透镜参数的测量
- 格式:doc
- 大小:143.50 KB
- 文档页数:6
核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-5-2透镜参数的测量 PB10214023 张浩然一、实验题目:透镜参数的测量二、实验目的:了解光源、物、像之间的关系以及球差、色差产生的原因,熟练掌握光具座上各种光学元件的调节并且测量薄透镜的焦距和透镜的球差和色差 三、实验器材:光具座(包括光源、物屏、凸透镜、凹透镜、像屏等器具) 四、实验原理:1、符号规定:总结为顺光线方向为正,逆光线方向为负。
2、高斯成像公式:设p 为物距,q 为像距,物方焦距为f 1,像方焦距为f 2,则有112=+p f q f 空气中f 2=-f 1=f ,则公式变成fp q 111=-3、测凸透镜焦距 (1)直接法测得光线会聚点和透镜中心的位置x 1、x 2,则f=|x 1-x 2| (2)公式法如图测得p 、q ,利用高斯公式进行计算(3)平面镜反射法利用平面镜反射在物屏上成清晰的像,从而得到焦距f (4)位移法当屏与物的距离A>4f 时,有两个清晰成像的位置,记两个位置之间的距离为l ,则Al A f 422-=4、辅助透镜测量凹透镜焦距:凹透镜将实物成虚像,故通过凸透镜成像后,将像作为凹透镜的物,从而在屏上得到实像,核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-5-2再利用式fp q 111=-计算f五、数据处理:1. 公式法测凸透镜焦距实验数据有:x 又由:物距有10p x x =-像距有20q x x =-焦距有fp q =-对于焦距f :平均值:61110.2966i i f f cm ===∑对于每组测量值,由于相对独立,则有: 对于每一组的像距和物距: A 类不确定度为:0A u = B 类不确定度:0.0200.006673B B cm u cmC ∆=== 有展伸不确定度:0.950.0131 0.95u cm p ====核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-5-2 则由fp q 111=-得出误差传递公式为:f u f=则结果的最终表达式为:又由f u =,可得=0.009 p=0.95fu cm则凸透镜焦距的最终结果表达式为:(10.2960.009)cm p=0.95f =±2. 位移法测凸透镜焦距实验数据有:光源位置:x有屏与物的距离为A=x 3-x 0=50.65cm 对于l 有:平均值:6121.873cm ii l l===∑则有2210.3014A l f cm A-== 对l 进行数据分析:标准差:0.142cm l σ== A 类不确定度:0.0580A u cm ==B 类不确定度:0.0200.006673B B cmu cm C ∆===核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然日期 2011-5-2 展伸不确定度:0.150cm 0.95l u p ===对于A 进行数据分析:由其只测量一次,则只有B 类不确定度, B 类不确定度:0.0200.006673B B cm u cmC ∆===有展伸不确定度:0.0131 0.95A u cm p ===由224A l f A-=可得不确定度传递公式为:f u f=可得:0.003cm f fu u f f=⋅=则凸透镜焦距的最终结果表达式为:(10.3010.003)cm p=0.95f =±3. 平面镜反射法测凸透镜焦距实验数据有:光源位置x对1进行数据分析有:平均值:6128.673cm ii x x===∑标准差: 0.028cm x σ==A 类不确定度:0.0115A u cm ==B 类不确定度: 0.0200.006673B B cm u cmC ∆=== 展伸不确定度:0.032cm 0.95x u p ===又由10f x x =-,可得核科学技术学院 2010 级 学号 PB10214023 姓名 张浩然 日期 2011-5-210=10.323cm f x x =-又有误差传递公式为:0.032cm 0.95f x u u p ===则凸透镜焦距的最终结果表达式为:(10.3230.032)cm p=0.95f =±4.测量凹透镜焦距:实验数据有: 光源位置:x 0=18.35cm 凸透镜位置:x 1=30.80cm 第一次成像位置:x 2=90.50cm 放上凹透镜之后:凹透镜位置:x 3=83.92cm 第二次成像位置:x 4=93.22cm 可得:物距为32 6.58cm p x x =-=- 像距为:429.30cm q x x =-= 则由高斯公式可得:22.498cm pqf q p==-+ 由于实验数据仅测得一组,故不作误差分析,上式即为实验结果的最终表达式。
测量透镜焦距的方法
测量透镜焦距的方法
透镜是光学仪器中不可或缺的部分,而测量透镜焦距是透镜应用中的
一个重要环节。
透镜焦距是指透镜将平行光线聚焦成像的距离,是透
镜的重要参数之一。
下面介绍几种测量透镜焦距的方法。
1. 通过物距和像距测量
这是最常用的测量透镜焦距的方法。
首先将一物体放置在透镜的一侧,然后将屏幕或者像纸放置在透镜的另一侧。
调整透镜与屏幕或像纸的
距离,直到在屏幕或像纸上得到一个清晰的像。
此时,可以通过测量
物距和像距来计算透镜的焦距。
2. 通过远物成像测量
这种方法适用于焦距较大的透镜。
将一个远离透镜的物体放置在透镜
的一侧,然后将屏幕或像纸放置在透镜的另一侧。
调整屏幕或像纸的
位置,直到在屏幕或像纸上得到一个清晰的像。
此时,可以通过测量
透镜与屏幕或像纸的距离来计算透镜的焦距。
3. 通过双凸透镜的组合测量
将两个焦距相同的双凸透镜背对背组合在一起,形成一个双凸透镜组合体。
将一个物体放置在双凸透镜组合体的一侧,然后将屏幕或像纸放置在另一侧。
调整屏幕或像纸的位置,直到在屏幕或像纸上得到一个清晰的像。
此时,可以通过测量双凸透镜组合体与屏幕或像纸的距离来计算透镜的焦距。
以上是几种常用的测量透镜焦距的方法。
在实际应用中,需要根据具体情况选择合适的方法。
同时,为了保证测量结果的准确性,需要注意测量时的环境和仪器的精度。
透镜的中心偏差测量原理透镜的中心偏差测量原理主要基于光学原理和测量实验。
在测量过程中,我们通常使用一束平行光照射到透镜上,然后观察透镜产生的像,通过测量像的位置和光线的入射角度等参数,可以间接推算出透镜的中心偏差。
首先,我们需要了解一下透镜的中心偏差是什么。
透镜的中心偏差是指透镜的实际光轴和理论光轴之间的距离差。
理论光轴是经过透镜的理想的光线传播轴,而实际光轴则是真实的光线传播轴。
中心偏差通常由于透镜的制造和装配过程中存在的误差导致。
测量透镜的中心偏差可以使用多种方法,其中较为常见的方法是点法和缎带法。
点法是通过将光线从透镜的正面照射,然后观察通过透镜的光线在屏幕上产生的像点位置来进行测量。
具体步骤如下:1. 将光源放置于透镜的一侧,并调节光源位置使得光线垂直照射到透镜上。
2. 在透镜的另一侧放置一个屏幕,将屏幕调整到透镜的焦点位置。
3. 观察通过透镜的光线在屏幕上形成的像点位置,并将像点的坐标记录下来。
4. 移动光源,改变光照射角度,并重复步骤3,记录不同入射角度下的像点位置。
5. 根据不同的入射角度和像点位置,使用三角函数关系计算出透镜的中心偏差。
缎带法是通过使用一根细缎带反射透镜的光线,并观察反射光线与原透镜的入射光线的位置关系来进行测量。
具体步骤如下:1. 将缎带固定在透镜的一侧,并将其调整到透镜的焦点位置。
2. 在透镜的另一侧放置一个屏幕,使得透过透镜的光线与反射缎带上的光线重合。
3. 观察反射光线和源光线的位置关系,并将其记录下来。
4. 移动缎带,改变反射光线和源光线的位置关系,并重复步骤3,记录不同位置关系下的光线位置。
5. 根据不同的光线位置关系,使用三角函数关系计算出透镜的中心偏差。
无论是点法还是缎带法,测量透镜的中心偏差都需要进行多组测量数据的处理和分析。
常见的数据处理方法包括平均值法、最小二乘法等。
总结起来,透镜的中心偏差测量原理是基于光学原理和测量实验的。
通过观察光线的入射角度和像点的位置等参数,可以间接推算出透镜的中心偏差。
光学透镜检验标准一、外观检查1.透镜表面应光滑、平整,无明显的划痕、凸起、凹陷等缺陷。
2.透镜边缘应圆润,无锋利的边角,避免对眼睛造成伤害。
3.透镜表面的颜色应均匀一致,无色差、无褪色等现象。
4.透镜的光学表面应无灰尘、水滴、油污等杂质,保证光线的透过效果。
二、尺寸测量1.透镜的尺寸应符合设计要求,测量时应使用精确的量具进行测量。
2.透镜的直径、厚度等尺寸应符合规格要求,保证透镜的装配和使用效果。
3.透镜的孔径、孔距等尺寸应符合设计要求,保证透镜的固定和连接效果。
三、透镜材料检查1.透镜的材料应符合设计要求,选用高透光率、高硬度的光学材料。
2.透镜的材料应具有稳定性,能够抵抗环境的影响,保证透镜的质量和性能。
3.透镜的材料应具有一致性,避免因材料差异导致光学性能的变化。
四、表面质量检测1.透镜表面应无裂纹、气泡、麻点等表面缺陷,保证光线的透过效果。
2.透镜表面应无明显的划痕、磨损等损伤,保证使用的安全性和美观度。
3.透镜表面的粗糙度应符合设计要求,避免影响光学性能和外观质量。
五、光学性能测试1.透镜的光学性能应符合设计要求,包括焦距、折射率、透光率等参数。
2.透镜在规定的光源下应能正常工作,保证光线的聚焦和分散效果。
3.透镜应对光线有较好的会聚能力,保证光线的透过效果和图像的清晰度。
六、耐候性测试1.透镜应能够在不同的环境条件下稳定工作,包括高温、低温、潮湿、干燥等环境。
2.透镜应能够抵抗环境的影响,保证光学性能和使用寿命。
3.透镜在耐候性测试中的表现应符合设计要求,保证使用的可靠性和稳定性。
七、机械强度测试1.透镜应具有一定的抗冲击能力,能够在一定程度的冲击下不发生破裂或变形。
2.透镜的固定方式应牢固可靠,能够保证透镜在使用中的稳定性和安全性。
3.透镜的机械强度应符合设计要求,保证使用的耐久性和稳定性。
八、防尘防水测试1.透镜应具有较好的防尘防水性能,能够在一定的尘埃和水分环境下正常工作。
2.透镜的密封性能应符合设计要求,保证使用的可靠性和安全性。
实验14 薄透镜焦距的测量透镜是光学仪器中最基本的器件,常常被组合在其他光学仪器中。
焦距是反映透镜性质的一个重要参数。
因此了解并掌握透镜焦距的测量方法,不仅有助于加深理解几何光学中的成像规律,也有助于加强对光学仪器调节和使用的训练。
另外,光学平台是光学实验中的常用设备,通过本实验还可以了解光学平台的使用方法。
一、实验目的1、通过实验进一步理解透镜的成像规律;2、掌握测量透镜焦距的几种方法;3、掌握和理解光学系统光路调节的方法。
二、实验原理1、薄透镜成像原理及其成像公式在近轴光线条件下,薄透镜的成像公式为111+=(14-1)u v f式中u为物距,v为像距f为焦距,对于凸透镜、凹透镜而言,u恒为正值,像为实像时v为正,像为虚像时v为负,对于凸透镜f恒为正,凹透镜f恒为负。
图14-1 共轭法测凸透镜焦距原理图图14-2 自准直法测凸透镜焦距原理图2、测量凸透镜焦距的原理(1)物距-像距法根据成像公式,直接测量物距和像距,并求得透镜的焦距。
(2) 共轭法(位移法)由图14-1可见,物屏和像屏距离为L (L >4f ),凸透镜在O 1、O 2两个位置分别在像屏上成放大和缩小的像,由凸透镜成像公式,成放大的像时,有111u v f +=,成缩小的像时,有111u D v D f+=+-,又由于 u v D +=,可得224L D f L-=。
(3) 自准法位于凸透镜L 焦平面上的物体AB 上(实验中用一个圆内三个圆心角为060 的扇形)各点发出的光线,经透镜折射后成为平行光束(包括不同方向的平行光),由平面镜M 反射回去仍为平行光束,经透镜会聚必成一个倒立等大的实像于原焦平面上,这时像的中心与透镜光心的距离就是焦距f (如图14-2)。
3、 测量凹透镜焦距的原理(1)自准值法通常凹透镜所成的是虚像,像屏接收不到,只有与凸透镜组合起来才可能成实像。
凹透镜的发散作用同凸透镜的会聚特性结合得好时,屏上才会出现清晰的像(如图14-3所示)。
测量透镜及透镜组参数测量透镜及透镜组参数实验⽬的1.了解光学器件共轴的粗调⽅法2.掌薄透镜焦距的⼏种测量⽅法3.掌透镜组基点的测量⽅法实验基本原理按成像性质,透镜可分为两类,⼀类是会聚透镜也叫凸透镜;另⼀类是发散透镜也叫凹透镜.透镜表⾯有两个光学⾯,会聚透镜中⼼部分⽐边缘部分厚.发散透镜则相反,边缘部分⽐中⼼部分厚.⼀. 关于薄透镜成像规律的⼏个概念1.光⼼:光线通过透镜中⼼,其⽅向不改变,这个透镜的中⼼点称为光⼼,图1中O为光⼼.2.主轴:通过透镜的光⼼且与透镜相互垂直的轴称为透镜的主轴,透镜的主轴是唯⼀的.副轴:通过光⼼且与主轴成⼀⼩⾓度的轴称为副轴,副轴有⽆穷多个.3.焦点:平⾏于主轴的平⾏光线通过透镜折射后,会聚于⼀点,这⼀点称为透镜的焦点,凸透镜的焦点是实焦点,凹透镜的焦点是虚焦点.在透镜的两侧,各有⼀个焦点.分别称为透镜的第⼀焦点和第⼆焦点,如图1中和.4.焦平⾯:通过焦点与主轴垂直的平⾯称为透镜的焦平⾯.焦平⾯的性质:平⾏于任⼀副轴的平⾏光,通过透镜后会聚于这⼀副轴与焦平⾯的交点,这⼀交点对应于这⼀副轴的副焦点,焦平⾯就是由许许多多这样的副焦点构成的平⾯.在透镜的两侧各有⼀个焦平⾯,分别称为前焦平⾯和后焦平⾯.5.焦距:从光⼼到焦点的距离称为焦距.对于薄透镜来说,如果透镜两侧的介质相同,那么第⼀焦距和第⼆焦距相等. |f|=|f'|6.⾼斯公式透镜本⾝的厚度d⽐起其焦距f、物距s、像距s’的长度⼩得多的透镜叫薄透镜.薄透镜的成像公式即⾼斯公式为:(1)s ,,分别为物距、像距、透镜第⼆焦距.⼆.透镜组成像规律的⼏个概念两个以上透镜组成的系统称为透镜组,如果所有透镜的主轴都在同⼀直线上,则这组透镜称为共轴系统,⽽该直线称为系统的主光轴. 在成像过程中,前⼀个折射⾯所成的像是后⼀个折射⾯的物.为了⽅便地描述透镜组的成像规律,引⼊基点(即焦点、主点、节点),将系统看成⼀个整体来处理成像问题.只要能确定系统的基点,便可⽤公式法(⾼斯公式、⽜顿公式)或作图法求解系统成像问题.1.主焦点、主焦平⾯如果平⾏光束从系统左边平⾏于主光轴⼊射(系统⼊射光的⼀边称为物空间),光束通过透镜组后,会聚在系统右侧(系统出射光⼀侧称为像空间)光轴上F’点,F’称为系统像空间的主焦点(或第⼆主焦点),如图2所⽰,通过F’作垂直于光轴的平⾯,该平⾯称为系统像空间的焦平⾯或第⼆主焦平⾯.因为光路是可逆的,如果从像空间、平⾏于系统光轴射⼊平⾏光,会聚在光轴的F点,则F点称为系统物空间的主焦点或第⼀主焦点.通过F作垂直于光轴的平⾯称为系统空间的焦平⾯或第⼀焦平⾯,如图3所⽰.错误!未找到引⽤源。
实验简介透镜是按几何光学原理设计由透明材料加工而成的基本光学元件,早期的单透镜是两个球面(其中有一个可以是平面)组成的,为了消除象差,改善成像质量,人们设计了各种各样的组合透镜,发明了望远镜、显微镜,大大扩展了人眼的视界。
因此可以说透镜成像在科学技术上的作用非常重要,了解单透镜的基本性质和参数测量方法是很有意义的。
将为进一步学习光学技术以及正确使用光学仪器打下基础。
⏹实验简要原理透镜的主要作用是成像,描述透镜的性能最主要的参量叫焦距。
通过本实验学生可以学到三种测量焦距的方法。
(1)自准直法。
(2)物象公式法。
(3)位移法。
基本公式为高斯成像公式。
注意几何光学中距离的符号规定,以透镜的主平面为起点与光线行进的方向一致为正,反之为负。
如图2所示,高斯公式为:按照几何规定光学带撇的量代表像方量(不带撇的量表示物方量,凸透镜的像方焦距为正,凹透镜的像方焦距为负)。
⏹实验内容将白光光源、透镜、物屏、象屏等放在光具座上,并且将各元件的中心的连线与光具座导轨平行(共轴调节)。
(1) 自准直法:如图1所示,将光源、物屏、透镜和反射镜放在光具座上,让光源的光照亮物屏,移动物屏的位置,使经透镜到反射平面镜再沿原路反射回来的光在物屏上形成相等大小、方向相反的清晰的象。
这时物屏与透镜的距离就是透镜的焦距。
(2) 物象公式法:如图2所示,将物屏、透镜和象屏放在合适的距离,使物体的象最清晰,测出物距和像距由透镜的高斯物象公式求出透镜的焦距。
(3)位移法:当物距在一倍焦距和两倍焦距之间时,在像方可以得到一个放大的实象,当物距大于二倍焦距时可以得到一个缩小的实像。
使物屏与象屏之间的距离大于4倍焦距,调整透镜可以有两次在象屏上得到清晰的象。
如图2所示。
有高斯公式可以推出:测出L和l就可以计算出透镜的焦距了。
测量凹透镜的焦距:由于凹透镜不能直接成实像所以测量其焦距必须利用一个凸透镜作为辅助透镜。
测量光路如图4所示。
⏹教学重点1. 透镜的主要参数是焦距,透镜的成像关系由焦距决定。
测量焦距的三种方法测量物体的焦距是光学实验中非常重要的一项任务。
焦距是指光线通过透镜或凸透镜后的聚焦能力,是光学系统的一个关键参数。
测量焦距的方法有很多种,本文将介绍其中的三种方法。
第一种方法是通过远焦距的透镜测量。
这种方法适用于测量凸透镜或薄透镜的焦距。
首先,将透镜放置在适当的支架上,并将一块被测物体(如一个小孔或线状物体)放置在透镜的近焦面上。
然后,将一块屏幕放置在透镜的远焦面上,并适当调节透镜位置,使得光线能够通过透镜并在屏幕上形成清晰的像。
通过测量透镜到屏幕的距离和透镜到物体的距离,可以计算出透镜的焦距。
第二种方法是通过近焦距的透镜测量。
这种方法适用于测量凹透镜的焦距。
与第一种方法类似,首先将透镜放置在支架上,并将物体放置在透镜的远焦面上。
然后,将一块屏幕放置在透镜的近焦面上,并适当调节透镜位置,使得光线能够通过透镜并在屏幕上形成清晰的像。
通过测量透镜到屏幕的距离和透镜到物体的距离,可以计算出透镜的焦距。
第三种方法是通过光屏法测量。
这种方法适用于测量透镜或凸透镜的焦距。
首先,将光源放置在透镜的一侧,并将透镜放置在光源的对面。
然后,将一块屏幕放置在透镜的另一侧,并适当调节屏幕的位置,使得光线能够通过透镜并在屏幕上形成清晰的像。
通过测量透镜到屏幕的距离和透镜到光源的距离,可以计算出透镜的焦距。
除了上述的三种方法,还有其他一些常用的方法可以测量焦距,如利用光线准直仪、利用双光栅干涉仪等。
这些方法在实际操作中,需要根据具体情况选择合适的方法。
总之,测量焦距是进行光学实验和设计光学系统的重要环节。
通过采用适当的测量方法,我们可以准确地得到焦距的数值,并用于实际应用中。
希望本文所介绍的三种方法对读者有所帮助,并能激发更多关于焦距测量的兴趣与研究。
测量凸透镜焦距的方法凸透镜是一种常见的光学器件,它在很多领域都有着重要的应用,比如在摄影、显微镜、望远镜等设备中都会用到凸透镜。
而要正确使用凸透镜,首先就需要了解它的焦距。
凸透镜的焦距是指光线经过凸透镜后的汇聚或发散的距离,它是凸透镜的一个重要参数。
下面我们将介绍几种测量凸透镜焦距的方法,希望对大家有所帮助。
1. 通过物方焦距和像方焦距的测量。
凸透镜的焦距可以通过物方焦距和像方焦距的测量来确定。
首先将一物体放置在凸透镜的物方焦点附近,然后在像方焦点处观察到物体的像。
通过测量物体和像的距离,即可得到凸透镜的焦距。
2. 利用物体和像的关系测量。
在实验中,我们可以利用物体和像的关系来测量凸透镜的焦距。
将一个物体放置在凸透镜的物方焦点附近,观察到像后,可以测量物体和像的距离。
根据公式1/f=1/v+1/u,可以计算出凸透镜的焦距。
3. 使用远物法测量。
远物法是一种常用的测量凸透镜焦距的方法。
在实验中,我们可以利用远物法来测量凸透镜的焦距。
首先将一个远处的物体放置在凸透镜的前方,然后在凸透镜的后方观察到物体的像。
通过测量像的位置,即可计算出凸透镜的焦距。
4. 利用透镜成像公式测量。
透镜成像公式是用来描述透镜成像规律的公式,通过透镜成像公式,我们可以计算出凸透镜的焦距。
在实验中,我们可以利用透镜成像公式来测量凸透镜的焦距,这是一种比较准确的方法。
总结:通过以上几种方法,我们可以准确地测量凸透镜的焦距。
在实际应用中,根据需要选择合适的方法来进行测量,以确保测量结果的准确性。
同时,需要注意实验中的环境因素和误差,尽量减小误差,提高测量的精确度。
希望以上内容对大家有所帮助,谢谢阅读!。
测量薄透镜焦距的方法薄透镜是光学实验中常用的器件,它具有很多重要的应用,如成像、照相、望远镜、显微镜等。
薄透镜的焦距是一个重要的参数,它决定了透镜的成像能力和成像位置。
因此,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。
下面将介绍几种测量薄透镜焦距的方法。
一、通过物距法测量薄透镜焦距。
物距法是一种常用的测量薄透镜焦距的方法。
具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。
2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像到透镜的距离,即像距v。
3. 根据薄透镜的公式1/f=1/v+1/u,可以计算出薄透镜的焦距f。
二、通过放大率法测量薄透镜焦距。
放大率法是另一种测量薄透镜焦距的方法。
具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。
2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像的高度,即像高h。
3. 根据放大率公式m=-v/u=h'/h,可以计算出薄透镜的焦距f。
三、通过远处物体成像法测量薄透镜焦距。
远处物体成像法是一种简便的测量薄透镜焦距的方法。
具体步骤如下:1. 将一远处物体放置在薄透镜的一侧,调节透镜位置,使得在透镜的另一侧得到清晰的像。
2. 测量像到透镜的距离,即像距v。
3. 根据薄透镜的公式1/f=1/v,可以计算出薄透镜的焦距f。
以上所述的三种方法都是常用的测量薄透镜焦距的方法,每种方法都有其适用的场合,可以根据实际情况选择合适的方法进行测量。
在实际操作中,需要注意测量的精度和准确性,避免因操作不当而导致误差的产生。
总之,薄透镜的焦距是一个重要的光学参数,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。
通过物距法、放大率法和远处物体成像法等方法,可以准确地测量薄透镜的焦距,为光学实验和应用提供准确的数据支持。
7.1.1 透镜参数的测量
(本文内容选自高等教育出版社《大学物理实验》)透镜是使用最广泛的一种光学元件,眼球也是一种透镜,我们正是通过这一对透镜来观看周围世界的。
透镜及各种透镜的组合可形成放大的或缩小的实像及虚像。
人类就是利用透镜及其组合观察到遥远宇宙中星体的运行情况以及肉眼看不见的微观世界的。
透镜是用透明材料(如光学玻璃、熔石英、水晶、塑料等)制成的一种光学元件。
一般它由两个或两个以上共轴的折射表面组成。
仅有两个折射面的透镜称单透镜,由两个以上折射面组成的透镜称组合透镜。
多数单透镜的两个折射曲面都是球面或一面是球面而另一面是平面,故称其为球面透镜,它可分为凸透镜、凹透镜两大类,每类又有双凸(凹)、平凸(凹)、弯凸(凹)三种。
两个折射面有一个不是球面(也不是平面)的透镜称为非球面透镜,它包括柱面透镜、抛物面头颈等。
根据厚度的差异,透镜可分为薄透镜和厚透镜两种。
连接透镜两表面曲率中心的直线称为透镜的主轴。
透镜两表面在其主轴上的间隔与球面的曲率半径相比不能忽略的,称为厚透镜;若可略去不计,则称其为薄透镜。
实验室中常用的透镜大多为薄透镜。
根据聚光性能的差异,透镜又可分为会聚透镜和发散透镜两种。
描述透镜的参数有许多,其中最重要、最常用的参数是透镜的焦距。
利用不同焦距的透镜可以组合成望远镜、显微镜等。
透镜将物成像,决定像的质量的一个重要参数就是像差,像差有多种,如果测得透镜的像差,就可以以一定的方法来消除像差提高成像质量。
通过本实验要求同学们了解激光的扩束系统,光源、物、像间的关系以及球差、色差产生的原因;熟练掌握扩束光源、光具座上各种光学元件的调节并且测量薄透镜的焦距和透镜的球差和色差。
实验原理
1.光源扩束
如图7.1.1-1所示。
当一焦距很短的凹透镜F1(焦距为f1)的像方焦点和一个焦
距较长的凸透镜F2(焦距为f2)的物方焦点重合时,可将一光斑大小为r1的入射平行光扩大为光斑大小为r2的n倍的平行光
1
212r r f f n == (1) 光学上称其为扩束系统,常用于激光的扩束。
2. 直接法测焦距
平行光经凸透镜后会聚成一点,如图7.1.1-2所示。
测得会聚点和透镜中心的位置x 1、x 2,就可测得该透镜的焦距
12x x f -= (2)
3. 公式法测焦距
固定透镜,将物放在距透镜一倍以上焦距处,在透镜的像方某处会获得一清晰的像,如图7.1.1-3所示,图中p 、p ’分别对应物距、像距。
p 、p ’不仅有大小,还有正负。
正负遵守符号法则,物距、像距分别为自透镜中心处至物、像间的距离,当物、像为实物、实像时,对应的符号为正,反之为负。
在近轴条件下,根据物像公式
f
p p 1'11=+ (3) 可以测得透镜的焦距。
4. 位移法测焦距
当物距在一倍焦距和二倍焦距之间时,在像方可以获得一放大的实像,物距大于二倍焦距时,可以得到一缩小的实像。
当物和屏之间的距离L 大于4f 时,固定物和屏,移动透镜至C 、D 处(如
图7.1.1-4),在像屏上可分别获得放大和缩小的实像。
C 、D 间距离为l ,通过物像公式,可得
L
l L f 42
2-= (4) 通过(4),只要测得L 、l ,即可获得焦距f 。
5. 测凹透镜的焦距
凹透镜是一发散透镜,物经其仅能成虚像,虚像不能用像屏接受,这样无法直接用物成像的方法来计算焦距,但可利用凸透成的像作为凹透镜的物,使其成实像。
利用物象公式可以计算出凹透镜的焦距,注意凹透镜的物、像焦距的符号及物距、像距的符号。
此时利用下式
'
1'11f p p =- (5) 可以计算出凹透镜的焦距。
注意凹透镜的像方焦点在物空间,物方焦点在像空间。
实验中应使物距、像距均大于0,才能用屏接收到实像,如图7.1.1-5所示。
6. 组合望远镜
简单的望远镜如图7.1.1-6所示。
物镜像方焦点1'F 和目镜的物方焦点F 2相重合,从远物上一点P 射来的平行光束经物镜后会聚于P ’点;再经目镜后成为一束平行于直线P ’O 2的平行光束,最后像位于无限远处。
望远镜的放大本领为
2
1f f M (6) 由此可见物镜的焦距f 1越长,目镜的焦距f 2越短,则望远镜的放大本领就越大。
7. 球差、色差
在近轴条件下,理想成像能近似成立。
但在实际应用中,为了增大视场和提高像的光照度,以至于不能满足近场光线的条件。
这时近场成像与实际成像存在差距,即像差。
像差一般分为单色像差和色像差。
单色像差有球面像差、彗形像差、像散、畸变、像的弯曲等,透镜的大孔径引起前两种像差,透镜的大视场引起另几项像差。
对于非单色光,因色散作用可能引起色像差。
本实验中主要测量球差和色差。
(1) 球面像差(球差)
在透镜孔径较大时,从轴上一物点发出的光经球面折射后不再交于轴上一点,如图7.1.1-7所示。
球差的大小与光线的孔径有关,孔径可用孔径角或入射光线在折射面上的高度h 来表示。
一般定义高度为h 的光线在像方与主轴交点A 到近场光线与主轴交点B 之间的距离为纵向球差。
线段AB 与光线行进方向一致时为正球差,反之为负球差。
远场光线和近场光线像的高度差为横向球差。
(2) 色差
由于透镜对不同波长的光的折射率不同,不同颜色的光所成的像的大小、位置会有所不同,不同色光成像间的高度差称为横向色差,位置差称为轴向色差,设长波长光的像点为Q ’,短波长光的像为Q ’’,Q ’靠近透镜时为负色差,Q ’’靠近透镜时为正色差,如图7.1.1-8所示。
实验内容
早期光学实验大都使用白光源,对环境要求较高,实验者在一个黑暗的房间里操作,不利于操作者的身心健康。
随着激光器成本的降低,目前,几何光学实验基本采用激光器作光源,由于激光器具有高亮度,单色性等性能,大大改善了实验的环境。
本实验使用He-Ne激光作为光源,由于光强强且光学元件的表面大部分能反射激光,故在实验过程中,注意不要将这种红色激光反射到其他同学的眼睛以造成伤害。
He-Ne激光的波长为632.8nm。
1.测量凸透镜焦距
用直接法、公式法、位移法测量凸透镜的焦距。
每组数据测量三次并对结果作误差分析。
比较三种方法的测量结果。
实验中的物可用可透过光的“1”字屏,由于激光太强,为使实验现象更明显,在“1”字屏后可加上毛玻璃。
调节光具座使其水平,打开激光器,用一带有图7.1.1-9式样的十字环形屏来调整光路。
使激光器与光具座平行。
具体调节方法如下:
首先调节激光器使激光与光具座在一平面内。
激光输出端与光具座的一端在同一垂直平面内,在光具座的另一端用十字环形屏接收光斑(图7.1.1-10),如光斑偏左(右),可将激光器右(左)移一定量,逐步调整以实现目标。
其次调节激光器使其平行光具座。
如同图7.1.1-10所示,如光偏上(下),可将激光器下(上)移一定量,即可实现目标。
激光与光具座平行后,调节扩束系统。
激光输出光斑很小(一般为1mm左右),而实验中的物一般为30mm左右,这样需对激光扩束。
将短焦距的凹透镜中心高度同光斑等高度,可在凹透镜后放一十字环形屏,其中心对准激光光斑,上下左右调节凹透镜使其输出的圆形光斑均匀分布在
十字中心(光斑如不是正圆形,可通过调节凹透镜的俯仰使其为正圆),再将凸透镜放在凹透镜的后,改变凸透镜与凹透镜的距离,使其输出光斑在光具座上不同位置处环形屏上的光斑大小相等。
这样就实现了扩束系统的调节。
2.测量凹透镜的焦距
3.测量凸透镜的球差
用扩束过的He-Ne光照射物体(“1”字屏),在紧靠透镜后放一可调节光圈,以调节透过光线,称动像屏。
记下近场和远场光线像的位置及高度,计算纵向球差和横向球差。
4.测量凸透镜的色差
用不同的光源如钠灯或汞灯加不同的滤光片(作用是仅让某一波长的光透过)以选取不同波长的光照射物体,通过调节紧挨透镜的光圈仅让近场光线通过,测得不同波长的光入射时,透镜的焦距,计算色差,作出λ
f的曲线图。
-
5.设计望远镜
选两个焦距比为10倍以上的透镜,自己设计、调整光路,并观察室外远处物体。
测量该望远镜的放大本领。
6.注意事项
光学实验中使用的大部分光学元件是玻璃制成的,光学表面经过精心抛光。
使用时要轻拿、轻放,避免碰撞、损坏元件。
任何时候都不要手触及光学表面(镀膜片或光在此表面反射或折射),只能拿磨砂面(光线不经过的面一般都磨成毛面,如透镜的侧面,棱镜的上下底面等),不要对着光学元件表面说话、咳嗽、打喷嚏等。
思考题
1.如果在“1”字屏后不加毛玻璃,对实验会有什么影响?
2.如果光路调节得很好,用三种方法测量的结果误差之间有何关系?如果不是这样,是什么原因造成的?
3.平凸、双凸(不等曲率)透镜的入射面不同,球差、色差会有什么变化?。