微分方程学习指导
- 格式:doc
- 大小:346.50 KB
- 文档页数:8
株洲师范高等专科学校2010届毕业论文材料系、部:物理与电子工程系学生姓名:刘进萍指导教师:周昕职称:讲师专业:物理教育班级:07 物理教育2010年5月目录1、毕业论文课题任务书 (2)2、毕业论文开题报告 (4)3、指导教师评阅表 (8)4、评阅教师评阅表 (9)5、答辩及最终成绩评定表 (10)6、毕业论文 (11)2010届毕业论文课题任务书系:物理与电子工程系专业:物理教育株洲师范高等专科学校毕业论文开题报告系部_______物理与电子工程系____ 专业物理教育题目二阶偏微分方程的常规解与特殊解学生姓名__刘进萍学号04107103_指导教师周昕___职称__ 讲师_____2010年5月20日说明:开题报告作为毕业论文(设计)答辩委员会对学生答辩资格审查的依据材料之一,此报告应在导师指导下,由学生填写,将作为毕业论文(设计)成绩考查的重要依据,经导师签署意见及系审查后生效。
株洲师专2010届毕业论文指导教师评阅表系:物理与电子工程系株洲师专2010届毕业论文评阅教师评阅表系:物理与电子工程系株洲师专2010届毕业论文答辩及最终成绩评定表系(公章):物理与电子工程系株洲师范高等专科学校2007届毕业论文弦振动二阶偏微分方程的常规解与特殊解系、部:物理与电子工程系学生姓名:刘进萍指导教师:周昕职称讲师专业:物理教育班级:物理教育班完成时间:2010年5月弦振动二阶偏微分方程的常规解与特殊解物理与电子工程系物理教育专业2007级刘进萍指导老师周昕摘要:对于弦振动的二阶偏微分方程,一般采用分离变法来解。
如果我们考虑其物理意义,波在离振源X0处的振动就是振源在时间上推迟了t=X0/v, 从而将振源的振动方程引入推迟因子后代入偏微分方程中,一定会满足方程,则该振动方程就是此偏微分方程的解。
该种方法物理意义明确,求解过程相对简化。
关键词:二阶偏微分方程;推迟因子;弦振动;波的传播Abstract: For the partial differential equation of two ranks, we often use separation reform to solution. If we consider its physical significance, from the source X0 wave is the source of vibration in time delayed t = X0 / v, which will be the source of vibration equation introduced delay partial differential equations, the factor of offspring will meet equation, the vibration equation is the partial differential equations of the solution. This method has clear physical meaning and the solving process is relatively simple.Keywords:partial differential equation of two ranks; suspend gene; libration of string; transmit ion of wave前言在解弦振动的二阶偏微分方程时, 在数学上,一般采用分离变法来解,这是一种纯数学的方法。
常微分方程学习辅导与习题解答
pdf
《常微分方程学习辅导与习题解答》是常微分方程的教学参考书,为学习或讲授《常微分方程(第三版)》的师生补充教材以外的参考资料,并提供众多常微分方程模型,供常微分方程应用者和准备参加数学建模竞赛者参考。
该书除了传统的内容总结、学习指导、疑难解答、例题补充和解题外,考虑到常微分方程的广泛应用及其在学科发展中的承上启下作用,增加了常微分方程、历史与图形、考研试题等应用例题。
同时,考虑到学生学习和教师备课的差异,除了内容总结、习题和习题答案外,还分别设置了学习指导和补充提高两项内容。
前者方便初学者自学,后者适合师生进一步探索。
全书按原教材内容顺序依章分为“内容提要”、“学习辅导”、“补充提高”和“习题与习题解答”四个部分。
“内容提要”列出定理、公式等基本内容;“学习辅导”含学习要点或解题指导、例题选讲、测试练习;“补充提高”含补充习题、排疑解惑、应用实例、历史与人物;“习题与习题解答”含《常微分方程学习辅导与习题解答》中的测试练习和补充习题的解答以及《常微分方程(第三版)》中全部习题的解答或提示,为方便读者,与教材同步的习题在解答时同时列出题目。
书中还专章给出“期中、期末及硕士研究生入学试题”(包括套题、半套题及散题)和“数学软件在常微分方程中的应用”。
附录中则列出科学计算自由软件SCILAB的使用和绘制轨线图貌的改进及解题常用的部分函数、微分、积分公式,并有各章排疑解惑、应用例题和历史与人物的细目索引。
第四讲常微分方程的思想方法三、常微分方程的思想方法数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点, 它在认识活动中被反复运用, 带有普遍的指导意义, 是建立数学以及应用数学解决问题的指导思想。
数学方法是指提出问题、解决问题过程中所采用的各种方式、手段、途径等, 二者的紧密联系即数学思想方法。
由此可见, 数学思想方法是以具体的教学内容为载体, 又高于具体数学内容的一种指导思想和大范围普遍适用的方法, 是数学的灵魂.(1)挖掘、提炼和概括教材知识中的数学思想,实现由隐到显,体现规律性一般来说, 由于教材的编排必须考虑学科内容的内在联系及逻辑系统性,故数学思想只能从相关内容中去体现,具有隐形态。
知识教学虽然蕴含了思想方法,但是如果没有有意识地被数学思想方法作为教学对象,学生学习数学知识时并不一定注意到数学思想方法。
因此教师应当以数学知识为载体,有意识地引导学生将隐藏在知识背后的数学思想挖掘、提炼、概括出来,使之由隐形态变为显形态,使学生对由对数学知识、数学方法的朦胧感受、死记硬背转化为明晰的理解、掌握和灵活运用,最终完成对数学知识、数学方法的本质认识。
(2)抓住课程中知识发生的过程,及时强化数学思想数学知识的发现过程,实际上也是数学思想方法的发生过程,但对于学生来说,这种发现或发生过程,往往被教材浓缩,甚至隐去。
数学知识的教学是数学认识活动结果的教学,具有静态点型,重在记忆理解;数学思想方法的教学是数学活动过程的教学,呈动态线型,重在思辨操作。
所谓数学活动过程是指:数学概念的形成过程,数学结论的推导过程,数学方法的思考过程,数学规律的被揭示过程,这些过程是数学思想的体现并受某种数学思想的指导,离开数学活动过程,思想方法也就无从谈起。
(3)把握知识的内在联系,注意数学思想方法的内在结构,使之系统化数学思想方法的教学与具体的数学知识的教学一样,只有成为系统,建立自己的结构,才能发挥它的整体效益。
微 积 分 下 册第四章 常微分方程一、学习要求与内容提要(一)基本要求1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念.2.掌握可分离变量的微分方程和一阶线性微分方程的解法.3.会用微分方程解决一些简单的实际问题.重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法。
(二)内容提要10.⒈ 微分方程的基本概念微分方程的定义,微分方程的阶、解与通解,初始条件与特解。
10.2 一阶微分方程变量可分离的微分方程,齐次微分方程,一阶线性微分方程。
10.3高阶微分方程二阶线性微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程,几类特殊的高阶微分方程的降阶法。
二、主要解题方法1.一阶微分方程的解法例1 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解 这是可以分离变量的微分方程,将方程分离变量,有 x x y y y d 11d 12-=- 两边积分,得 =-⎰y y y d 12⎰-x x d 11求积分得 121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=- 1222e )1(1C x y -=-,222)1(e 11-±=-x y C记 0e 12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可 以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y 得 3=C ,所以特解为 22)1(31-=-x y .例2 求下列微分方程的通解:(1)x y y y +='; (2) x xy y x cos e 22=-'. (1)解一 原方程可化为1d d +=xy x yx y 令 x y u =,则 1d d +=+u u x u x u 即x x u u u d d 12-=+ 两边取积分 ⎰⎰-=+x x u u u d 1d )11(2 积分得 C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 y x C y e = (C 为任意常数)解二 原方程可化为 11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x 得其通解为 y C x =.设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C y y C =, 所以原方程的通解为 1ln C y y x =,即y xC y e = (C 为任意常数).(2)解一 原方程对应的齐次方程 02d d =-xy xy 分离变量得xy x y 2d d =, x x yy d 2d = 两边积分,得 x x y y ⎰⎰=d 2d ,2ln ln y x C =+)e ln(ln e ln ln 22x x C C y =+=,2e x C y =用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22='即 x x C cos )(='两边积分,得 C x x x x C +==⎰sin d cos )(故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y x x x x x =)d e cos e (e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数). 小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解. 因此求曲线)(x y y =的问题,转化为求解微分方程的定解问题 ⎪⎩⎪⎨⎧=-=-'=1111x y y x y ,的特解. 由公式 C x x Q y x x P x x P +⎰⎰=⎰-d e )((e d )(d )(,得 )d e )1((ed 1d 1C x y x x x x +⎰-⎰=-⎰=ln x x Cx -+ 代入11==x y 得 1=C ,故所求曲线方程为 (1ln )y x x =-.三、学法建议1.本章重点为微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性 微分方程的常数变易法.2.本章中所讲的一些微分方程,它们的求解方法和步骤都已规范化,要掌握这些求解法,读者首先要善于正确地识别方程的类型,所以必须熟悉本课程中讲了哪些标准型,每种标准型有什么特征,以便“对号入座”,还应熟记每一标准型的解法,即“对症下药”.同时,建议读者再做足够的习题加以巩固.。
第4章 分离变量法物理学、力学和工程技术等方面的许多问题都可归结为偏微分方程的定解问题,上一章我们已初步看到怎样把具体的物理问题表达为定解问题.下面一个重要任务是怎样去解决这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解.从微积分学得知,在计算诸如多元函数的微分及重积分时总是把它们转化为单元函数的相应问题来解决.与此类似,求解偏微分方程的定解问题也是要设法把它们转化为常微分方程问题,分离变量法就是常用的一种转化手法.本章我们将通过实例来说明分离变量法的步骤和实质.在4.2我们讨论了如何处理第三类齐次边界条件(当然也包括第二类边界条件).在4.3说明如何在极坐标系下使用分离变量法.在4.4及4.5我们讨论了如何处理非齐次方程及非齐次边界条件的问题,本章的最后还安排了两个较为综合性的例子作为总结.4.1 有界弦的自由振动为了使读者了解什么是分离变量法以及使用分离变量法应该具备什么条件,我们选取两端固定的弦的自由振动问题为例,通过具体地求解逐步回答这些问题.根据第3章所得的结论,讨论两端固定的弦的自由振动,就归结为求解下列定解问题22222000,0,0; (4.1)0,0;(4.2)(),().(4.3)x x l t t uu a x l t t x u u u u x x t ϕψ====⎧∂∂⎪=<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩这个定解问题的特点是:偏微分方程是线性齐次的,边界条件也是齐次的,求解这样的问题,可以运用叠加原理.我们知道.在求解常系数线性齐次常微分方程的初值问题时,是先求出足够多个特解(它们能构成通解),再利用叠加原理作这些特解的线性组合,使满足初始条件.这就启发我们,要解问题(4.1),(4.2),(4.3),先寻求齐次方程(4.1)的满足齐次边界条件(4.2)的足够多个具有简单形式(变量被分离的形式)的特解,再利用它们作线性组合使满足初始条件(4.3).现在我们试求方程(4.1)的变量分离形式(,)()()u x t X x T t =的非零解,并要求它满足齐次边界条件(4.2),式中(),()X x T t 分别表示仅与x 有关及仅与t 有关的待定函数. 由(,)()()u x t X x T t =得2222''()(),()''(),u uX x T t X x T t x t∂∂==∂∂代入方程(4.1)得2()()()()X x T t a X x T t ''''=或2()()()()X x T t X x a T t ''''=这个式子左端仅是x 的函数,右端仅是t 的函数,一般情况下二者不可能相等,只有当它们均为常数时才能相等.令此常数为λ,则有2()()()()X x T t X x a T t λ''''==. 这样我们得到两个常微分方程:2()()0,T t a T t λ''-= (4.4)()()0.X x X x λ''-= (4.5)再利用边界条件(4.2),由于(,)()()u x t X x T t =),故有(0)()0,()()0.X T t X l T t ==但()0T t ≠,因为如果()0T t ≡,则(,)0u x t ≡,这种解显然不是我们所要求的,所以(0)0,()0.X X l == (4.6)因此,要求方程(4.1)满足条件(4.2)的分离变量形式的解,就先要从方程''()()0,(0)()0X x X x X X l λ-=⎧⎨==⎩中解出()X x .现在我们就来求非零解()X x ,但要求出()X x 并不是一个简单的问题,因为方程(4.5)中含有一个待定常数λ,所以我们的任务既要确定λ取何值时方程(4.5)才有满足条件(4.6)的非零解,又要求出这个非零数()X x .这种常微分方程问题称为固有值问题,λ称为特征值(固有值,本征值),函数()X x 称为特征函数(固有函数,本征函数).下面根据第1章所介绍的方法,我们对λ分三种情况来讨论.1°λ>0,此时方程(4.5)的通解为().X x Be =+-由条件(4.6)得0A B +=,0.Be +=解出,A B 得0A B ==,即()0X x ≡,不符合非零解的要求,因此λ不能大于零.2°设λ=0,此时方程(4.5)的通解为()X x Ax B =+,由条件(4.6)还是得0A B ==,所以λ也不能等于零.3°设λ<0,并令ββλ,2-=为非零实数.此时方程(4.5)的通解为()cos sin ,X x A x B x ββ=+由条件(4.6)得0,A = Bsin 0.l β=由于B 不能为零(否则()0X x ≡),所以sin 0,l β=即),,3,2,1(. ==n ln πβ(n 为负整数可以不必考虑,因为例如21,sin n B x l π-=-实际上还是2sin B x lπ'的形式)从而222,n lπλ=- (4.7)这样,我们就求出了一系列固有值及相应的固有函数:222.(1,2,3,),n n n lπλ=-=()sin(1,2,3,),n n n X x B x n lπ== (4.8)限定了λ的值后,现在再来求函数()T t ,以(4.7)式中的λ值代入方程(4.4)中得2222()()0,n a n T t T t lπ''+= 显然,其通解为''()cossin (1,2,3,).n n n n at n at T t C D n l lππ=+= (4.9)于是由(4.8),(4.9)得到满足方程(4.1)及边界条件(4.2)的一组变量被分离的特解(,)cos sin sin(1,2,3,),n n n n at n at n x u x t C D n l l l πππ⎛⎫=+= ⎪⎝⎭(4.10)其中,n n n n n n C B C D B D ''==是任意常数,至此,我们的第一步工作已经完成了,求出了既满足方程(4.1)又满足边界条件(4.2)的无穷多个特解.为了求原定解问题的解,还需要满足条件(4.3).由(4.10)式所确定的一组函数虽然已经满足方程(4.1)及条件(4.2),但不一定满足初始条件(4.3).为了求出原问题的解,首先我们将(4.10)中所有函数(,)n u x t 叠加起来1(,)(,)n n u x t u x t ∞==∑1c o s s i n s i n ,n nn n a n a n C t D x l l lπππ∞=⎛⎫=+ ⎪⎝⎭∑ (4.11) 如果(4.11)右端的无穷级数是收敛的,而且关于,x t 都能逐项微分两次,则它的和(,)u x t 也满足方程(4.1)和条件(4.2)(参考习题三第6题).现在我们要适当选择,n n C D ,使函数(,)u x t 也满足初始条件(4.3),为此必须有01(,)(,0)sin(),n t n n u x t u x C x x lπϕ∞=====∑ 10sin (),n n t u n a n D x x t l lππψ∞==∂==∂∑ 因为(),()x x ϕψ是定义在[0,]l 上的函数,所在只要选取n C 为()x ϕ的傅氏正弦级数展开式的系数,n n aD lπ为()x ψ的傅氏正弦级数展开式的系数,也就是 002()sin ,2()sin .l n l nn C x xdx l ln D x xdx n a l πϕπψπ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰ (4.12) 初始条件(4.3)就能满足,以(4.12)所确定的,n n C D 代入(4.11)式,即得原定解解问题的解.当然,如上所述,要使(4.11)式所确定的函数u(x,t)确定是问题(4.1),(4.2),(2.3)的解,除了其中的系数,n n C D 必须由(4.12)确定以外,还要求只要对函数()x ϕ及()x ψ加一些条件就能满足,可以证明(参阅复旦大学数学系编《数学物理方程》第二章§1),如果()x ϕ三次连续可微,)(x ψ二次连续可微,且(0)()(0)()(0)()0l l l ϕϕϕϕψψ''''======,则问题(4.1),(4.2),(4.3)的解存在.并且这个解可以用(4.11)给出,其中,n n C D 由(4.12)式确定*).从上面的运算过程可以看出,用分离变量法求解定解问题的关键步骤是确定固有函数与运用叠加原理,这些运算之所以能够进行,就是因为偏微分方程与边界条件都是齐次的,这一点希望读者一定要注意.例1 设有一根长为10个单位的弦,两端固定,初速为零,初位移为1000)10()(x x x -=ϕ,求弦作微小横向振动时的位移.解 设位移函数为(,)u x t ,它是下列定解解问题2222201000,010,0;0,0;(10),01000x x l t uu a x t t x u u x x u u t ====⎧∂∂⎪=<<>∂∂⎪⎪==⎨⎪-∂⎪==⎪∂⎩的解,这时10l =,并给定210000a =(这个数字与弦的材料、张力有关).显然,这个问题的傅氏级数形式解可由(4.11)给出,其系数按(4.12)式为10033330,1(10)sin 5000102(1cos )50,4,5n n D n C x x xdx n n n n n ππππ==-=-⎧⎪=⎨⎪⎩⎰当为偶数 当为奇数 因此,所求的解为33041(21)(,)sin cos10(21).5(21)10n n u x t x n t n πππ∞=+=++∑ 为了加深理解,下面我们扼要地分析一下级数形式解(4.11)的物理意义,先分析一下级数中每一项(,)cos sin sin n n n a n a n u x t C t D t x l l l πππ⎛⎫=+ ⎪⎝⎭*)这里所讲的结论经适当修改即可用于下面几节将要讨论的定解问题,所以,本书中凡是用分离变量法求解的定解问题都假定它的定解条件具备一定的条件,保证定解问题的解可以表示成级数的形式,或者说可以运用叠加原理.的物理意义,分析的方法是:先固定时间t ,看看在任一指定时刻波是什么形状;再固定弦上一点,看看该点的振动规律.把括号内的式子改变一下形式,可得(,)cos()sin,n n n n u x t A t x lπωθ=-其中,.n n n n nD n aA arctg l C πωθ=== 当时间t 取定值0t 时,得(,)sin,n n u x t A x lπ'= 其中0cos()n n n n A A t ωθ'=-是一个定值,这表示在任一时刻,波0(,)n u x t 的形状都是一些正弦曲线,只是它的振幅随着时间的改变而改变.当弦上点的横坐标x 取定值0x 时,得0(,)cos(),n n n n u x t B t ωθ=-其中0sinn n n B A x l π=是一个定值.这说明弦上以0x 为横坐标的点作简谐振动,其振幅为n B ,角频率为n ω,初位相为n θ.若x 取另外一个定值时,情况也一样,只是振幅n B 不同罢了,所以(,)n u x t 表示这样一个振动波:在考察的弦上各点以同样的角频率n ω作简谐振动,各点处的初位相也相同,而各点的振幅则随点的位置改变而改变;此振动波在任一时刻的图形是一正弦曲线.这种振动波还有一个特点,即在[0,]l 范围内还有1n +个点(包括两个端点)永远保持不动,这是因为在(0,1,2,,)m mlx m n n==那些点上,sinsin 0mn x m l ππ==的缘故,这些点在物理上称为节点.这就说明(,)n u x t 的振动是在[0,]l 上的分段振动,其中有1n +个节点,人们把这种包含节点的振动波叫做驻波.另外驻波还在n 个点处振幅达到最大值(读者可自己讨论),这种使振幅达到最大值的点叫做波腹.图4-1画出了在某一时刻1,2,3n =的驻波形状.综合上述,可知(,),(1,2,3,)n u x t n =是一系列驻波,它们的频率、位相与振幅图4-1都随n 不同而不同,因此我们可以说,一维波动方程用分离变量法解出的结果(,)u x t )是由一系列驻波叠加而成的,而每一个驻波的波形由固有函数确定,它的频率由固有值确定.这完全符合实际情况,因为人们在考察弦的振动时,就发现许多驻波,它们的叠加又可以构成各种各样的波形,因此很自然地会想到用驻波的叠加表示弦振动方程的解.这就是分离变量法的物理背景.所以分离变量法也称为驻波法.4.2 有限长杆上的热传导设有一均匀细杆,长为l ,两端点的坐标为0x =与x l =,杆的侧面是绝热的,且在端点0x =处温度是零度,而在另一端x l =处杆的热量自由发散到周围温度是零度的介质中去(参考第3章1.2中第三类边界条件),已知初始温度分布为().x ϕ求杆上的温度变化规律,也就是要考虑下列定解问题:222,0,0; 2.13(,)(0,)0,(,)0;(2.14)(,0)().(2.15)u u a x l t t x u l t u t hu l t x u x x ϕ⎧∂∂=<<>⎪∂∂⎪∂⎪=+=⎨∂⎪=⎪⎪⎩()我们仍用分离变量法来解这个问题,首先求出满足边界条件而且是变量被分离形式的特解.设(,)()()u x t X x T t =, 2()().()()T t X x a T t X x '''=上式左端不含有x ,右端不含有t ,所以只有当两端均为常数时才可能相等.令此常数为2β-,(读者可以从方程()(),X x X x λ''=结合边界条件按λ取值的三种不同情况像4.1那样讨论后得出),则有22()(),()()T t X x a T t X x β'''==- 从而得到两个线性常数微分方程222()()0,()()0.T t a T t X x X x ββ'+=''+= (4.16)解后一个方程得()cos sin ,X x A x B x ββ=+由边界条件(4.14)可知(0)0,'()()0.X X l hX l =+=从(0)0X =得 0A =,从()()0.X l hX l '+=得cos sin 0.l h l βββ+= (4.17)为了求出β,方程(4.17)可改写成tg a γγ=, (4.18)其中1,.l a hlγβ==-方程(4.18)的根可以看作是曲线1y tg γ=与直线2y a γ=交点的横坐标(图4-1),显然它们的交点有无穷多个,于是方程(4.18)有无穷多个根,由这些根可以确定出固有值β.设方程(4.18)的无穷多个正根(不取负根是因为负根与正根只差一个符号(图4-2),再根据4.1中所述的同样理由)为123,,,,,n γγγγ于是得到无穷多个固有值图4-21212,,,,nn lllγγγβββ===及相应的固有函数()sin .n n n X x B x β= (4.19)再由(4.16)中第一个方程解得22().n a tn n T t A eβ-= (4.20)由(4.19),(4.20)两式,我们得到方程(4.13)满足边界条件(4.14)的一组特解22(,)()()sin (1,2,3,),n a tn n n n n u x t X x T t C ex n ββ-=== (4.21)其中 .n n n C A B =由于方程(4.13)与边界条件(4.14)都是齐次的,所以2211(,)(,)sin n a t n n n n n u x t u x t C e x ββ∞∞-====∑∑ (4.22)仍满足方程与边界条件,最后考虑(,)u x t 是否能满足初始条件(4.15),从(4.22)式得1(,0)sin .n n n u x C x β∞==∑现在希望它等于已知函数()x ϕ,那么首先要问[0,]l 上定义的函数()x ϕ是否能展开为1sin nn n Cx β∞=∑级数形式,其次要问系数n C 如何确定,关于前者,只要()x ϕ在[0,]l 上满足狄氏条件就可以了,现在主要谈求系数的问题.回忆傅氏系数公式的得来是根据函数系的正交性,所以现在也要考察函数系{}sin n x β在[0,]l 上的正交性,可以证明(参阅§5.3关于固有函数正交性的证明方法)sin sin 0,.lm n x xdx m n ββ=≠⎰令 20sin ,ln n L xdx β=⎰于是把1()sin n n n x C x ϕβ∞==∑ (4.23)的两端乘上sin k x β,然后在[0,l ]上积分得()sin lkk k x xdx L C φβ=⎰即 01()sin .Lk k kC x xdx L φβ=⎰(4.24)把(4.24)代入(4.22)式即得原定解问题的解.通过上面两节的讨论,我们对分离变量法已经有了一个初步的了解,它的主要步骤大体为:一、首先将偏微分方程的定解问题通过分离变量转化为常微分方程的定解问题,这对线性齐次偏微分方程来说是可以做到的.二、确定固有值与固有函数.由于固有函数是要经过叠加的,所以用来确定固有函数的方程与条件,当函数经过叠加之后仍旧要满足,当边界条件是齐次时,求固有函数就是求一个常微分方程满足零边界条件的非零解.三、定出固有值、固有函数后,再解其他的常微分方程,把得到的解与固有函数乘起来成为(,)n u x t ,这时(,)n u x t 中还包含着任意常数.四、最后为了使解满足其余的定解条件,需要把所有的(,)n u x t 叠加起来成为级数形式,这时级数中的一系列任意常数就由其余的条件确定,在这最后的一步工作中,需要把已知函数展开为固有函数项的级数,所以,必须考虑固有函数的正交性.由本节的例子还可以看出,用分离变量法求解第三类边界条件(第二类边界条件也一样)的定解问题时,只要边界条件都是齐次的,其过程与解第一类边界条件的定解问题是相同的,但在确定固有值时,一般说来是比较复杂的.4.3 圆城内的二维拉普拉斯方程的定解问题一个半径为0ρ的薄圆盘,上下两面绝热,圆周边缘温度分布为已知,求达到稳恒状态时圆盘内的温度分布.在第3章讲过,热传导问题达到稳恒状态时温度分布与时间无关,应满足拉普拉斯方程20.u ∇=因为边界形状是个圆周,它在极坐标下的方程为0ρρ=,所以在极坐标系下边界条件可表为(),u f ρρθ==既然边界条件使用了极坐标系,所以我们将方程也采用极坐标的形式,于是有220220110,;(4.25)(,)().(4.26)u uu u f ρρρρρρρθρθθ⎧⎛⎫∂∂∂∇=+=<⎪ ⎪∂∂∂⎨⎝⎭⎪=⎩此外,因为自变量,ρθ的取值范围分别是[0,0ρ]与[0,2]π,圆盘中心点的温度决不可能是无穷的,并且(,ρθ)与(,2ρθπ+)实际上表示同一点,温度应该相同,即应该有lim u ρ→<+∞ (4.27)(,)(,2).u u ρθρθπ=+ (4.28)现在来求满足方程(4.25 )及条件(4.26),(4.27),(4.28)的解.先令(,)()(),u R ρθρθ=Φ代入方程(4.25)得2110R R R ρρ'''''Φ+Φ+Φ=即2,R R Rρρ'''''+Φ=-Φ令比值为常数λ即得两个常微分方程0,λ''Φ+Φ=20.R R R ρρλ'''+-=再由条件(4.27)及(4.28)可得(0),R <∞(2)().θπθΦ+=Φ (4.29)这样一来,我们得到了两个常微分方程的定解问题0,(2)().λθπθ''Φ+Φ=⎧⎨Φ+=Φ⎩(4.30) 与20,(0).R R R R ρρλ'''⎧+-=⎨<∞⎩ (4.31) 先解哪能一个呢?要看哪一个可以定出固有值,由于条件(4.29)满足可加性(即所有满足(4.29)的函数叠加起来仍旧满足(4.29),所以只能先解问题(4.30).采用与4.1中同样的方法可以得到 当0λ<时,问题(4.30)无解;当0λ=时,它的解为00()a θ'Φ=(常数);当0λ>时,它的解为0(),n n a b θ''Φ=+且λ必须是整数n ,取1,2,3,n =(只取正整数的理由与4.1相同),则0()cos sin .n n a n b n θθθ''Φ=+至此,我们已经定出了固有值与固有函数,接下去是解问题(4.31),其中的方程是欧拉(Euler)方程,它的通解为000ln ,R c d ρ=+当λ=0;,n n n n n R c d ρρ-=+ 当2(1,2,3,).n n λ==为了保证(0)R <∞,只有0n d = (0,1,2,),n =即 0(0,1,2,)nn R c n ρ==,因此利用叠加原理,方程(4.25)满足条件(4.27),(4.28)的解可以表示为级数01(,)(cos sin )2nn n n n a u a n b ρθρθθ∞==++∑ (2.32)此式中的2a 就是00;,n n a c ab '分别是.n n n n ac b c '',最后为了确定系数,n n a b ,我们利用边界条件(4.26)得001()(cos sin )2nn n n n a f a n b θρθθ∞==++∑, (4.33)因此,000,,nnn n a a b ρρ就是()f θ展开为傅氏级数时的系数,即有2002002001(),1()cos ,1()sin .n n n n a f d a f n d b f n d πππθθπθθθρπθθθρπ⎧⎪=⎪⎪⎪=⎨⎪⎪=⎪⎪⎩⎰⎰⎰ (4.34) 将这些系数代入(4.32)式即得所求的解.为了以后应用起来方便,我们还可以将解(4.32)写成另一种形式.为此,将(4.34)式所确定的系数代入(4.32)式经过简化后可得201011(,)()cos ().2n n u f t n t dt πρρθθπρ∞=⎡⎤⎛⎫⎢⎥=+- ⎪⎢⎥⎝⎭⎣⎦∑⎰(4.35)利用下面已知的恒等式221111cos ()2212cos()n n k k n t k t k θθ∞=-+-=--+∑*)(1),k <*)这个恒等式的证明如下:[]∑∑∞=∞=---++=-+11)()(2121)(cos 21n n t in t in n n e e k t n k θθθ [][]∑∑∞=∞=---++=11)()(212121n n nt i n t i ke ke θθ)()()((1211)2121t i t i t i t i ke ke ke ke -------+-+=θθθθ(|K|<1) ⎥⎦⎤⎢⎣⎡-+-----+-----+-+=)sin()cos(1)sin()cos()sin()cos(1)sin()cos(121t ik t k t ik t k t ik t k t ik t k θθθθθθθθ可将解(,)u ρθ(4.35)表达为()2220022001(,)(),.22cos()u f t dt t πρρρθρρπρρρρθ-=<+--⎰(4.36) 公式(4.36)称为圆域上的泊松公式,它的作用在于把解写成了积分形式,这样便于作理论上的研究.4.4 有界弦的强迫振动前面所讨论的偏微分方程都限于齐次的,现在要讨论非齐次方程的解法,为方便起见,以弦的强迫振动为例,所用的方法对其他类型的方程也适用.我们研究的问题是一根弦在两端固定的情况下,受强迫力作用所产生的振动现象.即要考虑下列定解问题22222000(,),0,0;(2.37)0;(2.38)(),().(2.39)x x l t t uu a f x t x l t t x u u u u x x t ϕψ====⎧∂∂⎪=+<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩在现在的情况,弦的振动是由两部分干扰引起的,一是强迫力,一是初始状态,所以由物理意义可知,此时振动可以分解为仅由强近力引起的振动和仅由初始状态引起的振动的合成.由此得到启发,我们可设解为(,)(,)(,),U x t V x t W x t =+ (4.40)其中(,)V x t 表示仅由强迫力引起弦振动的位移,它满足22222000(,),0,0;0;(2.41)0.x x l t t VV a f x t x l t t x V V u V t ====⎧∂∂⎪=+<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩而(,)W x t 表示仅由初始状态引起弦振动的位移,它满足.)cos(21121)cos(212)cos(21212222kt k k k t k k t k +---=⎥⎦⎤⎢⎣⎡+----+=θθθ22222000,0,0;0;(2.42)(),().x x l t t WW a x l t t x W W W W x x t φψ====⎧∂∂⎪=<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩读者不难验证,若V 是(4.41)的解,W 是(4.42)的解,则U V W =+一定就是原定解问题的解.问题(4.42)可直接用分离变量法求解,因此现在的问题只要讨论如何解问题(4.41)就行了.关于问题(4.41),我们可以采用类似于线性非齐次常微分方程中所常用的参数变易法,并保持如下的设想,即这个定解问题的解可分解为无穷多个驻波的叠加,而每个驻波的波形仍然是由该振动体的固有函数所决定,这就是说,我们假设(4.41)的解具有如下的形式1(,)()sin,n n n V x t v t x lπ∞==∑ (4.43) 其中()n v t 是待定的函数,为了确定()n v t ,将自由项(,)f x t 展成的傅氏正弦级数,即1(,)()sin,n n n f x t f t x lπ∞==∑ (4.44) 其中 02()(,)sin .l n n f t f x t xdx l lπ=⎰ 将(4.43)及(4.44)代入(4.41)的第一个式了,得到222''21()()()sin 0,n n n n a n n v t v t f t x l l ππ∞=⎡⎤+-=⎢⎥⎣⎦∑ (4.45) 由此可见得222''2()()().nn n a n v t v t f t lπ+= 再将(4.41)中的初始条件代入(4.43)得'(0)0,(0)0.n n v v ==这样一来,确定函数()n v t 只需解下列定解问题:2222()()()(0)0,(0)0n n n nn a n v t v t f t l v v π⎧''+=⎪⎨⎪'==⎩ 1,2,n =. (4.46) 用拉氏变换法解出(4.46),得到()()()sintn n ln a t v t f d n a lπτττπ-=⎰*),*)在方程(4.46)的两端取关于t 的拉氏变换,得所以,01()(,)()sin sin .t n n ln a t n v x t f d x n a l l πτπττπ∞=-⎡⎤=⎢⎥⎣⎦∑⎰ 将这个解与问题(4.42)的解加起来,就得到原定解问题(4.37),(4.38),(4.39)的解.这里所给的求解问题(4.41)的方法,其实质是将方程的自由项及解都按齐次方程所对应的一族固有函数展开.随着方程与边界条件的不同,固有函数族也就不同,但总是把非齐次方程的解按相应的固有函数展开.所以这种方法也叫固有函数法.4.5 非齐次边界条件的处理前面所讨论的定解问题的解法,不论方程是齐次的还是非齐次的,边界条件都是齐次的.如果遇到非齐次边界条件的情况,应该如何处理?总的原则是设法将边界条件化成齐次的.具体地说,就是取一个适当的未知函数之间的代换,使对新的未知函数,边界条件是齐次的.现在以下列定解问题为例,说明选取代换的方法.设有定解问题2222212000(,),0,0;(4.47)(),();(4.48)(),().(4.x x l t t uu a f x t x l t t x u u t u u t u u x x t ϕψ====⎧∂∂⎪=+<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩49)我们设法作一代换将边界条件化为齐次的,为此令(,)(,)(,).u x t V x t W x t =+ (4.50) 选取W(x,t)使V(x,t)的边界条件为齐次的,即0,0x x lVV==== (4.51)120(),()x x lWu t Wu t ==== (4.52)也就是说,只要所选取的W 满足(4.52)就能达到我们的目的.而满足(4.52)的函数是容易找到的,例如取W 为x 的一次式,即设(,)()(),W x t A t x B t =+ 用条件(4.52)确定(),()A t B t 得2111()()(),()()A t u t u t B t u t l=-=⎡⎤⎣⎦.),()()(22222p F p U ln a p U p n n n =+π 其中U n (p),F n (p)分别为v n (t)与f n (t)的拉氏变换,解出),(1)(22222p F l n a p p U nn π+= 由于222221l n a p π+的逆拉氏变换为lat n an l ππsin,利用拉氏变换的卷积性质,即得v n (t).显然,函数211()()(,)()u t u t W x t u t x l-=+就满足(4.52)式,因而只要作代换211,u u u V u x l -⎡⎤=++⎢⎥⎣⎦(4.53)就能使新的未知函数满足齐次的边界条件.经过这个代换后,得到V 的定解问题为22212201100(,),0,0;0,0;(2.54)(),(),x x l t t VV a f x t x l t t x V V V V x x t ϕψ====⎧∂∂⎪=+<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩其中211121112111()()(,)(,)();(0)(0)()()(0);(0)(0)()()(0).u t u t f x t f x t u t x l u u x x u x l u u x x u x l ϕϕψψ⎧⎡⎤''''-''⎪=-+⎢⎥⎪⎢⎥⎣⎦⎪-⎡⎤⎪=-+⎨⎢⎥⎣⎦⎪⎪⎡⎤''-⎪'=-+⎢⎥⎪⎢⎥⎣⎦⎩(4.55)问题(4.54)可用上一节的方法解出,将(4.54)的解代入(4.53)即是原问题的解.上面由(4.52)式定(,)W x t 时,取(,)W x t 为x 的一次式是为了使(4.55)中几个式子简单一些,并且(,)W x t 也容易定,但若12,,f u u 都与t 无关,则可适当的选择()W x (也与t 无关),使(,)V x t 的方程与边界条件同时都化成齐次的,这样做就可以省掉下面对(,)V x t 要进行解非齐次方程的繁重工作.这种()W x 究竟怎么找,将在后面的例题中说明.若边界条件不全是第一类的,本节的方法仍然适用,不同的只是函数(,)W x t 的形式,读者可就下列几种边界条件的情况写出相应的(,)W x t 来:1201201201(),();2(),();3(),().x x lx l x x x lu u u t u t xuu t u u t x u u u t u t xx======∂==∂∂==∂∂∂==∂∂ 以上各节我们说明了如何用分离变量法来解定解问题,为便于读者掌握此方法,现将解定解问题的主要步骤简略小结如下:一、根据边界的形状选取适当的坐标系,选取的原则是使在此坐标系中边界条件的表达式最为简单.圆、圆环、扇形等域用极坐标系较方便,圆柱形域与球域分别用柱坐标系与球坐标系较方便.二、若边界条件是非齐次的,又没有其他条件可以用来定固有函数,则不论方程是否为齐次,必须先作代换使化为具有齐次边界条件的问题,然后再求解.三、非齐次方程、齐次边界条件的定解问题(不论初始条件如何)可以分为两个定解问题,其一是具有原来初始条件的齐次方程,其二是具有齐次定解条件的非齐次方程.第一个问题用分离变量法求解,第二个问题按固有函数法求解.在结束本章之前,我们再举两个综合性的例子,目的是帮助读者掌握分离变量法的全过程.例2 求下列定解问题5)22222000,0,0;(2.56)0,;(2.57)0(2.8x x l t t uu a A x l t tx u u B u u t ====⎧∂∂⎪=+<<>∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩的解,其中,A B 均为常数.解 这个定解问题的特点是:方程及边界条件都是非齐次的.根据上述原则,首先应将边界条件化成齐次的,由于方程(2.56)的自由项及边界条件都与t 无关,所以我们有可能通过一次代换将方程与边界条件都变成齐次的,具体做法如下: 令 (,)(,)(),u x t V x t W x =+ 代入方程(4.56)得22222''().V V a W x A t x ⎡⎤∂∂=++⎢⎥∂∂⎣⎦为了使这个方程及边界条件同时化成齐次的,选()W x 满足⎪⎩⎪⎨⎧===+==BW W A x W a l x X ,0,0)(''02(4.59) (4.59)是一个二阶常系数线性非齐次方程的边值问题,它的解可以通过两次积分求得222().22A Al B W x x x a al ⎛⎫=-++ ⎪⎝⎭ 求出函数()W x 之后,再由(4.58)可知函数(,)V x t 为下列定解问题的解.22222000,0,0;(4.60)00;(4.61)(),0.(4.62)x x l t t VV a x l t tx V V V V W x t ====⎧∂∂⎪=<<>∂∂⎪⎪==⎨⎪∂⎪=-=⎪∂⎩采用分离变量法,令(,)()()V x t X x T t =,代入(4.60)得2,XT a X T ''''=或22.X T X a Tβ''''==- 由此得到2220,(4.63)0.(4.64)X X T a T ββ''+=''+=由(4.63)及(4.61)可以确定固有值与固有函数为2222.n l πβ=()sin .n n X x x lπ=再由(4.64)得()cossin ,n n n n a n aT t C t D t l lππ=+ 利用(4.62)中第二个条件可得0n D =.于是定解问题(4.60),(4.61),(4.62)的解可表示为1(,)cossin .n n n a n V x t C t x l lππ∞==∑ 代入(4.62)中第一个条件得1()sin,n n n W x C x lπ∞=-=∑ 即2221sin .22nn A Al B n x x C x a a l l π∞=⎛⎫-+= ⎪⎝⎭∑ 由傅氏级数的系数公式可得22202sin .22l n A Al B n C x x xdx l a a l l π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦⎰ 2222002sinsin llAn A B n x xdx x xdx a ll a l l ππ⎛⎫=-+ ⎪⎝⎭⎰⎰2223322222cos Al Al B n a n n a n ππππ⎛⎫=-++ ⎪⎝⎭(4.65)因此,原定解解问题的解为2221(,)cos sin ,22n n A Al B n a n u x t x x C t x a a l l l ππ∞=⎛⎫=-+++ ⎪⎝⎭∑其中n C 由(4.65)确定. 例3在环形域a b ≤内求解下列定解问题22222212();0,0.a b u u x y x y ⎧∂∂+=-⎪∂∂⎪⎨⎪==⎪⎩解 由于求解区域是环形区域,所以我们选用平面极坐标系,利用直角坐标与极坐标系之间的关系cos ,sin ,x y ρθρθ=⎧⎨=⎩ 可将上述定解问题用极坐标,ρθ表示出来22211()122cos 2,;(4.66)0,0.(4.67)a b u ua b u u ρρρρθρρρρρθρ==⎧∂∂∂+=<<⎪∂∂∂⎪⎨∂⎪==⎪∂⎩这是一个非齐次方程附有齐次边界条件的定解问题,采用4.4所述的固有函数法,并注意在4.3中得到的关于圆域内拉普拉斯方程所对应的固有函数,可令问题(4.66),(4.67)的解为(,)()cos ()sin ,n n n u A n B n ρθρθρθ∞==+⎡⎤⎣⎦∑代入(4.66)并整理得到22''''''222011()()()cos ()()()sin 12cos ,n n n n n n n n n A A A n B B B n ρρρθρρρθρθρρρρ∞=⎫⎧⎡⎤⎡⎤⎪⎪+-++-=⎨⎬⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎩⎭∑比较两端关于cos ,sin n n θθ的系数可得'''2222214()()()12,A A A ρρρρρρ+-= (4.68)2''''21()()()0(2),nnn n A A A n ρρρρρ+-=≠ (4.69)2'''21()()()0.nnn n B B B ρρρρρ+-= (4.70)再由条件(4.67)得()()0,n n A a B a == (4.71)()()0.n n A b B b ''== (4.72)由(4.69),(4.70),(4.71),(4.72)可知()0(2),()0.n n A n B ρρ≡≠≡下面的任务就是要确定2().A ρ方程(4.68)是一个非齐次的欧拉方程,它的通解为224212(),A C C ρρρρ-=++由条件(4.71),(4.72)确定12,C C 得661442,a b C a b +=+4422244(2).a b a b C a b-=-+ 因此664422224244442(2)(),a b a b a b A a b a bρρρρ-+-=--+++ 原定解问题的解为()66244222444441(,)2(2)()cos 2.u a b a b a b a b a bρθρρρθ-⎡⎤=-++--+⎣⎦+习 题 四1、设弦的两端固定于0x =及x l =,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数(,)u x t .2、就下列初始条件及边界条件解弦振动方程(,0)0,u x =(,0)(),(0,)(,)0.u x x l x tu t u l t ∂=-∂== 3、就下列初始条件及边界条件解弦振动方程01,0211,1;2t x x u x x =⎧<≤⎪⎪=⎨⎪-<<⎪⎩01(1);0.t x x ux x t u u ===∂=-∂== 4、解出习题三中第2题.5、试求适合于下列初始条件及边界条件的一维热传导方程的解00(),0.t x x t u x l x u u ====-==6、解一维热传导方程,其初始条件及边界条件为00,0,0.t x x tu x u u xx====∂∂==∂∂7、一根长为l 的细杆表面绝缘,其初始温度分布如图所示,由0t =开始两端温度保持于零度,求杆上温度分布.8、试解出具有放射衰变的热传导方程2220,xu u a Ae x tα-∂∂-+=∂∂ 已知边界条件为00,0,x x l u u ====初始条件为0t u T ==,T 为常数9、求下列定解问题22200;0;0x x l t u u a A t x u u u ===⎧∂∂=+⎪∂⎪⎪==⎨⎪=⎪⎪⎩的解.10、求满足下列定解条件的一维热传导方程的解010,5,x x l u u ==== 0,t u ks k ==为常数11、试确定下列定解问题22200();,;()x x l t u u a f x t x u A u B u g x ===⎧∂∂=+⎪∂∂⎪⎪==⎨⎪=⎪⎪⎩解的一般形式.12、求稳恒状态下,由直线120,,0,x x l y y l ====所围矩形板内各点的温度,假设在10,,0x x l y ===三边上温度保持为零度,2y l =这边上各点温度为(),x ϕ其中1(0)()0.l ϕϕ== 13、一半径为a 的半圆形平板,其圆周边界上的温度保持(,)()u a T θθπθ=-,而直径边界上温度保持为零度,板的侧面绿缘,试求稳恒状态下的温度分布规律(,).u ρθ14、一圆环形平板,内半径为1r ,外半径为2r ,侧面绝缘,如内圆温度保持零度,外圆温度保持1度,试求稳恒状态下的温度分布规律(,).u r θ 15、如何解下列定解问题2222212000();,;(),().x x l t t uu a f x t x u M u M u u x x t ϕψ====⎧∂∂⎪=+∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩16、在矩形域内求下列定解问题2120120(,);(),();(),().x x a y y b u f x y u y u y u x u x ϕϕψψ====⎧∇=⎪⎪==⎨⎪==⎪⎩ 的解.17、在扇形区域内求下列定解问题200;0;()a a u u u u f θθρθ===⎧∇=⎪⎪==⎨⎪=⎪⎩ 的解.18、在矩形域0,0x a y b ≤≤≤≤内求拉普拉斯方程的解,使满足边界的条件:000,;0,0.x x a y y b u u Ay uu y y ====⎧==⎪∂∂⎨==⎪∂∂⎩19、把高频输电线充电到具有电压E ,然后一端短路封闭,另一端仍保持断开,求以后的电压分布.20、求矩形膜振动的位移,即解下列定解问题22222220000;0;0;()(),0.x x a y y b y t u uu a tx y uu u u u u xy x a y b t ======⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪==⎪⎨==⎪⎪∂⎪=--=⎪∂⎩。
毕业论文题目抛物型方程的差分解法学院数学科学学院专业信息与计算科学班级计算0802学生王丹丹学号20080901045指导教师王宣欣二〇一二年五月二十五日摘要偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。
近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。
本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。
本文以基本概念和基本方法为主,同时结合算例实现算法。
第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系数扩散方程:22,,0 u ua x R tt x∂∂=∈>∂∂第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。
第三部分通过算例检验每种差分格式的可行性。
关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例ABSTRACTThe numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example.The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for thefirst time.22,,0 u ua x R tt x∂∂=∈>∂∂The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability.The third part tests the accuracy of each scheme.Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application目录摘要 (I)ABSTRACT (II)目录 (III)1前言 (1)2基本概念和定理 (2)2.1抛物型方程的基本概念 (2)2.1.1偏微分方程的定义 (2)2.1.2抛物型方程的定义 (2)2.1.3初边值条件的定义 (3)2.2 差分方法的基本思想 (3)2.3网格剖分 (4)2.4截断误差的基本概念 (5)2.5相容性的基本概念 (7)2.6收敛性的基本概念 (7)2.7稳定性的基本概念 (8)2.7.1判断稳定性的直接法 (8)2.7.2判断稳定性的Fourier方法 (9)3常系数扩散方程的差分格式及其相容性、收敛性和稳定性分析 (12)3.1向前差分格式 (12)3.2向后差分格式 (13)3.3 Crank-Nicolson格式 (14)3.4 Richardson格式 (16)4差分解法的应用 (18)结论 (25)参考文献..................................................... .................. .. (26)致谢 (27)附录 (28)1前言微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程[2]。
第1章 引 言1.1 课程设计的意义高等学校的实践教学一般包括课程实验、综合性设计(课程设计)、课外科技活动、社会实践、毕业设计等,基本上可以分为三个层次:第一,紧扣课堂教学内容,以掌握和巩固课程教学内容为主的课程实验和综合性设计; 第二,以社会体验和科学研究体验为主的社会实践和课外科技活动; 第三,以综合应用专业知识和全面检验专业知识应用能力的毕业设计。
课程实践(含课程实验和课程设计)是大学教育中最重要也最基础的实践环节,直接影响后继课程的学习以及后继实践的质量。
由于课程设计是以培养学生的系统设计与分析能力为目标,通过团队式合作、研究式分析、工程化设计完成较大型系统或软件的设计题目的,因此课程设计不仅有利于学生巩固、提高和融合所学的专业课程知识,更重的是能够培养学生多方面的能力,如综合设计能力、动手能力、文献检索能力、团队合作能力、工程化能力、研究性学习能力、创新能力等。
《常微分方程课程设计》(Curriculum Design of the Ordinary Differential Equations )是一门继《数学实验》和《常微分方程》(ODE )之后开设的实验性课程,主要是指导性的讲解方程求解的数值方法和软件编程(如MATLAB ,MATHMATIC ,FORTRAN 等)并实现方程的解析解与数值解可视化分析的一个集中实践教学环节。
其宗旨在于培养学生运用计算机分析求解方程的能力,了解通过数学模型去解决实际问题的全过程,提高常微分方程课堂教学后的理解和应用效果,同时激发和提高同学们对于具有工程背景的科学研究的热情。
课程设计不仅仅是以实现相应的程序为目标,更重要的是在完成课程设计的过程中逐步培养今后遇到问题而去解决问题的能力,培养从事计算机应用开发所需要的各种能力与素质。
因此,在课程设计实施中,不仅需要完成程序并进行测试,还需要撰写相应的课程设计报告。
课程设计报告不仅是对课程设计的总结,也是对软件文档写作能力的初步训练。
知识点1-2 传质微分方程
【学习指导】
1. 学习目的
通过本知识点的学习,应掌握用Euler观点推导传质微分方程的方法。
2. 本知识点的重点
传质微分方程的推导。
3. 本知识点的难点
本知识点无难点。
衡算式
(输入流体微元的质量速率)
+ (反应生成的质量速率)
= (输出流体微元的质量速率)
+ (流体微元内累积的质量速率)
或
(输出–输入) + (累积) – (生成) = 0
上述关系即为质量守恒定律表达式,若把表达式中各项质量速率分析清楚,即可得出传质微分方程。
各项质量速率的分析
(1) 输出与输入流体微元的质量流率
差设在点(x、y、z)处,流体流动的
速度向量为u(质量平均速度),它
在直角坐标系中的分量为u x、u y、
u z,则组分A由于流动所产生的质
量通量ρA u在三个坐标方向上的分
量分别为ρA u x、ρA u y、ρA u z。
组分A
由于浓度梯度所产生的质量通量
j A在三个坐标方向上的分量分别为
j Ax、j Ay、j Az。
由此可得组分A 沿x
方向由流体微元左侧平面输入流
体微元的总质量流率为
(ρA u x+ j Ax)dydz
而由流体微元右侧平面输出的总质量流率为
m为基准推导,可得
(
(1-52) ,则有
((。
《大学物理》学习指南《大学物理》是理工科及医学类学生的一门公共基础课,该课程内容多,课时少,建议学生课前预习,上课认真听讲,理解物理概念、掌握物理定理和定律,学会分析物理过程,课后适当做些习题,以巩固物理知识。
为了学生更好学好《大学物理》,给出了每章的基本要求及学习指导。
第一章 质点力学一、基本要求1.掌握描述质点运动状态的方法,掌握参照系、位移、速度、加速度、角速度和角加速度的概念。
2.掌握牛顿运动定律。
理解惯性系和非惯性系、保守力和非保守力的概念。
3.掌握动量守恒定律、动能定理、角动量守恒定律。
4.理解力、力矩、动量、动能、功、角动量的概念。
二、学习指导1.运动方程: r = r (t )=x (t )i +y (t )j +z (t )k 2.速度:平均速度 v =t ∆∆r 速度 v =t d d r平均速率 v =t ∆∆s 速率 dtdsv =3.加速度:平均加速度 a =t ∆∆v 加速度 a =t d d v =22d d tr4.圆周运动角速度t d d θω==Rv角加速度 t t d d d d 2θωβ== 切向加速度 βτR tva ==d d 法向加速度 a n =22ωR R v = 5.牛顿运动定律 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,直至其他物体所施的力迫使它改变这种运动状态为止.牛顿第二定律:物体受到作用力时所获加速度的大小与物体所受合外力的大小成正比,与物体质量成反比,加速度a 的方向与合外力F 的方向相同。
即dtPd a m F ρρρ==牛顿第三定律:力总是成对出现的。
当物体A 以力F 1作用于物体B 时,物体B 也必定以力F 2作用于物体A ,F 1和F 2总是大小相等,方向相反,作用在一条直线上。
6.惯性系和非惯性系:牛顿运动定律成立的参考系称为惯性系。
牛顿运动定律不成立参考系称为非惯性系。
7.变力的功 )(dz F dy F dx F r d F W z y x ++=⋅=⎰⎰ρρ 保守力的功 pb pa p ab E E E W -=∆-= 8.动能定理 k k k E E E W ∆=-=129.功能原理 W 外+W 非保守内力=E -E 010.机械能守恒定律 ∆E k =-∆E p (条件W 外+W 非保守内力=0)11.冲量 ⎰=21t t dt F I ρρ12.动量定理 p v m v m I ρρρρ∆=-=12质点系的动量定理 p 系统末态-p 系统初态=∆p13.动量守恒定律 p =∑=n i 1p i =恒矢量 (条件 0=∑ii F ρ)14.力矩、角动量 F r M ρρρ⨯= P r L ρρρ⨯=15.角动量定理 1221L L dt M t t ρρρ-=⎰16.角动量守恒 恒矢量=∑i L ρ (条件0=∑ii M ρ第二章 刚体力学一、基本要求1.掌握描述刚体定轴转动运动状态的方法,掌握角速度和角加速度的概念。
第3章经典方程的成立和定解条件在议论数学物理方程的解法从前,我们第一要弄清楚数学物理方程所研究的问题应当如何提,为此,我们从双方面来议论,一方面要将一个详细的物理、力学等自然科学识题化为数学识题,即成立描绘某种物理过程的微分方程——数学物理方程,称此方程为泛定方程;另一方面要把一个特定的物理现象自己所拥有的详细条件用数学形式表达出来,即列出相应的初始条件和界限条件,二者合称为定解条件.定解条件提出详细的物理问题,泛定方程提供解决问题的依照,作为一个整体称之为定解问题.3.1 经典方程的成立在本节,我们将经过几个不一样的物理模型推导出数学物理方程中三种典型的方程,这些方程组成我们的主要研究对象.经典方程的导出步骤:(1)确立出所要研究的是哪一个物理量u;(2)用数学的“微元法”从所研究的系统中切割出一小部分,再依据相应的物理(力学)规律剖析周边部分和这个小部分间的作用(抓住主要作用,略去次要要素,即高等数学中的抓主部,略去高阶无量小),这类互相作用在一个短的时间间隔是如何影响物理量u3)把这类关系用数学算式(方程)表达出来,经化简整理就是所需求的数学物理方程.例1弦的振动弦的振动问题,固然是一个古典问题,但对于初学者仍旧拥有必定的启迪性.设有一根平均柔嫩的细弦,均衡时沿直线拉紧,并且除受不随时间而变的张力作用及弦自己的重力外,不受外力影响,下边研究弦的细小横向振动,即假定所有运动出此刻一个平面上,并且弦上的点沿垂直于x轴的方向运动(图3-1).图3-1设弦上拥有横坐标为x的点,在时辰t时的地点为M,位移NM记作u.明显,在振动过程中位移u是变量x与t的函数u(x,t).此刻来成立位移u知足的方程.我们把弦上点的运动先看作小弧段的运动,而后再考虑小弧段趋于零的极限状况.在弦上任取一弧段MM,其长为ds,设是弦的线密度,弧段MM两头所受的张力记作T,T,此刻考虑孤段MM在t 时辰的受力状况,用牛顿运动定律,作用于弧段上任一方向上的力的总和等于这段孤的质量乘以该方向上的加快度.在x 轴方向弧段受力的总和为TcosTcos ,因为弦只作横向振动,所以TcosTcos0.()假如弦的振动很小,并且在振动过程中弦上的切线倾角也很小,即0,0,则由24cos14!2!可知,当为无量小量时,cos 与1的差量是的高阶无量小量,能够略去不计,所以当0, 0时cos1,cos 1代入(3.1)式,即可近似获得TT .在u 方向弧段受力的总和为Tsin Tsingds ,此中是单位弧段的质量,gds 是弧段MM 的重力.又因当0, 0时 sin1 tg tgu(x,t),tg 2xsin ' tg 'u(xdx,t),x2ds 1u(x,t)dxdx,x2且小弧段在时辰 t 沿u 方向运动的加快度为u(x,t),小弧段的质量为t 2TsinTsin2u(x,t)gdsds2t或gds ,所以()Tu(xdx,t)u(x,t)gds2u(x,t)dx, x xt 2上式左侧方括号内的部分是因为x 产生dx 的变化而惹起的u(x,t)的改变量,可用微x分取代,即u(xdx,t)u(x,t)xu(x,t)dx2u(x,t)dx, xxxx 2于是T2u(x,t) gdx2u(x,t)dxx 2x 2或T2u(x,t) 2u(x,t) g.x2t22一般说来,张力较大时弧振动速度变化很快,即u要比g 大得多,所以又能够把g 略去.t 2经过这样逐渐略去一些次要的量,抓住主要的量,最后得出 u(x,t)应近似地知足方程2ua 22u()t 2x 2这里的a2T.式(3.3)称为一维颠簸方程.假如在振动过程中,弦上此外还遇到一个与弦的振动方向平行的外力,且假定单位长 度所受外力的 F(x,t),明显,在这里(3.1)及(3.2)分别为TcosTcos 0,FdsTsinTsin2u gdsds2.t利用上边的推导方法并略去弦自己的重量,可得弦的逼迫振动方程为2u22uf(x,t),()’t2x2此中f(x,t)1F(x,t).方程(3.3)与(3.3)’的差异在于(3.3)’的右端多了一个与未知函数u 没关的项f(x,t),这个项称为自由项,包括有非零自由项的方程称为非齐次方程,自由项恒等于零的方程称为齐次方程.(3.3)为齐次一维颠簸方程, (3.3)’为非齐次一维颠簸方程 .例2 传输线方程对于直流电或低频的沟通电,电路的基尔霍夫定律指出同一支路中电流相等 .但对于较高频次的电流(指频次还没有高到能明显地幅射电磁波的状况) ,电路中导线的自感和电容的效应不行忽视,因此同一支路中电流未必相等.现考虑一来一往的高频传输线,它被看作拥有散布参数的导体(图3-2).在拥有散布参数的导体中,电流经过的状况,能够用电流强度与电压v来描绘,此处i与v都是x,t的函数,记作i(x,t)与v(x,t),以R,L,C,G分别表示以下参数:R——每一回路单位的趾串连电阻,L——每一回路单位的串连电感,C——每单位长度的分路电容,G——每单位长度的分路电导.依据基尔霍夫第二定律,在长度为x的传输线中,电压降应等于电动势之和,即v(v v)R xii Lx.t而vx, vx故上式可写成v Ri L i.x T此外,由基尔霍夫第必定律,流入节点x的电流应等于流出该节点的电流,即i(i i)C x iGxv, t或i C vGv.x t将方程(3.4)与(3.5)归并,即得i与v应近似地知足以下方程组i C v Gv0,x tv iRi0.Ltx ()(((((((()为了确立函数i与v,将方程(3.5)对x微分,同时在方程(3.4)两头乘以C后再对t微分,并把两个结果相减,即得2i G v LC2i RC i x2x t20,t将(3.4)中的v代入上式,得x2i2i(RC i()x2LG2GL)GRi,t t这就是电流i近似知足的微分方程,采纳近似的方法从()与()中消去i可得电压v近似知足的方程2v LG2v(RC GL)v GRv,()x2t2t方程(3.6)或(3.7)称为传输线方程.依据不一样的详细状况,对参数R,L,C,G作不一样的假定,就能够获得传输线方程的各种特别形式.比如,在高频传输的状况下,电导与电阻所产生的效应能够忽视不计,也就是说可令G R0,此时方程(3.6)与(3.7)可简化为2i12ix2LC t2,2v12vt2LC t2.这两个方程称为高频传输线方程.若令a21这两个方程与(3.3)完整同样.因而可知,同一个方程能够用来描绘不一样的LC物理现象,一维颠簸方程不过颠簸方程中最简单的状况,在流体力学、声学及电磁场理论中,还要研究高维的颠簸方程.例3电磁场方程从物理学我们知道,电磁场的特征能够用电场强度E与磁场强度H以及电感觉强度D 与磁感觉强度B来描绘,联系这些量的麦克斯韦(Maxwell)方程组为rotH J D(),trotE B,(3.9) tdivB 0,()divD.(3.11)此中J为传导电流的体密度,为电荷的体密度.这组方程还一定与下述场的物质方程D eE,()B H,()J E,()相联立,此中是介质的介电常数,是导磁率,为导电率,我们假定介质是平均并且是各向同性的,此时,,均为常数.方程(3.8)与(3.9)都同时包括有E与H,从中消去一个变量,就能够获得对于另一个变量的微分方程,比如先消去H,在(3,8)式两头求旋度并利用(3.12)与()得rotrotH rotE rotE,t将(3.9)与(3.13)代入得rot rotH2H Ht2,t而rotrotH grad div2H,且divH1divB0,所以最后获得H所知足的方程为2H2HH t2t;同理,若消去H即得E所知足的方程2E2E E.t2t假如介质不导电(0),则上边两个方程简化为2H12H,()t22E12E,()2t(3.15)与(3.16)称为三维颠簸方程.若将三维颠簸方程以标量函数的形式表示出来,则可写成2ua 2ua22u2u2u(t2x2y2z2,)此中a21,u是E或H的随意一个重量.从方程(3.11)与(3.12)还能够推导出静电场的电位所知足的微分方程.事实上,以(3.12)代入(3.11)得divD div E divE,而电场强度E与电位u之间存在关系E gradu,所以可得div(gradu)或2u,()这个非齐次方程称为泊松(Poisson)方程.假如静电场是无源的,即0,则(3.18)变为2u 0,()这个方程称为拉普拉斯(Laplace)方程.例4热传导方程一块热的物体,假如体内每一点的温度不全同样,则在温度较高的点处的热量就要向温度较低的点处流动,这类现象就是热传导.在工程技术上有很多传热问题都要归纳为求物体内温度的散布,此刻我们来推导传热过程中温度所知足的微分方程,与上例近似,我们不是先议论一点处的温度,而应当先考虑一个地区的温度.为此,在物体中任取一闭曲面S,它所包围的地区记作V(图3-3).假定在时辰t,地区V内点M(x,y,z)处的温度为u(x,y,z,t),n为曲面元素S的外法向(从V内指向V外).图3-3由传热学可知,在t,t t时间内,从S流入地区V的热量与时间t,面积S,以及沿曲面的法线方向的温度变化率三者的乘积成正比,即Q kuk(gradu)n St Stnk(gradu)S t.此中k称为物体的热传导系数,当物体为平均导热体时,k为常数.于是,从时辰t1到时辰t2,经过曲面S流入地区V的所有热量为Q1t2dSdt.kgradut1S流入的热量使V内温度发生了变化,在△t时间内地区V内各点温度从u(x,y,z,t)变化到u(x,y,z,t+△t),则在△t内V内温度高升所需要的热量为c[u(x,y,z,t t)u(x,y,z,t)]dVVu(x,y,z,t)ct tdV.V进而从时辰t1到时辰t2,因为温度高升所汲取的热量为t2uQ2cdV dt,t1tV此中c为物体的比热,为物体的密度,对平均物体来说,它们都是常数.因为热量守恒,流入的热量应等于物体温度高升所需汲取的热量,即t2t2ukgradudSdt c dVdt.t1t1tS V此式左端的由面积分中S是关闭曲面,能够利用奥-高公式将它化为三重积分,即kgradudS kdiv(gradu)dV k2udV,S V V 所以有t22udVdt t2udVdt.()k ct1t1tV V因为时间间隔t,tt及地区V都是随意取的,并且被积函数是连续的,所以(3.20)式左右恒等的条件是它们的被积函数恒等,即u a22ua22u2u2u ,()tx 2y 2z 2此中a 2k .方程(3.21)称为三维热传导方程.c若物体内有热源,其强度为F(x,y,z),则相应的热传导方程为ua 22u2u2uf(x,y,z,t),tx 2y 2z 2此中fF .c作为特例,假如所考虑的物体是一根细杆 (或一块薄板),或许即便不是细杆(或薄板)而此中的温度u 只与x,t (或x,y,t )相关,则方程(3.21)就变为一维热传导方程2u a 2u2;tx或二维热传导方程u a 22u2utx 22.y假如我们考虑稳恒温度场,即在热传导方程中物体的温度趋于某种均衡状态,这时温度u 已与时间t 没关,所以u 0,此时方程(3.21)就变为拉普拉斯方程(3.19).因而可知稳恒t温度场内的温度 u 也知足拉普拉斯方程 .在研究气体或液体的扩散过程时,若扩散系数是常数,则所得的扩散方程与热传导方程完整同样.3.2 初始条件与界限条件上边所议论的是如何将过程的物理规律用数学式子表达出来.除此之外,我们还需要把 详细条件也用数学形式表达出来, 这是因为任何一个详细的物理现象都是处在特定条件之下 的.比如弦振动问题,上节所推导出来的方程是全部柔嫩平均的弦作细小横向振动的共同规 律,在推导这个方程时没有考虑到弦在初始时辰物状态以及弦所受的拘束状况.假如我们不 是平常地研究弦的振动,必然就要考虑到弦所拥有的特定条件.因为任何一个详细振动现象 老是在某时辰的振动状态和此时辰从前的状态相关,进而就与初始时辰的状态相关.此外, 弦的两头所受的拘束也会影响弦的振动,端点所处的物理条件不一样会产生不一样的影响,因此弦的振动也不一样 .所以对弦振动问题来说,除了成立振动方程之外,还需列出它的详细条件对热传导方程,拉普拉斯方程也是这样.提出的条件应当恰好能够说明某一详细物理现象的初始状态以及界限上的拘束状况,.用以说明系统的初始状态的条件称为初始条件.用以说明界限上的拘束状况的条件称为界限条件.下边详细说明初始条件和界限条件的表达形式,先谈初始条件,对于弦振动问题来说,初始条件就是弦在开始时辰的位移及速度,若以(x),(x)分别表示初位移和初速度,则初始条件能够表达为u t0(x)u()t(x) t0而对热传导方程来说,初始条件是指在开始时辰物体温度的散布状况,若以(M)表示t 0时物体内任一点M处的温度,则热传导方程的初始条件就是u(M,t)t0(M).(3.23)泊松方程与拉普拉斯方程都是描绘稳恒状态的,与初始状态无头,所以不提初始条件.再谈界限条件.假如界限条件直接给出了未知函数u(M,t)在界限S上的值,以s表示界限S上的动点,则这样的界限条件可表为u(M,t)MS(s,t),或简写成u S.()这类界限条件称为第一类界限条件,此中(s,t)表示在界限S上给定的已知函数.比如,在杆的导热问题中,若在端点x a处温度保持为常数u0,这时在端点x a的界限条件为u xa u0.若在端点x a处温度随时间的变化规律f(t)为已知,在这点的界限条件为uxaf(t).又如在弦振动问题中,若弦的某端点x a是固定的,则在该点的位移为零,即uxa0.以上都是第一类界限条件的例子.总之,第一类界限条件直接给出了未知函数u(M,t)在边界S上的值但在很多状况下,界限上的物理条件其实不可以用第一类界限条件来描绘.比如,在杆的导热问题中,若杆的一端xa绝热,那么绝热这个条件就不可以直接给出杆的端点处的温度变化.因为从杆外经过杆端流入杆内的热量为kuSt(此中t为时间间隔,S为杆nxa的截面积,n为杆在端点x a处的外法向,若x a是杆的左端点,n的正向与x轴正向相反,则u u,若x a是杆的右端点,则n的正向与x轴正向同样,则uu), n x n x所以绝热这个条件能够表达为k uSt0, nxa即u0.nxa若在单位时间内经过x a端单位面积流入杆内的热量是t的已知函数f(t),则这个条件可表示为k u f(t).nxa弦在对于弦振动问题来说,假如弦在x a处沿位移方向的张力(参照x a处是自由的,即沿着位移方向不受外力,中例1的推导)为则此时Tu0,nx a即u0.xx a总之,有时界限条件一定表达为u()(s,t).n S的形式,此中u.表示函数沿界限外法向的变化率,这类界限条件称为第二类界限条件n除了上述两类界限条件外,有时还会碰到其余形式的界限条件.比如在杆的导热热问题中,若杆在某个端点x a自由冷却,那么自由冷却这个条件就是K uH(u1u xa), nxa(此中u1为四周介质的温度)即uu1h kuh.n xa H这是因为在单位时间内从四周介质传到杆的x a端单位面积上的热量与介质和杆端的温度差成正比,而在单位时间内经过u xa端单位面积传向杆内的热量与n考取例4).成正比(参xa对于有界杆(0 x l),若两头都是自由冷却,则在x l处,上述条件可表为uu h u1;nx i在x0处,这个条件可表为uu h u1.nx 0一般地,这类界限条件的形式为u(s,t).()uhn s这样的界限条件称为第三类界限条件.无论哪一种界限条件,假如它的数学表达式中的右端自由项恒为零,则这类界限条件称为齐次的.定解问题的提法前方两节我们推导了三种不一样种类的偏微分方程并议论了与它们相应的初始条件与边界条件的表达方式.因为这些方程中出现的未知函数的偏导数的最高阶都是二阶,并且它们对于未知函数及其各阶偏导数来说都是线性的,所以这类方程称为二阶线性偏微分方程*)1 .在工程技术上二介线性偏微分方程碰到最多.假如一个函数拥有所需要的各阶连续编导数,并且代入某偏微方程中能使该方程变为恒等式,则此函数称为该方程的解.因为每一个物理过程都处在特定的条件之下,所以我们的任务是要求出合适初始条件和界限条件的解.初始条件和界限条件都称为定解条件.求一个偏微方程知足定解条件的解的问题称为定解问题.只有初始条件,没有界限条件的定解问题称为始值问题(或柯西问题);而没有初始条件,只有界限条件的定解问题称为边值问题;既有初始条件也有界限条件的定解问题称为混合问题.一个定解问题提得能否切合实质状况,自然一定靠实质来证明,但是从数学角度来看,能够从三方面加以查验. 1)解的存在性,即看所结出来的定解问题能否有解;2)解的独一性,即看能否只有一个解;3)解的稳固性,即看当定解条件有细小改动时,解能否相应地只有细小的改动,假如*)二阶线性编微分方程能够按它们的二阶导数的系数的代数性质进行分类,在§中所推导的颠簸方程属于双曲型,拉普拉斯(或泊松)方程属于椭圆型,热传导方程属于抛物型,对于二阶线性偏微分方程的分类方法,读者可参阅复旦大学数学系编《数学物理方程》(第二版,上海科学技术第一版社第一版)第一章§5.确立这样,此解便称定的,否所得的解就无用价 .因定解条件往常是利用方法得的,因此所获得的果, 有必定的差,假如所以而解的很大, 那么种解然不可以切合客的要求 .假如一个定解存在独一且定的解,此称适定的,在此后中我把着眼点放在定解的解法上, 而极少它的适定性, 是因定解的适定 性常常十分困,而本所的定解都是古典的,它的适定性都是了然的 .习题一1. l 的平均杆,面,一端温度零,另一端有恒定流 q 入(即位内通位截面流入的量q ),杆的初始温度散布是x(ix),写出相的定解.22. l 的弦两头固定,开始在xc 遇到冲量的作用,写出相的定解.有一平均杆,只需杆中任一小段有向位移或速度,必致段的或伸,种仲开去,就有波沿着杆播,推杆的振方程 .4.一平均杆原l ,一端固定,另一端沿杆的方向被拉e 而静止,忽然松手任其振,成立振方程与定解条件.若F(z),G(z)是随意二可微函数,uF(xat)G(xat)足方程2ua2 2ut 2x 26.若函数u 1(x,t),u 2(x,t), ,u n (x,t),⋯均性次方程2up2uq u r ux 2t 2xt的解,此中p,q,r 不过x,t 的函数,并且数uu k (x,t)收,并x,t 能够行两次k 1逐微分,求数uuk(x,t)足原方程(个叫做性次方程的叠加原理).k1。
第十二章 微分方程学习指导一、内容提要(一) 基本概念1.微分方程——含有未知函数的导数或微分的方程叫微分方程。
2.微分方程的阶——微分方程中的未知函数的导数的最高阶数。
3.微分方程的解——满足微分方程的函数4.通解——微分方程中带有独立的任意常数的个数与方程的阶数相同的解。
5.特解——利用定解条件,确定通解中任意常数的解。
6.定解条件——用来确定通解中的任意常数的条件,常见的定解条件是初始条件。
(二) 一阶微分方程的解法1.可分离变量方程()()dy y g dx x f = 解:()()⎰⎰+=C dy y g dx x f 2.齐次方程⎪⎭⎫⎝⎛=x y F dx dy 解:令u xy =,则dx dux u dx dy +=,故 ()⎰⎰+=-C x dx u u F du3.一阶线性方程()()x Q y x P y =+'解:()()()[]⎰+⎰=⎰-C dx e x Q e y dx x P dxx P (三) 可降阶的高阶微分方程的解法1.()()x f y n =用n 次不定积分求得方程的通解。
2.()y x f y '='',令P y =',则dxdPy ='',得到一阶微分方程 ()P x f dxdP,= 3.()y y f y '='', 令P y =',则dydPP dx dy dy dP y ⋅=⋅='',得到一阶微分方程 ()P y f dydPP,= (四) 线性微分方程的解的结构设二阶线性齐次微分方程为()()0=+'+''y x Q y x P y ①(1) 它的n 个解的线性组合n n y C y C y C +++ 2211仍是方程的解; (2) 它的两个线性无关的特解的线性组合2211y C y C +是方程的通解。
设二阶线性非齐次微分方程为()()()x f y x Q y x P y =+'+'' ②①式的通解()x y 与②式的一个特解*y 之和是②式的通解()()x y x y y *+=若1*y ,*2y 分别为方程()()()x f y x Q y x P y 1=+'+''()()()x f y x Q y x P y 2=+'+''的特解,则方程()()()()x f x f y x Q y x P y 21+=+'+''的一个特解为*2*1y y + (五) 二阶线性常系数齐次微分方程的解法设二阶线性常系数齐次微分方程为0=+'+''qy y p y ③的特征方程为02=++q pr r(1)若 1r ,2r 为两个不相等的实根,则③式的通解为x e C e C y r x r 2121+=(2) 若1r ,2r 为两相等的实根,则③式的通解为()x r e x C C y 121+=(3) 若i r βα±=2,1是一对共轭复根,则③式的通解为[]x C x C e t ββαsin cos 21+=(六) 二阶线性常系数非齐次微分方程的解法设二阶线性常系数非齐次微分方程为:()x f qy y p y =+'+''(1) 若()()x p e x f m x λ=,其中()x p m 为x 的m 次多项式,则可令()x Q e x y m x k λ=*,其中()x Q m 为m 次多项式的标准型⎪⎩⎪⎨⎧=是两个特征根当是一个特征根当不是特征根当λλλ,2,1,0k 。
(2) 若()()()[]x x p x x p e x f n l x ωωλsin cos +=,其中()x p l ,()x p n 分别是l 次、n 次多项式,则可令()()()[]x R x x R e x y m m x k ωλsin cos 21*+=其中()n l m ,max =,()()x R m 1和是两个不同的m 次多项式。
⎩⎨⎧±±=是特征根根当不是特征根当i i k ωλωλ,1,0。
二、学习方法指导1.许多科学及技术问题的研究都归结到解微分方程。
例如:研究最简单的机械振动就有微分方程:0222==s dts d ω,这是二阶微分方程。
2.在初学本章时,首先要掌握微分方程的阶、解、通解、特解这四个基本定义。
3.应当注意到,微分方程的通解不一定是所有解。
如:Cx y +=1是一阶微分方程02=+'y y 的通解,但该微分方程还有另一解,即0=y 。
4.在解n 阶微分方程时,因为通解中有n 个任意常数,为确定是这n 个参数,初始条件包含0x x =时,函数()x y ϕ=的值及这函数的直到()1-n 阶的导数在0x x =时的值。
例如:当2=n 时,初始条件为:()000|y x y x x ===ϕ及()000|y x y x x '='='=ϕ 5.在一阶微分方程一节中,学生必须能够识别这几种类型的微分方程并掌握它们的解法。
6.在三种高阶微分方程的求解时,也首先要能够认识三种类型,然后要知道每一类型该用什么方法去解。
7.在二阶及高阶线性微分方程的理论中,关于线性无关的解的概念有着重要的意义,同学应加深理解。
8.应当注意到,如果常系数齐次线性方程的特征方程有复根i βα±,则对应于这两个根的线性无关的特解为x e x βαcos 和x e x βαsin 。
三、典型例题(一) 一阶微分方程1.可分离变量的方程例1.求微分方程()dy x y xydx 2211++=的通解。
解:原方程变形为:dy y y dx xx2211+=+两边积分得通解:C y y x ++=+2||ln 1222.齐次方程例2.求方程()()02222=++++-dy y xy x x dx y xy x y 的通解。
解:将方程整理为()()22222211⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-⋅-=+++--=x y x y x y x y x y y xy x x y xy x y dx dy 令u xy =,则dx dux u dx dy ⋅+=,原方程化为 ()dx x du uu u u 21122-=+++ dx x du u u 21112-=⎪⎭⎫ ⎝⎛++ 两边积分得C x u u +-=+||ln 2arctan ||ln将x yu =代入,得原方程的通解为 ||ln 2arctan ||ln x C xyx y -=+即C xyxy =+arctan ||ln3.一阶线性微分方程例3:求微分方程x e x y dxdysin cos -=+的通解。
解一:先求对应齐次方程的通解 令0cos =+x y dxdy,则通解 x Ce y sin -=用常数变量法令()x u C =,将()x e x u y sin -⋅=代入原方程的标准型得:()1='x u ,则()C x x u += 原方程的通解为()x e C x y sin -⋅+= 解二:公式法()xx P c o s =,()x e x Q sin -=代入求解公式中,得 ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰--C dx e e e y xdx x xdx cos sin cos ()C x e x +=-s i n例4.求微分方程yy x y 2sin cos 1+='的通解。
解:用y 是关于x 的函数关系去看这个方程,它既不是变量可分离方程,又不是一阶线性微分方程,但是把x 作为y 的函数关系来看,则有y y x dydx2sin cos +=。
这是一阶线性非齐次微分方程,其通解为: ()1sin 2sin +-⋅=y e C x y (二) 可降阶的高阶微分方程例6:求方程()2321y y '+-=''。
解:该方程既不显含x ,又不显含y ,两种解法均可,但应注意这时两种解法可能有难易程度的差别,应注意比较,选用较简单的方法。
若令p y =',则p y '='',方程化为:()2321p dxdp +-= ()dp p dx 23211+-=,C pp x ++-=21这时求解p 比较繁,若令p y =',则dydppy ='',方程化为 ()2321p dy dp p +-=,1211C py ++=即 ()21211C y p -=+所以 ()1211C y C y p ---±=而 ()1211C y C y dx dy---±=()dx dy C y C y ±=---2111可得方程的通解()()12122=-+-C y C x 。
(三) 高阶线性微分方程例7:设二阶线性微分方程()()()x f y x Q y x P y =+'+''的3个特解为x y =1,x e y =2,x e y 23=,求此方程满足条件()10=y ,()30='y 的特解。
解:已知x 、x e 、x e 2是方程的3个特解,则x e x -,x e x -2是对应齐次方程的特解,且C xe xe xx ≠--2,故此二解为无关解,所以原方程的通解为 ()()x x e C x e C y x x +-+-=221由()10=y ,()30='y ,求得11-=C ,22=C ,故所求特解为()()x x x x e e x x e x e y -=+-+--=2222。
例8:求方程x x e y y y x cos 2cos 22⋅=+'-''的通解。
解:原方程化为()x x e y y y x3cos cos 2122+=+'-'' 对应齐次方程022=+'-''y y y 特征方程为0222=+-r r特征根i r ±=1,则齐次方程的通解为()x C x C e y x sin cos 21+=对非齐次项的第一部分x e x cos 21,由于i i ±=±1βα是方程的特征根,故设()x B x A xe y x sin cos 11*1+=对非齐次项的第二部分x e x 3cos 21,由于i i 31±=±βα不是特征根,故设()x B x A e y x 3sin 3cos 22*2+=。