气体辅助注射成型
- 格式:ppt
- 大小:7.30 MB
- 文档页数:15
一、气体辅助注射成型概述——Jack Avery气体辅助注射成型过程首先是向模腔内进行树脂的欠料注射,然后将气体导入熔融物料当中,气体沿着阻力最小方向流向制品的低压和高温区域。
当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面。
这些置换出来的物料充填制品的其余部分(图1-3)。
当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。
气体辅助注射成型主要有以下两种基本类型:恒体积和恒压力。
体积恒定时,汽缸内已经加压的气体在注射之前就已经预先确定好注射体积,由活塞推动气体进入制品。
气体的压力取决于制品中的体积与汽缸体积之比。
气体的压力、停留时间以及活塞运动速度直接影响着制品外观。
如图1-4所示为恒体积成型中一个注射周期内的压力变化曲线。
对于每一注射周期,在注射之前都必须重新建立压力。
压气时间图1-4 恒体积系统的气体压力曲线图[源自:Innovation inPolymer Processing:Molding,Stevenson,J.F.(Ed.)]另外一种类型是恒压力成型。
我们通过空气压缩机将氮气(N2)装入储存罐中预先加压,储存罐向一毓的阀门提供恒定压力。
压力曲线可以通过调节气压和开启相应阀门来实现。
图1-5所示为成型周期内,气体压力可以保持恒定。
时间p氮气压力p p p p 3图1-5 恒压力系统的气体压力曲线图[源自:Innovation inPolymer Processing :Molding,Stevenson ,J.F.(Ed.)]气体辅助注射成型的实现主要有两个选择,二者的区别在于气体注入位置的不同。
气体注射既可以通过喷嘴来实现,也可以直接注进模腔——从分流道进入或者直接进入制品(如图1-6、图1-7和图1-8)。
最主要的不同是由喷嘴进气的方式要求所有气道都从喷嘴外开始。
而采取气体直接注射到模具中的方式时,气体通道可以独立地设置在浇口位置。
对于这种方式,注射之前物料可以实现正常的填充。
气辅注塑成型工艺这种成型工艺,对于很多工程师来说很陌生,因为平时大家接触的产品很少会用到这种成型工艺,包括我本人也是一样,直到我接触到一款产品,才慢慢了解,就是以下这个锅体。
锅体的把手部分,除了2个螺丝塞,整个把手是一个完整的塑胶件,且外观并没有缩水等缺陷,看下侧面和背面图。
咋一看,以为内部是实心的,实际上并不是,而是空心的,是利用了气体辅助注塑成型技术。
01气辅成型的原理气体辅助注塑系统,是把惰性气体(通常用氮气)经由分段压力控制系统直接注射入模腔内的塑化塑料里,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。
气辅注塑成型可被认为是中空吹塑成型的变型,其过程是先向模具腔中注入经过准确计量的占模腔一定比例的塑胶熔体,这一过程称为“欠料注塑”,再直接往熔融塑胶中注入一定体积和压力的高压氮气,气体在塑胶熔体的包围下沿着阻力最小的方向扩散前进。
由于靠模壁部分的塑胶温度低,表面粘度高,而製作较厚部分中心塑胶熔体的温度高,粘度低,所以气体容易对中心塑胶熔体进行穿透和排空,在制件的厚部形成中空气道,而被气体所排空的熔融塑胶又被气体压力推向模具末端直至充满模具型腔,在冷却阶段压缩气体对塑胶熔体进行保压补缩。
待制品冷却凝固后再卸气,然后开模顶出。
以上气辅成型过程实际上分为四个阶段:熔体短射、气体注射、气体保压、气体排出和制件顶出。
02气辅成型的方法除了常规的欠料注塑成型法,还有:1.副腔成型法(也叫满料注塑法)2.型芯成型法3.熔体回流成型法上面的锅体的把手猜测是采用了副腔成型法(也叫满料注塑法):具体细节可参考下图:03气辅注塑成型与普通注塑成型的区别主要区别在于多了一套气辅设备:(1)普通注塑机(计料精度稍高些为好)。
(2)氮气控制系统,包括自封闭式气辅喷嘴。
(3)高压氮气发生器。
(4)工业氮气钢瓶以及提供增压动力的空气压缩机。
(5)为气体辅助注射设计制造的模具。
(6)气辅注塑气辅喷嘴喷嘴进气方式,即使用专用的自封闭式气辅喷嘴,在塑料注射结束后,将高压气体依靠喷嘴直接进入塑料内部,按气道形成一个延展的封闭空间—气腔并保持一定压力,直至冷却,在模具打开之前,通过座台后退使喷嘴与制品料道强行分离,使气体排出制品。
气体辅助注塑成型技术简介气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。
当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。
当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。
气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。
成型者希望以低制造成本生产高质量的产品。
在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。
通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。
使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。
1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低;2、减少锁模压力:低的注射压力使合模力降低,可以使用小吨位机台;3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性;4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%;5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半;6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高;7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型;8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命;9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低;10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。
第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴;第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央;第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;第四阶段:塑胶件的中空部分继续保持高压,压力迫使塑料向外紧贴模具,直到冷却下来;第五阶段:塑料制品冷却定型后,排除制品内部的高压气体,然后开模取出制品。
气辅注射成型及设计要点气辅注射成型GRIM( Gas-Assisted Injection Mold-ing)为一种新型的注射成型工艺,近几年已在国外得到广泛的应用,国内的使用也越来越多。
其原理是利用压力相对低的惰性气体(氮气因为价廉安全又兼具冷却剂的作用而被常用,压力为0.5一300 MPa)代替传统模塑过程中型腔内的部分树脂来保压,以达到制品成型性能更加优良的目的。
1气辅注射成型的优点气辅注射成型克服了传统注射成型和发泡成型的局限性,具有以下优点:1.1制件性能良好 (1)消除气孔和凹陷在制件不同壁厚连接处所设的加强筋和凸台中合理开设气道,欠料注射后气体导入,补偿了因熔体在冷却过程中的收缩,避免气孔和凹陷的产生。
(2)减少内应力和翘曲变形在制件冷却过程中,从气体喷嘴到料流末端形成连续气体通道,无压力损失,各处气压一致,因而降低了残余应力,防止制件翘曲变形。
(3)增加制件的强度制件上中空的加强筋和凸台的设计,使强度重量比比同类实心制件高出大约5,制件的惯性矩工大幅度提高,从而提高制件使用强度。
(4)提高设计的灵活性气辅注射可用来成型壁厚不均的制品,使原来必须分为几个部分单独成型的制品实现一次成型,便于制件的装配。
例如国外一家公司原来生产的以几十个金属零件为主体、形状复杂的汽车门板,通过GAI M技术并采用塑料合金材料实现了一次成型。
1.2 成本低 (1)节约原材料气辅注射成型在制品较厚部位形成空腔,可减少成品重量达10%一50% (2)降低设备费用气辅注射较普通注射成型需要较小的注射压力和锁模力(可节省25%一50%),同时节约能量达30% (3)相对缩短成型周期由于去除了较厚部位芯料,缩短冷却时间可达50%正是基于这些优点,气辅注射适用于成型大型平板状制品如桌面、门、板等;大型柜体如家用电器壳体、电视机壳、办公机械壳体等;结构部件如底座、汽车仪表板、保险杠、汽车大前灯罩等汽车内外饰件。
气体辅助注塑工艺简介1.气体辅助注塑目前所指的气体辅助注塑:是指将氮气注射入产品内,使产品内部形成中空。
模具打开前,控制器会将塑胶工件内的氮气释放回大气中。
2.气辅注塑成形工艺的优势1)低射胶、低锁模力;2)压力分布均匀、收缩均匀、残余应力低、不易翘曲,尺寸稳定;3)消除凹陷,型面再现性高;4)省塑料,可用强度及价格更低的塑料;5)可用强度和价格更低的模具金属;6)厚薄件一体成型,减少模具及装配线数目;7)可用较厚的筋,角板等补强件,提高制品刚性,使得制件公称厚度得以变薄。
8)增强设计自由度。
3.气辅射胶控制工艺1)短射工艺,即胶料未完全充满型腔时,继之以氮气注射;2)满射工艺,塑胶熔体充满型腔之后,停止注射,继之以氮气注射。
短射工艺的特点:在气辅注塑中,塑胶注射取决于胶件形状及胶料性能,在以下条件才可进行短射。
1)胶件必须有独立完整的气体通道,即气流在穿透胶件时,无分支气道可走。
2)气体通道中多余胶料有足够的溢流空间。
3)胶料流动性优良,粘度不可太低,尽量避免使用含破坏高分子键的填充物的胶料。
4)胶料导热度较低,有可较长时间保持熔融状态的能力。
满射工艺特点:胶件射胶完成,通过气体代替啤机,防止胶件收缩。
其优点在于,啤机保压是以射胶量及压力来防止胶件收缩,气辅保压,则以气体穿透塑胶收缩后的空间,防止胶件表层埸陷。
4.气辅压力分析:现我们看以下气辅压力与啤机压力的对比:1)气辅压力a)低气压800psi=56.34kg/cm2b)中气压1500psi=105.63 kg/cm2c)高气压2500psi=176.06kg/cm22)啤机压力a)100 TON注塑最大压力188Mpa=1917 kg/cm2b)280 TON注塑最大压力150Mpa=1530 kg/cm2c)650TON注塑最大压力153Mpa=1560 kg/cm2从以上压力对比可知,氮气压力只相当于普通啤机注塑压力的十分之一,甚至更少。
气体辅助注射成型及其影响因素2006-6-9 16:34:10 【文章字体:大中小】打印收藏关闭1、气辅注射成型原理及其工艺过程[1]气辅注射成型最早是由“塑料发泡”派生出来的一门技术,它来源于“发泡”这一概念。
它的基本过程如图1 所示,首先把一定量的塑料熔体(一般为模腔的7 0%~ 9 6%,根据产品的具体情况确定其百分比)注射到模腔中,然后将定值压力或定量体积的惰性气体(一般为氮气,因其易于取得并且价格低廉)通过附加的气道注入模腔里,借助于气体压力的作用来推动塑料熔体运动、从而使熔体充满模具的整个型腔。
由于靠近模腔表面的塑料熔体温度低、黏度大、表面张力提高、抵抗流动的阻力增加,而处于中心部位的塑料熔体温度最高、黏度最低、抵抗流动的阻力小,因而气体易在中心部位形成空腔,使制品膨胀紧贴于模腔壁面,从而得到表面质量优良的产品。
气辅注射成型与“塑料发泡”相比,更易于控制,而且外表面不会出现由发泡造成的缺陷,适用于所有热塑性塑料(增强或未增强)、部分热固性塑料以及一般的工程塑料,但对于一些极柔软的塑料结果还不能令人满意。
气辅注射成型的周期一般可分为6 个阶段:(1 )塑料熔体填充阶段塑料熔体首先由浇口注入模具型腔,一般熔体填充至模具型腔体积的70%~ 96% 时,停止熔体注射,该过程被称为“缺料注射”。
具体注射的塑料熔体量由经验或进行模拟充填来确定。
注入量过大,不能体现气辅注射成型充气减重、改善制品质量和节省生产成本的作用,注入量过小,填充较晚的部分熔体在注气后易被吹穿,从而造成气辅注射成型的失败。
这一阶段与传统注射成型基本相同,只是在传统注射成型时塑料熔体充满整个模具型腔而气辅注射成型时塑料熔体只填充部分模具型腔,其余部分须依靠气体来补充。
(2 )延迟时间阶段这是指塑料熔体注射结束到气体注射开始的一段时间,这一段时间称延迟时间,其过程非常短暂。
延迟时间对气辅注射成型制品的质量有重要影响,通过延迟时间的改变可以改变制品气道处的熔体厚度分数。
气辅注塑成型技术气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程,使产品形成真空。
气辅设备包括气辅控制单元和氮气发生装置;氮气发生装置主要包括氮气发生器,氮气压缩机,氮气储气瓶。
它是独立于注塑机外的另一套系统,其与注塑机的唯一接口是注射信号连接线。
注塑机将一个注射信号注射开始或螺杆位置传递给气辅控制单元之后,便开始一个注气过程,等下一个注射过程开始时给出另一个注射信号,开始另一个循环,如此反复进行。
气体辅助注塑过程可分为注塑期,充气期,气体保压期和脱模期。
1.注塑期:所需塑料注塑量要通过实验找出来,以保证在充气期间,气体不会把成品表面冲破及能有一个理想的充气体积,通常注满产品的70%-95%。
注入熔体2.充气期:可以在注射中或后的不同时间注入气体,气体注入的压力必需大于注塑压力,以达到产品成中空状态。
注入氮气3.气保压期:当成品内部被气体填充后,气体在成品中空部分的压力就成为保压压力,可大大减低成品的缩水及变形率。
保压成型4.脱模期:随冷却周期完成,防止产品暴裂,自动排出气体,模具内压力降至大气压力,成品由模腔内顶出。
排出气体和产品出模气体辅助注塑成型进气方式有两种:一种由射嘴进入成品;二种由模具进入成品,这两种各有各的优点和缺点。
一从射嘴进气优点:1)修改现在有旧模具即可使用。
2)流道形成中空状,减少塑料使用。
3)成品无气针所留下之气口痕迹。
缺点:1)所有气体通道必须相通连接。
2)气体通道必须对称且平衡。
3)不能用于热流道模具上使用。
4)注塑机射嘴更换且费用较高。
二从模具进气优点:1)可以多处进气,气体通道不需完全相通连接。
2)气体与塑料可同时射入。
3)可允许使用热流道模具。
4)可使用于非对称模穴之产品成型。
缺点:1)模具须重新开发设计。
2)气针会留下气口痕迹。
塑料制品成型应用气体辅助成型技术,有以下优点:1)节省塑胶原料,节省可高达50%。