电路仿真快速仿真数模混合仿真
- 格式:ppt
- 大小:4.13 MB
- 文档页数:106
今天看了下Altium Designer的电路仿真功能,发现它还是蛮强大的,按着help里面的文档《TU0106 Defining & running Circuit Simulation 》跑了一下,觉得还行,所以就把这个文档翻译下。
其中包含了仿真功能的介绍,元件仿真模型的添加与修改,仿真环境的设置,等等。
本人对SPICE仿真了解的不多,里面涉及到SPICE的文件如果有什么错误,欢迎提出!一、电路仿真功能介绍Altium Designer的混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。
Altium Designer 可以在原理图中提供完善的混合信号电路仿真功能 ,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。
Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。
仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。
SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。
五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFETs。
XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。
包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。
局部电路模型是指更复杂的器件,如用局部电路语法描述的操作运放、时钟、晶体等。
每个局部电路都下在*.ckt文件中,并在模型名称的前面加上大写的X。
数字器件模型是用数字SimCode语言编写的,这是一种由事件驱动型XSPICE模型扩展而来专门用于仿真数字器件的特殊的描述语言,是一种类C语言,实现对数字器件的行为及特征的描述,参数可以包括传输时延、负载特征等信息;行为可以通过真值表、数学函数和条件控制参数等。
用SpectreVerilog进行模数混仿,以Sigma-Delta ADC为例SpectreVerilog模数混仿, 模拟部分用Spectre, 数字部分用Verilog-XL. 所以还需要安装Cadence LDV软件, 其内含Verilog-XL仿真器.这里以自行设计的二阶全差分Sigma-Delta ADC为例, 详细介绍用SpectreVerilog的仿真过程. 所用工艺库为TSMC 0.18u,电源电压:1.8V.1. 准备Sigma-Delta ADC分模拟和数字部分两块, 其中模拟部分为调制器, 数字部分为数字滤波器. 如下图. 其中out为调制器的输出, 这里是1位0,1数据流. 数字滤波器为Verilog RTL级代码.Schematic:Symbol:Verilog Code:module DigitalFilter (in2out, out, clk, clr, in);output in2out;output [`wordsize-1:0] out;input clk;input clr;input in;reg in2out;wire clk_half1, clk_half2;……Endmodule同时为了直观的观看输出结果,因此把输出的数字字转化为模拟量,这里用Verilog-A做一个理想的DA转换器。
因此最好事先用Spectre仿真模拟部分, 用ModelSim或Verilog-XL等仿真数字部分. 这里假定我们已有:1) 模拟部分的原理图(包括Symbol);2) 数字部分的Verilog代码,DigitalFilter.v, 模块名:DigitalFilter(in2out,out,clk,clr,in);3) 数字部分的TestBench代码, DigitalFilter_TB.v, 模块名: DigitalFilter_TB.下图为最终的系统图:2. 创建数字模块的Symbol1) 新建一个Cell, View Name为symbol, Tool: Composer-Symbol.2) 画Symbol. 简单地, 画一个矩形框, 添加几个Lable, 然后添加Pin.3) 添加Pin. 左边输入, 右边输出. 对于多位的pin可以用如out<7:0>的样式作为pin的名字. 注意: 与模拟部分相连的多位Pin最好不要用一个pin, 而要用多个. 如下图.4) 创建对应的Verilog文件. 在symbol编辑器中, Design菜单->CreatCellView->From CellView.会弹出的对话框, Tool/Data Type一栏选择Verilog-Editor, 则To View Name会变为functional.点击OK, 会弹出错误对话框, 点No. 自动弹出VI编辑器, 可以看到已经生成Verilog代码的空壳.代码文件的路径在VI编辑器的标题栏上. 下面要做的就是把我们的数字模块(不是TestBench)的代码填进去. 如果不想用VI编辑器, 也可以用其他文本编辑器. 复制代码时最好不要动自动生成的代码. 经测试, 所有代码最好放在一个文件中.这一步之后,数字部分就会有functional和symbol两个View。
电路仿真思路
电路仿真是通过计算机软件实现电路行为模拟的过程。
下面是一些常见的电路仿真思路:
1. 确定仿真目标:首先要明确想要模拟的电路是什么类型的,例如模拟电路、数字电路、混合信号电路等。
然后确定仿真的目标,是验证电路的功能、优化参数、分析性能等。
2. 收集电路信息:获取电路的原理图、元件参数、信号波形等必要信息。
可以使用电路设计软件进行建模,通过添加元件、连线和设置参数来构建电路。
3. 设定仿真条件:为了模拟真实情况,需要设置仿真条件,如电源电压、输入信号频率、温度等。
这些条件会对电路的行为和性能产生影响。
4. 运行仿真:在电路仿真软件中运行仿真,观察电路的响应。
可以通过改变输入信号、调整元件参数等方式,观察电路行为的变化。
5. 分析仿真结果:通过仿真结果来验证电路的功能和性能是否符合预期。
可以查看电路的输出波形、频率响应、电流电压分布等,进行分析和比较。
6. 优化和调试:根据仿真结果进行优化电路设计,如调整元件数值、改变拓扑结构等。
同时,通过仿真结果来进行电路故障排除和调试。
总之,电路仿真是一个通过软件模拟电路行为的过程,可以帮助设计者快速验证设计、改进电路和进行故障排除。
通过不断优化仿真过程,可以提高电路设计的效率和准确性。
一、电路仿真功能介绍Altium Designer的混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。
Altium Designer 可以在原理图中提供完善的混合信号电路仿真功能,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。
Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。
仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。
SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。
五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFE Ts。
XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。
包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。
局部电路模型是指更复杂的器件,如用局部电路语法描述的操作运放、时钟、晶体等。
每个局部电路都下在*.ckt文件中,并在模型名称的前面加上大写的X。
数字器件模型是用数字SimCode语言编写的,这是一种由事件驱动型XSPICE模型扩展而来专门用于仿真数字器件的特殊的描述语言,是一种类C语言,实现对数字器件的行为及特征的描述,参数可以包括传输时延、负载特征等信息;行为可以通过真值表、数学函数和条件控制参数等。
它来源于标准的XSPICE代码模型。
在SimCode中,仿真文件采用ASCII码字符并且保存成.TXT后缀的文件,编译后生成*.scb模型文件。
可以将多个数字器件模型写在同一个文件中。
Altium Designer 可实现如下功能:1、仿真电路建立及与仿真模型的连接AD 中由于采用了集成库技术,原理图符号中即包含了对应的仿真模型,因此原理图即可直接用来作为仿真电路,而99SE中的仿真电路则需要另行建立并单独加载各元器件的仿真模型。
Altium-Designer中的电路仿真————————————————————————————————作者:————————————————————————————————日期:Altium Designer中的电路仿真今天看了下Altium Designer的电路仿真功能,发现它还是蛮强大的,按着help里面的文档《TU0106 Defining & running Circuit Simulation analyses.PDF》跑了一下,觉得还行,所以就把这个文档翻译下。
其中包含了仿真功能的介绍,元件仿真模型的添加与修改,仿真环境的设置,等等。
本人对SPICE仿真了解的不多,里面涉及到SPICE的文件如果有什么错误,欢迎提出!一、电路仿真功能介绍Altium Designer的混合电路信号仿真工具,在电路原理图设计阶段实现对数模混合信号电路的功能设计仿真,配合简单易用的参数配置窗口,完成基于时序、离散度、信噪比等多种数据的分析。
Altium Designer 可以在原理图中提供完善的混合信号电路仿真功能 ,除了对XSPICE 标准的支持之外,还支持对Pspice模型和电路的仿真。
Altium Designer中的电路仿真是真正的混合模式仿真器,可以用于对模拟和数字器件的电路分析。
仿真器采用由乔治亚技术研究所(GTRI)开发的增强版事件驱动型XSPICE仿真模型,该模型是基于伯克里SPICE3代码,并于且SPICE3f5完全兼容。
SPICE3f5模拟器件模型:包括电阻、电容、电感、电压/电流源、传输线和开关。
五类主要的通用半导体器件模型,如diodes、BJTs、JFETs、MESFETs和MOSFETs。
XSPICE模拟器件模型是针对一些可能会影响到仿真效率的冗长的无需开发局部电路,而设计的复杂的、非线性器件特性模型代码。
包括特殊功能函数,诸如增益、磁滞效应、限电压及限电流、s域传输函数精确度等。
《数模混合集成电路设计》课程报告数模混合仿真报告专业:集成电路班级:电子0 6 0 4学号:200681131姓名:高丕龙TTL IC脉冲发生器一.实验目的1.学习模拟数模混合电路的方法。
2.熟悉应用pspice软件进行电路仿真的流程。
3.学习使用pspice中库文件中不同的元件应用特点和参数设置。
二.实验原理1.实验原理图:2.原理分析:实际电路中,应靠元件的自然噪声来触发震荡,然而仿真中用的元件都已理想化,无法起振,使电路各节点均保持偏压点的电压值。
解决方法是给电容C1C2赋予IC(初始条件),迫使电路从非偏压点位置开始仿真。
由上图,知电路初态时V A=-1.061V,VB=2.501V,VC=4.501V,VD=0.939V,E=1即A为低压,B为高压,C为高压,D为低压。
当A为低压时,B为高压,C为高压,D为低压:B经由R1向电容C2充电使A点电压升高,C1经由R2放电使C点电压下降。
当A点和C点达到临界电压时,U7A和U8A就会改变状态。
使A 为高压时,B为低压,C为低压,D为高压。
当A为高压时,B为低压,C为低压,D为高压:D经由R2向电容C1充电使C电压升高,C2经由R1放电使A电压下降。
当A 点和C点达到临界电压时,U7A和U8A就会改变状态。
使A为低压,B为高压,C为高压,D为低压。
这样由于反相器U7A和U8A的迟滞特性和电容C1,C2的周期性充放电产生震荡脉冲,经U9A整形后即可输出规范的周期性方波了。
三.实验步骤1.建立新工程TTL,选择类型为anglog or mixed ,并设置存储地址为D:work文件夹。
2.从pspice元件库中取出三个7414,两个R,两个C。
并设置相关元件的参数。
3.按照原理图进行连线,并对通过Place Net Alias对输入输出信号线进行命名。
4.保存原理图文件并生成电路网表如下:* source TTLX_U7A A B $G_DPWR $G_DGND 7414 PARAMS:+ IO_LEVEL=0 MNTYMXDLY=0C_C2 D A 0.01u IC=2VR_R1 A B 1kX_U8A C D $G_DPWR $G_DGND 7414 PARAMS:+ IO_LEVEL=0 MNTYMXDLY=0X_U9A D E $G_DPWR $G_DGND 7414 PARAMS:+ IO_LEVEL=0 MNTYMXDLY=0R_R2 C D 1kC_C1 C B 0.01u IC=2V5.建立一个新的仿真文件,命名为TTL,并设置分析类型为瞬态分析和其他仿真参数。
几款软件的对比分析1. PSpice 仿真软件简介:PSpice属于元件级仿真软件,模型采用spice通用语言编写,移植性强,常用的信息电子电路,是它最适合的场合。
现在使用较多的是 PSpice 8.0,工作于 Windows 环境,占用硬盘空间60M左右,整个软件由原理图编辑、电路仿真、激励编辑、元器件库编辑、波形图等几个部分组成,使用时是一个整体。
PSpice 的电路元件模型反映实际型号元件的特性,通过对电路方程运算求解,能够仿真电路的细节,特别适合于对电力电子电路中开关暂态过程的描述。
主要功能:(1)复杂的电路特性分析,如:蒙特卡罗分析(2)模拟、数字、数模电路仿真(3)集成度提高缺点:(1)不适用于大功率器件(2)采用变步长算法,导致计算时间的延长(3)仿真的收敛性较差。
2. saber仿真软件简介:被誉为全球最先进的系统仿真软件,也是唯一的多技术、多领域的系统仿真产品,现已成为混合信号、混合技术设计和验证工具的业界标准,可用于电子、电力电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,这也是saber的最大特点。
Saber最为混合仿真系统,可以兼容模拟、数学、控制量的混合仿真,便于在不同层面撒谎那个分析和解决问题,其他仿真软件不具备这样的功能。
Saber的仿真真实性很好,从仿真的电路到实际的电路实现,期间参数基本不用修改。
主要功能:(1)原理图输入和仿真(2)数据可视化和分析(3)模型库(4)建模缺点:操作较复杂,原理图仿真常常不收敛导致仿真失败,很占系统资源,环路扫频耗时太长(以几十分钟计)3. PLECS仿真系统简介:被全球众多知名公司的研发工程师誉为“全球最专业的系统级电力电子电路仿真系统”,也是一个用于电路和控制结合的多功能仿真软件,尤其适用于电力电子和传动系统。
PLECS独立版本已于2010年开发,自此PLECS脱离MATLAB/Simulink。
PLECS独立版具有控制元件库和电路元件库,采用优化的解析方法,仿真速度更快,比PLECS嵌套版本快2.5倍。