岩石力学-岩石弹性本构关系
- 格式:pdf
- 大小:801.36 KB
- 文档页数:19
扩容岩石力学知识点总结一、岩石的力学性质1. 岩石的本构关系岩石的本构关系描述了岩石受力后的应力-应变关系,是岩石力学研究的核心内容之一。
根据岩石的本构关系,可以推导得到岩石的弹性模量、剪切模量等力学参数,这些参数对于岩石的工程应用至关重要。
2. 岩石的强度特性岩石的强度特性是指岩石在受到外力作用时的抗压、抗拉、抗剪等力学性能。
岩石的强度特性直接影响着岩石的工程应用能力,因此对于岩石的强度特性的研究至关重要。
3. 岩石的弹性模量岩石的弹性模量是描述岩石在受力作用下的弹性变形特性的重要参数,它是岩石的抗压、抗拉等性能的基础。
岩石的弹性模量是岩石力学研究的重要内容之一。
二、岩石的变形和破坏规律1. 岩石的变形规律岩石在受到外力作用时会发生变形,其变形规律主要表现为岩石的弹性变形和塑性变形。
岩石的变形规律是岩石力学研究的重要内容之一。
2. 岩石的破坏规律岩石在受到外力作用时会发生破坏,其破坏规律主要表现为岩石的压缩破坏、拉伸破坏、剪切破坏等。
岩石的破坏规律是岩石力学研究的重要内容之一。
三、岩石力学的实际应用1. 岩石工程设计岩石力学的研究成果可以应用于岩石工程设计中,包括隧道工程、坝基工程、矿山工程等。
岩石工程设计是岩石力学的重要应用领域之一。
2. 地质灾害防治岩石力学的研究成果可以应用于地质灾害防治工程中,包括滑坡治理、岩体稳定性评价等。
地质灾害防治是岩石力学的重要应用领域之一。
3. 岩石勘查岩石力学的研究成果可以应用于岩石勘查工作中,包括岩石性质测试、岩体稳定性评价等。
岩石勘查是岩石力学的重要应用领域之一。
总之,岩石力学是一门重要的土木工程岩土力学的分支学科,对于地下工程、矿山开采、地质灾害防治等方面具有重要的理论和实际意义。
希望本文的内容能够为岩石力学的学习和研究提供一定的参考和帮助。
第五章 岩土材料本构关系作用效应电压电流温差热流应力应变1660年英国科学家罗伯特·胡克在实验中发现螺旋弹簧伸长量和所受拉伸力成正比,从而提出了描述材料弹性的基本定律——胡克定律。
{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⋅⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------⋅-+-=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=zx yz xy z y x zx yz xy z y x E νννεεεμμμμμμμμμμμμμμμμμμμμμτττσσσσ)1(221000000)1(221000000)1(221000000111000111000111)21)(1()1({}[]{}σε=D 物理方程 应力 ~ 应变弹性模量量纲同应力,也就是帕斯卡Pa 。
泊松比是横向应变与纵向应变的比值,无量纲 σ1σ1弹性常数:E 弹性模量单向拉伸: σ=E ε 弹性常数:μ 泊松比 ε=-μ εττγγ纯剪切实验: τ=G γ弹性常数:G 剪切弹性模量 量纲同应力,帕斯卡Pa 。
弹性模量E 泊松比υ 拉梅参数λ 剪切模量G 体积模量K线弹性模型 {}[]{}σε=D εσ1E线弹性本构关系 非线性本构关系 常用岩土本构关系第五章 σ(Mpa)ε DE CB’B A 有明显流幅的钢筋的应力-应变曲线——《混凝土结构》无明显流幅的钢筋的应力-应变曲线——《混凝土结构》 σ(Mpa)εσP0.20.2%混凝土棱柱体受压应力-应变曲线——《混凝土结构》σ(N/mm2)0 51015202530350.001 0.002 0.003 0.004 0.005 0.006 0.007 ε比例极限A B 峰点C 拐点D 收敛点E F 0.008 0.012 0.009 0.01 0.011 临界点岩石的典型应力-应变曲线——《岩石力学》 εσR cσo εP T D U S C R P B Q O43 21A正常固结粘土或松砂的典型 应力-应变曲线—《土力学》 εv 压缩oq 1/a 11/b 极限值轴向应变εlεv 压缩 oq c/b 2 极限值 轴向应变εl 11/a 膨胀 εlm =a/(b-2c ) q m =1/4(b-c )超固结粘土或密砂的典型应力-应变曲线—《土力学》单轴试验下材料的弹塑性性态 εσ O A比例极限 b σs σp σC B 弹性极限强度极限εp•荷载移除后,材料恢复到变形前的状态,不产生任何永久变形 •应力与应变成正比 •当材料由于应力达到某种临界值而出现应力与应变间的非线性变化关系弹性 线性 非线性 本构关系•材料由于荷载超过某个临界值(弹性极限)而产生的永久变形 •材料由弹性状态过渡到塑性状态的过程•应力不但与应变有关,还与时间、应变率等明显相关 塑性 屈服 粘性 本构关系本构模型弹性模型线弹性模型非线弹性模型弹塑性模型粘弹塑性模型内蕴时间塑性模型损伤模型本构关系εσ ε σ 弹性模型非线弹性模型线弹性本构关系 非线性本构关系 常用岩土本构关系 第五章 εσσy εe εp 理想弹塑性模型εσσy 线性强化弹塑性模型地层—结构模型 9.3.1 在采用地层-结构法对隧道施工开挖过程进行计算时,应选用与围岩地层及支护结构材料的受力变形特征相适应的本构关系。
在经典理论发展阶段,形成了“连续介质理论”和“地质力学理论”两大学派。
岩石的物理性质是指由岩石固有的物质组成和结构特征所决定的比重,容重,孔隙率等基本属性。
水理性:岩石与水相互作用时所表现的性质称为岩石的水理性。
包括岩石的吸水性,透水性,软化性和抗冻性。
天然含水率:天然状态下岩石中水的质量与岩石的烘干质量的比值,称为岩石的天然含水率。
吸水性:岩石在一定条件下吸收水分的性能称为岩石的吸水性。
岩石的软化性:岩石浸水后强度降低的性能称为岩石的软化性。
岩石的软化性常用软化系数来衡量。
软化系数:是岩样饱水状态的单轴抗压强度与自然风干状态抗压强度的比值。
岩石的强度:岩石在各种载荷作用下达到破坏时所能承受的最大应力称为岩石的强度。
单轴抗压强度:岩石在单轴压缩荷载作用下达到破坏前所能承受的最大压应力称为岩石的单轴抗压强度。
岩石破坏有几种形式?对各种破坏的原因作出解释。
答:试件在单轴压缩载荷作用破坏时,在试件中可产生四种破坏形式:(1)X状共轭斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。
(2)单斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。
(3)拉伸破坏,破坏面上的拉应力超过了该面的抗拉强度,导致岩石受拉伸破坏。
(4)塑性流动变形破坏。
岩石的三轴抗压强度:岩石在三向压缩荷载作用下,达到破坏时所能承受的最大压应力称为岩石的三轴抗压强度。
抗拉强度:岩石在单轴拉伸荷载作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度,简称抗拉强度。
在传统的压缩试验中,岩石达到其峰值强度后发生突发性破坏的根本原因是试验机的刚度不够大,这类试验机称为“软”性试验机。
什么是全应力-应变曲线?为什么普通材料实验机得不出全应力-应变曲线?全应力应变曲线:能显示岩石在受压破坏过程中的应力、变形特性,特别是破坏后的强度与力学性质的变化规律。
由于普通材料试验机的刚度小,在试件压缩时,其支柱上存在很大的变形和变形能,在试件快要破坏时,该变形能突然释放,加速试件破坏,从而得不出极限压力后的应力应变关系曲线。
岩石材料本构模型建立方法一、岩石本构模型的定义岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。
岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。
岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。
对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。
脆性材料不同于韧性材料,对缺陷十分敏感。
由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。
研究岩石本构关系的方法,概括起来主要有以下两种:(1)唯象学方法①用实验或断裂理论研究岩石的破坏准则。
其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;②塑性力学,流变力学及损伤力学方法。
塑性力学有经典和广义塑性力学两部分。
经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。
内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。
损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。
(2)物理力学机理方面岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。
依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。
建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。
二、岩石的本构关系分类本构关系分类以下三类:①弹性本构关系:线性弹性、非线性弹性本构关系。
②弹塑性本构关系:各向同性、各向异性本构关系。
③流变本构关系:岩石产生流变时的本构关系。
流变性是指如果外界条件不变,应变或应力随时间而变化的性质。
2.1 岩石弹性本构关系1. 平面弹性本构关系2. 空间问题弹性本构关系2.2 岩石塑性本构关系塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。