的解集. 2.(2014·广州)已知一次函数y=kx-6的图象与反比例函数y=-的图象交于A 、B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标; (2)判断点B 的象限,并说明理由.3.(2014·白银)如图,在直角坐标系xOy 中,直线y=mx 与双曲线y=相交于A(-1,a)、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值; (2)求直线AC 的解析式.8xmxmx2kxn x4.(2014·宜宾)如图,一次函数y=-x+2的图象与反比例函数y=-的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.5.(2014·甘孜)如图,在△AOB 中,∠ABO =90°,OB =4,AB =8,反比例函数y=在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式; (2)求点C 的坐标.6.(2014·资阳)如图,一次函数y=kx+b(k ≠0)的图象过点P(-,0),且与反比例函数y=(m ≠0)的图象相交于点A(-2,1)和点B. (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值? 参考答案1.(1)把点B(2,1)代入y =,得m =1×2=2. ∵一次函数y =kx+b 的图象经过点A(1,0),B(2,1), ∴解得∴一次函数的解析式为y =x-1. (2)x >2.2.(1)当x=2时,y=kx-6=2k-6, y=-=-k. 由题意,得2k-6=-k.解得k=2.3xk x32mxmx0,12.k b k b =+⎧⎨=+⎩1,1.k b =⎧⎨=-⎩2kx故一次函数解析式为y=2x-6, 反比例函数解析式为y=-. ∴A(2,-2).(2)B 点在第四象限,理由如下:一次函数y=2x-6经过第一、三、四象限,反比例函数经过第二、四象限, 因此它们的交点都是在第四象限.3.(1)∵直线y=mx 与双曲线y=相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0). ∵△AOC 的面积为1,∴A(-1,2). 将A(-1,2)代入y=mx ,y=可得 m=-2,n=-2.(2)设直线AC 的解析式为y=kx+b , ∵y=kx+b 经过点A(-1,2)、C(1,0), ∴解得∴直线AC 的解析式为y=-x+1.4.(1)根据题意得解方程组得或∴A(-1,3),B(3,-1).(2)把y=0代入y=-x+2得-x+2=0,解得x=2, ∴D(2,0).∵C 、D 两点关于y 轴对称, ∴C(-2,0),4xn x nx20.k b k b -+=⎧⎨+=⎩,11.k b =-⎧⎨=⎩,23y x y x =-+⎧⎪⎨=-⎪⎩1,3x y =-⎧⎨=⎩3,1.x y =⎧⎨=-⎩∴S △ABC =S △ACD +S △BCD =×(2+2)×3+×(2+2)×1=8. 5.(1)由S △BOD =4,得k =8. ∴反比例函数解析式为y=. (2)∵OB =4,AB =8,∠ABO =90°, ∴A 点坐标为(4,8).设直线AO 的解析式为y =kx ,则4k =8,解得k =2. 即直线AO 的解析式为y =2x.联立方程组:解得或(舍去)∴点C 的坐标为(2,4).6.(1)∵函数y=kx+b 图象过点P(-,0)和点A(-2,1),∴解得∴一次函数的解析式为y=-2x-3. 又反比例函数的图象过点A(-2,1), ∴=1,即m=-2. 故反比例函数的解析式为y=-.(2)联立解得或 ∴B(,-4).由图可知,当-2<x <0或x >时,一次函数的函数值小于反比例函数的函数值.12128x82.y x y x ⎧=⎪⎨⎪=⎩,1124x y =⎧⎨=⎩,2224.x y =-⎧⎨=-⎩,3230,22 1.k b k b ⎧-+=⎪⎨⎪-+=⎩2,3.k b =-⎧⎨=-⎩2m-2x23,2y x y x =--⎧⎪⎨=-⎪⎩1121x y =-⎧⎨=⎩,221,24.x y ⎧=⎪⎨⎪=-⎩1212。
反比例函数与一次函数的综合运用蒲岐中学章青海一、教学目标、重点、难点的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1.知识与技能:通过本节学习,巩固反比例函数和一次函数的图像和性质,并能用它解决相关问题.2.过程与方法:通过观察简单图象入手,步步引入,逐渐掌握解决本节例题的方法,通过动手操作,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想.3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值.教学重点:利用反比例函数和一次函数的图像和性质解决有关问题教学难点:1、综合运用反比例函数和一次函数的图像和性质知识解决创新型问题2、对数形结合思想的理解与深入应用二、教学流程(一) 简单图象导入,温故知新教师:同学们好,请同学们看屏幕.如图,问题1.如图在Rt△ABC中,∠B=90°,AB=2、BC=1,你可以得出哪些结论?设计意图:让学生复习解直角三角形的知识及一般情况三角形会求哪些结论?引出面积为反比例函数的引入作铺垫。
问(2)将Rt△ABC如图放入直角坐标系中;还可以得出什么结论?设计意图:让学生体会当直角坐标系与简单几何图形结合,点线都可以用代数知识来表示,充分理解直角坐标系是数形结合很好的工具。
.借助哪个函数工具可以画出和它面积一样的直角三角形?设计意图:引入反比例函数,复习反比例函数解析式的求法,充分理解掌握k=xy 面积不变性,认识应用的基本图形,为等积法解决原题作铺垫。
问(3) .在平面直角坐标系中找到点D,使得以A 、B 、C 、 D 为顶点的四边形是平行四边形。
设计意图:比较自然的引出(0,-1);(4,1)又可以得出直线y=21x -1,从数学思想看也复习了分类讨论思想。
问(4).如图反比例函数y=x 4 与一次函数y=21x -1交于C,D 两点 你能提出一个新问题吗?并尝试解决.设计意图:预设3副图解决三类常见问题求交点,求三角形面积及大小比较 让学生总结方法技巧问(5). 直线y=21x-1与x 轴交于点B,过点B 作x 轴的垂线交反比例函数y=x4于点C,连接AC 你能判断三角形ABC 的形状吗?(创新型综合问题)设计意图:还是让学生观察图形特征,总结点规律,为解决原题作基础。
一次函数和反比例函数综合应用教学设计教学过程教学环节教学活动设计意图情境引入1.复习二元一次方程与一次函数关系。
(1)已知二元一次方程组的解求相应函数图象交点坐标;(2)已知函数图象交点坐标求相应二元一次方程组的解;(3)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为。
2.提出问题:一次函数的交点可以通过把一次函数相应的方程联立成方程组,方程组的解就是就是直线的交点。
那么一次函数和反比例函数的交点又怎么求?1.复习二元一次方程组的解和一次函数图象交点的坐标关系,回顾所学知识,感悟数形结合思想。
2.求一次函数图象交点的坐标,复习求一次函数交点坐标的过程,为教学求一次函数和反比例函数交点坐标作铺垫。
新知探究1.探究一次函数和反比例函数图象交点求法(1)多媒体展示题目;求反比例函数y=x2与一次函数y=x-1的图象的交点坐标。
(2)学生独立思考教师巡视指导;(3)同学间合作交流;(4)指名板演展示,教师适时点评。
(5)反思、总结求一次函数和反比例函数图象交点的方法,教师提炼板书:联立、转化、求解、写坐标。
2.求一次函数和反比例函数交点坐标例题(1)多媒体展示题目,指导学生读题;【例题1】如图,直线y=x+1与双曲线y=kx的交点为A(1,m)和B.(1)求m的值;(2)求双曲线的解析式;(3)求点B的坐标.(2)学生独立思考;(3)同学间合作交流;1.学生在复习求一次函数交点坐标的基础上,利用类比的方法学习一次函数和反比例函数的交点,总结求一次函数和反比例函数的交点的步骤。
2.通过求一次函数和反比例函数的交点的例题,进一步巩固求一次函数和反比例函数的交点知识。
3.学生通过独立思考,学生间的合作交流,探究利用数形结合的方法确定自变量的取值范围,感受数形结合解决问题的好处,发展学生几何直观。
(4)多媒体展示学生完成的练习,学生互评,教师适时点评。
3.利用数形结合确定自变量的取值范围 (1)多媒体展示题目,学生读题理解题意; 【例题2】如图所示,反比例函数的图象y 1=xk 1与正比例函数y₂=k 2x 的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( ) A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2(2)学生独立思考; (3)学生合作探究;(4)学生说解题思路,教师适时点评;(5)反思、总结根据一次函数和反比例函数图象交点确定自变量的取值范围的“三步法”:找交点写坐标,作垂线分区域,定区域写范围。
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
反比例函数与一次函数的综合应用一、学情分析1. 学生:学生已经学过了反比例函数和一次函数,有了一定的了解,但是综合性有待提高;2. 教材:这是初三复习内容;3. 课程:本课程针对中考反比例函数与一次函数结合的题目进行复习练习。
二、教学目标:1、知识目标:(1)一次函数、正比例函数、反比例函数的概念。
(2)一次函数、正比例函数、反比例函数的图象及性质。
2、能力目标:(1)用待定系数法求一次函数、正比例函数、反比例函数的解析式。
(2)会用作出一次函数、正比例函数、反比例函数的图象。
(3)能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
3、情感态度与价值观:通过解题进一步理解数形结合的数学思想在函数中的应用。
三、教学重点:1.一次函数、正比例函数、反比例函数的图象及性质。
2.用待定系数法求一次函数、正比例函数、反比例函数的解析式。
3.熟练应用一次函数与反比例函数的图象与性质进行解题。
四、教学难点:1.灵活运用一次函数、正比例函数、反比例函数的有关知识解综合题。
2.进一步利用数形结合的思想方法进行解题。
五、教学方法:讲练结合六、学情分析:学生已经基本掌握反比例函数和一次函数的概念、图象和性质,但我校学生计算能力、试图能力和分析能力都有待提高,因此我选择了稍微简单的综合题,意在让学生提高能力的同时增强学习数学的自信心。
七、教学过程(一)源于中考,以点展面(导入)一个函数具有下列性质:①它的图象经过(-1,4);②在每个象限内,函数y 的值随自变量x 的值增大而增大;请你写出一个符合上述条件的函数关系式: .【设计意图:本题属于开放性试题,答案可以是反比例函数(一般学生)也可以是一次函数(好学生),由此引出本节课的内容,反比例函数与一次函数综合应用】(二)综合应用,提升能力(新授课)1.例题分析若xy 4-=的图象与正比例函数y =kx (k ≠0)的图象在第二象限的交点为A (-1,n ),如图.(1)求正比例函数的解析式;(中等学生回答)(2)确定该函数的图象与正比例函数y =kx 的图象另一个交点B 的坐标;(全体学生回答)(3)过点A 、B 向x 轴作垂线,垂足为M 、N ,求S △AOM 、S △BON . (全体学生回答)(4)①若C (2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(中等学生回答)②若E (-2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(全体学生回答) ③若反比例函数值大于正比例函数值,确定 x 的取值范围. (中等学生回答)【说明:本题是由4道学生熟悉的小题综合在一起的,难度不大,让学生体验一部分综合题就是由几个有关联的小题放在一起,消除学生抵触心理,为后面难点打基础】2. 方法总结解决函数问题方法总结:(师生共同总结,学生在学案中填写)解决问题 求函数解析式 确定交点坐标 求几何图形面积 比较函数值大小 3. 针对练习:回归中考,能力检测4(学生独立完成,大屏幕展示学生解题过程)(三)变式延伸,拓展思维:1. 例题分析若直线()041>+=k kx y 与反比例函数()02≠=m m xm y 为常数,的图象一个交点为A (-3,1),如图.(1)=1y ;=2y (全体学生)(2)直接写出两函数的另一个交点坐标;(全体学生)(3)当x 取何值时,21y y >;(中等学生)(4)求△OAB 的面积; (较好学生)(5)过点A 作x 轴的垂线,过点B 作y 轴的垂线,两线交于点C .(课外延伸)①若反比例函数()02≠=m m xm y 为常数,的图象与△ABC 有公共点,请直接写出m 的取值范围;②若一次函数y =ax +b 的图象平行于直线 AB ,若直线y =ax +b 与△ABC 有公共点,求b 的取值范围;【说明:本题是本节课的难点,一次函数与反比例函数的结合,以及割补法求面积,利用多媒体教学的优势,用动画展示割补的过程,从而突破难点】2. 方法总结一次函数与反比例函数综合应用方法总结:(师生共同总结,学生在学案中填写)3. 针对练习:回归中考,能力检测5(学生独立完成,大屏幕展示学生解题过程)(四)课堂小结:本节课讲的解决函数问题以及函数综合题的方法,强调交点的重要性.(五)课堂反馈:回归中考,能力检测6八、板书设计策 略 方 法八、教学反思本节课学生基本掌握反比例函数和一次函数的概念、图象和性质以及掌握利用这些知识解较简单的综合题的方法,但是对于数形结合的思想运用、与几何知识的结合、坐标与线段的转化还不是很熟练,需要进一步练习提高。
期末复习(7) 反比例函数与一次函数综合复习课
考点一:反比例函数定义
解题技巧:反比例函数的解析式以,x
k
y =,k xy =)0(1≠=-k kx y 3种形式出现,在不同的场合使用 范例讲解: 1、已知
2
2
)1(--=m
x m y 是反比例函数,则m =
考点二:反比例函数的图像性质
解题技巧:①明白双曲线所在象限与k 的大小关系;②图像上升与下降的含义,明白同增同减的意义;③双曲线的中心对称性,与正比例函数相交交点的含义; 范例讲解:
1、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )
2、当n 取什么值时,1
22
)2(-++=n n x n n y 是反比例函数?它的图像在第几象限内?在每个象限内,y 随x
增大而增大还是减小? 3、若函数x
m y 2
+=
的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .2->m
B .2-<m
C .2>m
D .2<m
考点三:知横比纵,知纵比横,函数值大小的比较
解题技巧:代入求解法,推理说明法,数形结合法,分类讨论法 范例讲解:
1、已知点A (2,y 1),B (1,y 2)都在反比例函数x
y 1
=的图象上,那么1y 2y . 2、已知点A(-2,y 1),B(-1,y 2),C(3,y 3)都在反比例函数y =x
4
的图像上,则( )
A .y 1<y 2<y 3
B .y 3<y 2<y 1
C .y 3<y 1<y 2
D .y 2<y 1<y 3 考点四:面积问题
解题技巧:明白反比例函数图像中哪些图形的面积是,2
1││k ,││k ,2││k
范例讲解:
1、已知如图,A 是反比例函数x
k
y =
的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( )A.3 B.-3 C.6 D.-6 2.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=x
m 的图象的两个交点,直线AB 与y 轴交于点C . (1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-x
m
<0的解集(直接写出答案).
练习巩固
1.若反比例函数x
k
y =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数x
y 6
-
=的图象一定经过点(-2,________). 3.若点A (7,y 1),B (5,y 2)在双曲线x
y 3
-
=上,则y 1、y 2中较小的是________. 4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________.
5.若正比例函数x k y 1=的图象与反比例函数x
k y 2
=
的图象相交于A 、B 两点,其中点A 的坐标为(32,3),则k 1k 2=____________.
6、已知反比例函数k
y x
=的图象与直线y =2x 和y =x +1的图象过同一点,则k = . 7、如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的方程kx+b=
2
x
的解为( )
A .x l =1,x 2= 2 ;
B .x l = -2,x 2= -1 ;
C .x l =1,x 2= -2
D .x l =2,x 2= -1 8、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数
的值小于一次函数的值的x 的取值范围是( ).
A .x <-1
B .x >2
C .-1<x <0,或x >2
D .x <-1,或0<x <2
第8题
第4题
9、已知120k k <<,则函数1y k x =和2
k y x
=
的图象大致是( )
10、.已知关于x 的一次函数y =-2x +m 和反比例函数x n y 1
+=的图象都经过A (-2,1),则m =__,n =
___.
11、.直线y =2x 与双曲线x
y 8
=有一交点(2,4),则它们的另一交点为________. 12、已知y =(a -1)x a 是反比例函数,则它的图象在( ). (A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限 13、观察函数x
y 2
-=
的图象,当x =2时,y =________;当x <2时,y 的取值范围是________; 当y ≥-1时,x 的取值范围是________.
14、函数x y 2
=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿
y 轴向上平移2个单位,所得直线与函数x
y 2
=
的图象的交点共有________个. 15、如图,一次函数y =kx +b 的图象与反比例函数x
m
y =的图象相交于A 、B 两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.
16,如图,已知反比例函数y =
m
x
的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B .
(1)求这两个函数的解析式;
(2)求点B 的坐标.
x
x
x
x
)
(D )
17、如图所示,一次函数y x m =+和反比例函数
1
(1)m y m x
+=
≠-的图象在第一象限内的交点为(,3)P a . ⑴求a 的值及这两个函数的解析式;
⑵根据图象,直接写出在第一象限内,使反
比例函数的值大于一次函数的值的x 的取值范围.
18. 已知点P (1,2)在反比例函数y =x
k
(0≠k )的图象上.(1)当x 2-=时,求y 的值;(2)当1<x <4时,求y 的取值范围.
19、如图所示,反比例函数y=的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m ). (1)求m 的值及一次函数的解析式;
(2)若直线x=2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长.
20.已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =3
1
. (1)求反比例函数的解析式:
(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围; (3)当△OCD 的面积等于
2
S
时,试判断过A 、B 两点的抛物线在x 轴上截得的线段能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理
(,3)P a
O
x
y。