北京市西城区高一数学上学期期末考试试题
- 格式:doc
- 大小:472.54 KB
- 文档页数:9
北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第1页(共11页)北京市西城区2019—2020学年度第一学期期末试卷高一数学 2020.1本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|2,}A x x k k ==∈Z ,{|33}B x x =-<<,那么A B =I ( ) (A ){1,1}- (B ){2,0}- (C ){2,0,2}-(D ){2,1,0,1}--(2)方程组220,2x y x y +=⎧⎨+=⎩的解集是( )(A ){(1,1),(1,1)}-- (B ){(1,1),(1,1)}-- (C ){(2,2),(2,2)}-- (D ){(2,2),(2,2)}-- (3)函数11y x =+-的定义域是( ) (A )[0,1) (B )(1,)+∞ (C )(0,1)(1,)+∞U(D )[0,1)(1,)+∞U(4)下列四个函数中,在(0,)+∞上单调递减的是( ) (A )1y x =+(B )21y x =-(C )2x y =(D )12log y x =(5)设2log 0.4a =,20.4b =,0.42c =,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b <<(C )b a c <<(D )b c a <<(6)若0a b >>,0c d <<,则一定有( ) (A )ac bd < (B )ac bd >(C )ad bc <(D )ad bc >北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第2页(共11页)(7)设,a b ∈∈R R .则“a b >”是“||||a b >”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了 2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( ) (A )2000(10.2)mg x - (B )2000(10.2)mg x - (C )2000(10.2)mg x - (D )20000.2mg x ⋅(9)如图,向量a b -等于( )(A )123e e - (B )123e e - (C )123e e -+ (D )123e e -+(10)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为 x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:① 图(2)对应的方案是:提高票价,并提高成本; ② 图(2)对应的方案是:保持票价不变,并降低成本; ③ 图(3)对应的方案是:提高票价,并保持成本不变; ④ 图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( ) (A )①③ (B )①④(C )②③(D )②④北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第3页(共11页)第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
北京市西城区2014 — 2015学年度第一学期期末试卷高一数学试卷满分:150分 考试时间:120分钟 A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知(0,2π)α∈,且sin 0<α,cos 0>α,则角α的取值范围是( ) (A )π(0,)2(B )π(,π)2(C )3π(π,)2(D )3π(,2π)22.已知向量(2,8)=a ,(4,2)=-b .若2=-c a b ,则向量=c ( ) (A )(0,18)(B )(8,14)(C )(12,12)(D )(4,20)-3.已知角α的终边经过点(3,4)P -,那么sin =α( ) (A )35(B )45-(C )34(D )34-4.在△ABC 中,D 是BC 的中点,则AD =u u u r( )(A )1()2AB AC +u u ur u u u r(B )1()2AB AC -u u ur u u u r(C )1()2AB BC +u u ur u u u r(D )1()2AB BC -u u ur u u u r5.函数2(sin cos )y x x =-的最小正周期为( ) (A )2π(B )3π2(C )π (D )π26.如果函数cos()y x =+ϕ的一个零点是3π,那么ϕ可以是( ) (A )6π (B )6π-(C )3π(D )3π-7.如图,在矩形ABCD 中,2AB =,3BC =, E 是CD的中点,那么AE DC ⋅=u u u r u u u r( )(A )4(B )2(C )3(D )18.当[0,π]x ∈时,函数()cos 3sin f x x x =-的值域是( ) (A )[2,1]-(B )[1,2]-(C )[1,1]-(D )[2,3]-9.为得到函数πcos()6y x =+的图象,只需将函数sin y x =的图象( )(A )向左平移π3个单位 (B )向右平移π3个单位 (C )向左平移2π3个单位(D )向右平移2π3个单位10.已知a ,b 为单位向量,且m ⋅=a b ,则||t +a b ()t ∈R 的最小值为( ) (A )21m +(B )1(C )||m(D )21m -二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11.若向量(1,2)=a 与向量(,1)=-λb 共线,则实数=λ_____. 12.已知α是第二象限的角,且5sin 13α=,则cos =α_____. 13.若(,)22ππ∈-θ,且tan 1>θ,则θ的取值范围是_____. 14.已知向量(1,3)=a ,(2,1)=-b ,(1,1)=c .若(,)=∈R c a +b λμλμ,则=λμ_____. 15.函数2()sin sin cos f x x x x =+⋅的最大值是_____. 16.关于函数()sin(2)()6f x x x π=-∈R ,给出下列三个结论:① 对于任意的x ∈R ,都有2()cos(2)3f x x π=-; ② 对于任意的x ∈R ,都有()()22f x f x ππ+=-;③ 对于任意的x ∈R ,都有()()33f x f x ππ-=+.其中,全部正确结论的序号是_____.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知tan 2=-α,其中(,)2π∈πα. (Ⅰ)求πtan()4-α的值; (Ⅱ)求sin 2α的值.18.(本小题满分14分)已知向量(cos ,sin )=ααa ,1(,22=-b ,其中α是锐角. (Ⅰ)当30︒=α时,求||+a b ; (Ⅱ)证明:向量+a b 与-a b 垂直; (Ⅲ)若向量a 与b 夹角为60︒,求角α.19.(本小题满分10分)已知函数()sin cos f x a x b x =+,其中a ∈Z ,b ∈Z .设集合{|()0}A x f x ==,{|(())0}B x f f x ==,且A B =.(Ⅰ)证明:0b =; (Ⅱ)求a 的最大值.B 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.已知集合{,}A a b =,则满足{,,}A B a b c =U 的不同集合B 的个数是_____.2.若幂函数y x =α的图象过点(4,2),则=α_____.3.函数2lg ,0,()4,0,x x f x x x >⎧=⎨-<⎩的零点是_____.4.设()f x 是定义在R 上的偶函数,且()f x 在[0,)+∞上是减函数.若()(2)f m f >,则 实数m 的取值范围是_____.5.已知函数()f x 的定义域为D .若对于任意的1x D ∈,存在唯一的2x D ∈,使得M =成立,则称函数()f x 在D 上的几何平均数为M .已知函数()31([0,1])g x x x =+∈,则()g x 在区间[0,1]上的几何平均数为_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数()(2)()f x x x a =-+,其中a ∈R . (Ⅰ)若()f x 的图象关于直线1x =对称,求a 的值; (Ⅱ)求()f x 在区间[0,1]上的最小值. 7.(本小题满分10分)已知函数()23xxf x a b =⋅+⋅,其中,a b 为常数. (Ⅰ)若0ab >,判断()f x 的单调性,并加以证明;(Ⅱ)若0ab <,解不等式:(1)()f x f x +>.8.(本小题满分10分)定义在R 上的函数()f x 同时满足下列两个条件:① 对任意x ∈R ,有(2)()2f x f x +≥+;② 对任意x ∈R ,有(3)()3f x f x +≤+. 设()()g x f x x =-.(Ⅰ)证明:(3)()(2)g x g x g x +≤≤+; (Ⅱ)若(4)5f =,求(2014)f 的值.北京市西城区2014 — 2015学年度第一学期期末试卷高一数学参考答案及评分标准 2015.1 A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D ;2.B ;3.B ;4.A ;5.C ;6.A ;7.B ;8.A ;9.C ; 10.D. 二、填空题:本大题共6小题,每小题4分,共24分.11.12-; 12.1213-; 13. (,)42ππ;14.32; 15.12+; 16. ① ② ③.注:16题,少解不给分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分) (Ⅰ)解:因为 tan 2=-α,所以 πtan tanπ4tan()π41tan tan 4--=+⋅ααα 【 3分】 3=. 【 6分】(Ⅱ)解:由π(,π)2∈α,tan 2α=-, 得sin α=, 【 8分】cos α=. 【10分】 所以 4sin 22sin cos 5==-ααα. 【12分】18.(本小题满分14分) (Ⅰ)解:当30︒=α时,1)2=a , 【 1分】 所以+a b =, 【 2分】 所以||+=a b = 【 4分】 (Ⅱ)证明:由向量(cos sin )αα=,a,1(,22=-b , 得1(cos ,sin 22+=-+ααa b,1(cos ,sin 22-=+-ααa b , 由 π(0,)2∈α,得向量+a b ,-a b 均为非零向量. 【 5分】 因为 222213()()||||(sincos )()044+⋅-=-=+-+=ααa b a b a b , 【 7分】所以向量+a b 与-a b 垂直. 【 8分】 (Ⅲ)解:因为||||1==a b ,且向量a 与b 夹角为60︒, 所以 1||||cos 602︒⋅=⋅=a b a b . 【10分】所以 11cos 222-+=αα, 即 π1sin()62-=α. 【12分】 因为 π02<<α, 所以 πππ663-<-<α, 【13分】 所以 ππ66-=α, 即3π=α. 【14分】19.(本小题满分10分) (Ⅰ)证明:显然集合A ≠∅.设 0x A ∈,则0()0f x =. 【 1分】 因为 A B =,所以 0x B ∈, 即 0(())0f f x =,所以 (0)0f =, 【 3分】 所以 0b =. 【 4分】 (Ⅱ)解:由(Ⅰ)得()sin f x a x =,a ∈Z .① 当0a =时,显然满足A B =. 【 5分】 ② 当0a ≠时,此时{|sin 0}A x a x ==;{|sin(sin )0}B x a a x ==, 即{|sin ,}B x a x k k ==π∈Z . 【 6分】因为 A B =,所以对于任意x ∈R ,必有sin a x k ≠π (k ∈Z ,且0)k ≠成立. 【 7分】所以对于任意x ∈R ,sin k x aπ≠,所以 1k a π>, 【 8分】 即 ||||a k <⋅π,其中k ∈Z ,且0k ≠.所以 ||a <π, 【 9分】 所以整数a 的最大值是3. 【10分】B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. 4;2.12; 3. 2-,1; 4. (2,2)-; 5. 2. 注:3题,少解得2分,有错解不给分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)(Ⅰ)解法一:因为2()(2)()(2)2f x x x a x a x a =-+=+--, 所以,()f x 的图象的对称轴方程为22ax -=. 【 2分】 由212a-=,得0a =. 【 4分】 解法二:因为函数()f x 的图象关于直线1x =对称,所以必有(0)(2)f f =成立, 【 2分】 所以 20a -=, 得0a =. 【 4分】 (Ⅱ)解:函数()f x 的图象的对称轴方程为22ax -=. ① 当202a-≤,即 2a ≥时, 因为()f x 在区间(0,1)上单调递增,所以()f x 在区间[0,1]上的最小值为(0)2f a =-. 【 6分】② 当2012a-<<,即 02a <<时, 因为()f x 在区间2(0,)2a -上单调递减,在区间2(,1)2a-上单调递增,所以()f x 在区间[0,1]上的最小值为222()()22a a f -+=-. 【 8分】 ③ 当212a-≥,即 0a ≤时, 因为()f x 在区间(0,1)上单调递减,所以()f x 在区间[0,1]上的最小值为(1)(1)f a =-+. 【10分】7.(本小题满分10分)(Ⅰ)解:当0,0a b >>时,()f x 在R 上是增函数;当0,0a b <<时,()f x 在R 上是减函数; 【 1分】 证明如下:当0,0a b >>时,任取12,x x ∈R ,且12x x <,则210x x x ∆=->, 则 212121()()(22)(33)xxxxy f x f x a b ∆=-=-+-.因为 122122,0(22)0xxxxa a <>⇒->;又122133,0(33)0xxxxb b <>⇒->, 所以 21()()0y f x f x ∆=->,所以,当0,0a b >>时,()f x 在R 上是增函数.当0,0a b <<时,同理可得,()f x 在R 上是减函数. 【 5分】 (Ⅱ)解:由(1)()2230xxf x f x a b +-=⋅+⋅>,得 32()2xb a >-. (*) 【 6分】 ① 当0,0a b <>时,(*)式化为3()22xa b->, 解得32log ()2ax b>-. 【 8分】 ② 当0,0a b ><时,(*)式化为3()22xa b-<, 解得32log ()2ax b<-. 【10分】 8.(本小题满分10分)(Ⅰ)证明:因为()()g x f x x =-,所以(2)(2)2g x f x x +=+--,(3)(3)3g x f x x +=+--.由条件①,②可得(2)(2)2()22()()g x f x x f x x f x x g x +=+--≥+--=-=; ③ 【 2分】 (3)(3)3()33()()g x f x x f x x f x x g x +=+--≤+--=-=. ④ 【 4分】所以(3)()(2)g x g x g x +≤≤+. (Ⅱ)解:由③得 (2)()g x g x +≥,所以(6)(4)(2)()g x g x g x g x +≥+≥+≥. 【 6分】由④得 (3)()g x g x +≤,所以(6)(3)()g x g x g x +≤+≤. 【 7分】 所以必有(6)()g x g x +=,即()g x 是以6为周期的周期函数. 【 8分】 所以(2014)(33564)(4)(4)41g g g f =⨯+==-=. 【 9分】 所以(2014)(2014)20142015f g =+=. 【10分】。
北京市西城区2015 — 2016学年度第一学期期末试卷高一数学试卷满分:150分考试时间:120分钟A卷 [必修模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.【知识点】三角函数应用【试题解析】因为,是第二或三象限角,或终边在x轴负半轴,又,是第一或三象限角,所以,是第三象限的角,故答案为:C【答案】C【知识点】线性运算【试题解析】因为,故答案为:B【答案】B【知识点】平面向量坐标运算【试题解析】因为向量共线,所以,得,故答案为:B【答案】B【知识点】三角函数的图像与性质【试题解析】因为在是减函数,在先增后减,在是减函数,在是增函数,故答案为:C【答案】C【知识点】倍角公式【试题解析】因为所以,是最小正周期为的奇函数故答案为:D【答案】D【知识点】三角函数图像变换【试题解析】因为所以,可以将函数的图象向右平移个单位长度故答案为:D 【答案】D 7. 若直线x a =是函数sin()6y x π=+图象的一条对称轴,则a 的值可以是( )(A )3π (B )2π (C )6π-(D )3π-【试题解析】因为直线是函数图象的一条对称轴,所以,,由选项可知a只能是。
故答案为:A【答案】A【知识点】三角函数的图像与性质【试题解析】因为非零向量,夹角为,且,,所以,,,因为为非零向量,解得=故答案为:A【答案】A9. 函数2sin(2)y x =π的图象与直线y x =的交点个数为( ) (A )3(B )4(C )7(D )8【知识点】数量积的定义【试题解析】因为由图像可知共7个交点 故答案为:C【答案】C10. 关于函数()sin cos f x x x =+,给出下列三个结论:①函数()f x 的最小值是1; ②函数()f x 的最大值是2; ③函数()f x 在区间(0,)4π上单调递增.其中全部正确结论的序号是( ) (A )②(B )②③(C )①③(D )①②③【试题解析】因为当时,,当时单增所以,①②③均正确 故答案为:D 【答案】D二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin45π= _____. 【知识点】诱导公式【试题解析】因为ABCD故答案为:【答案】12. 如图所示,D 为ABC △中BC 边的中点,设AB =u u u r a ,AC =u u u rb ,则BD u u u r_____.(用a ,b 表示)【知识点】平面向量基本定理【试题解析】因为故答案为:【答案】13. 角α终边上一点的坐标为(1,2),则tan2α=_____.【知识点】倍角公式【试题解析】因为角终边上一点的坐标为,所以,故答案为:【答案】14. 设向量(0,2),a b ==,则,a b 的夹角等于_____. 【知识点】平面向量坐标运算【试题解析】因为所以,的夹角等于。
2019-2020学年北京市西城区高一(上)期末数学试卷一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)已知集合{|2A x x k ==,}k Z ∈,{|33}B x x =-<<,那么(A B = )A .{1-,1}B .{2-,0}C .{2-,0,2}D .{2-,1-,0,1}2.(5分)方程组220,2x y x y +=⎧⎨+=⎩的解集是( ) A .{(1,1)-,(1,1)}- B .{(1,1),(1,1)}-- C .{(2,2)-,(2,2)}- D .{(2,2),(2,2)}--3.(5分)函数11y x -的定义域是( ) A .[0,1)B .(1,)+∞C .(0,1)(1⋃,)+∞D .[0,1)(1⋃,)+∞4.(5分)下列四个函数中,在(0,)+∞上单调递减的是( ) A .1y x =+B .21y x =-C .2x y =D .12log y x =5.(5分)设2log 0.4a =,20.4b =,0.42c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<6.(5分)若0a b >>,0c d <<,则一定有( ) A .ac bd >B .ac bd <C .ad bc <D .ad bc >7.(5分)设a R ∈,b R ∈.则“a b >”是“||||a b >”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(5分)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( )A .2000(10.2)x mg -B .2000(10.2)x mg -C .2000(10.2)x mg -D .20000.2x mg9.(5分)如图,向量a b -等于( )A .123e e -B .123e e -C .123e e -+D .123e e -+10.(5分)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本; ③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( )A .①③B .①④C .②③D .②④二、填空题共6小题,每小题4分,共24分.11.(4分)已知方程2410x x -+=的两根为1x 和2x ,则2212x x += . 12.(4分)已知向量(1,2)a =-,(3,)b m =-,其中m R ∈.若a ,b 共线,则||b = .13.(4分)已知函数3()log f x x =.若正数a ,b 满足19a b =,则f (a )f -(b )= . 14.(4分)函数22,0,()3,0x x f x x x +<⎧=⎨->⎩的零点个数是 ;满足0()1f x >的0x 的取值范围是 .15.(4分)已知集合2{|60}A x x x =--,{|}B x x c =>,其中c R ∈.①集合RA = ;②若x R ∀∈,都有x A ∈或x B ∈,则c 的取值范围是 .16.(4分)给定函数()y f x =,设集合{|()}A x y f x ==,{|()}B y y f x ==.若对于x A ∀∈,y B ∃∈,使得0x y +=成立,则称函数()f x 具有性质P .给出下列三个函数: ①1y x =; ②1()2x y =; ③y lgx =. 其中,具有性质P 的函数的序号是 .三、解答题共6小题,共76分.解答应写出文字说明,演算步骤或证明过程.17.(12分)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈. (Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随机抽取2人完成访谈问卷,求2人中恰有1名女生的概率.18.(12分)在直角坐标系xOy 中,记函数3()log (82)x f x =-的图象为曲线1C ,函数()g x =2C .(Ⅰ)比较f (2)和1的大小,并说明理由;(Ⅱ)当曲线1C 在直线1y =的下方时,求x 的取值范围;(Ⅲ)证明:曲线1C 和2C 没有交点.19.(13分)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立. (Ⅰ)求图中a 的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率; (Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明) 20.(13分)已知函数2||1()1x f x x +=-. (Ⅰ)证明:()f x 为偶函数;(Ⅱ)用定义证明:()f x 是(1,)+∞上的减函数; (Ⅲ)当[4x ∈-,2]-时,求()f x 的值域.21.(13分)设某商品的利润只由生产成本和销售收入决定.生产成本C (单位:万元)与生产量x (单位:千件)间的函数关系是3C x =+;销售收入S (单位:万元)与生产量x 间的函数关系是1835,06,814, 6.x x S x x ⎧++<<⎪=-⎨⎪⎩ (Ⅰ)把商品的利润表示为生产量x 的函数;(Ⅱ)为使商品的利润最大化,应如何确定生产量?22.(13分)设函数,,(),,x x Pf xx x M∈⎧=⎨-∈⎩其中P,M是非空数集.记(){|()f P y y f x==,}x P∈,(){|()f M y y f x==,}x M∈.(Ⅰ)若[0P=,3],(,1)M=-∞-,求()()f P f M;(Ⅱ)若P M=∅,且()f x是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P M R≠,则()()f P f M R≠”的真假,并加以证明.2019-2020学年北京市西城区高一(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)已知集合{|2A x x k ==,}k Z ∈,{|33}B x x =-<<,那么(A B = )A .{1-,1}B .{2-,0}C .{2-,0,2}D .{2-,1-,0,1}【解答】解:集合{|2A x x k ==,}k Z ∈,{|33}B x x =-<<, {2AB =-,0,2}.故选:C .2.(5分)方程组220,2x y x y +=⎧⎨+=⎩的解集是( ) A .{(1,1)-,(1,1)}- B .{(1,1),(1,1)}-- C .{(2,2)-,(2,2)}-D .{(2,2),(2,2)}--【解答】解:记220,2,x y x y +=⎧⎨+=⎩①②,由①得:x y =-③,将③代入②得222y =,解得1y =±, 当1y =时,1x =-,当1y =-时,1x =, 故原方程组的解集为{(1,1)-,(1,1)}-, 故选:A .3.(5分)函数11y x -的定义域是( ) A .[0,1)B .(1,)+∞C .(0,1)(1⋃,)+∞D .[0,1)(1⋃,)+∞【解答】解:依题意,010x x ⎧⎨-≠⎩,解得0x 且1x ≠,即函数的定义域为[0,1)(1⋃,)+∞,故选:D .4.(5分)下列四个函数中,在(0,)+∞上单调递减的是( ) A .1y x =+B .21y x =-C .2x y =D .12log y x =【解答】解:根据题意,依次分析选项:对于A ,1y x =+,为一次函数,在(0,)+∞上单调递增,不符合题意; 对于B ,21y x =-,为二次函数,在(0,)+∞上单调递增,不符合题意;对于C ,2x y =,为指数函数,在(0,)+∞上单调递增,不符合题意; 对于D ,12y log x =,为对数函数,在(0,)+∞上单调递减,符合题意;故选:D .5.(5分)设2log 0.4a =,20.4b =,0.42c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<【解答】解:22log 0.4log 10<=,0a ∴<, 20.40.16=,0.16b ∴=,0.40221>=,1c ∴>,a b c ∴<<,故选:A .6.(5分)若0a b >>,0c d <<,则一定有( ) A .ac bd >B .ac bd <C .ad bc <D .ad bc >【解答】解:若0a b >>,0c d <<,则:ac bc bd <<,故ac bd <,故A 错误,B 正确; ad 与bc 的大小无法确定,故C ,D 错误; 故选:B .7.(5分)设a R ∈,b R ∈.则“a b >”是“||||a b >”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:若a b >,取1a =,2b =-,则||||a b <,则“a b >”是“||||a b >”不充分条件; 若||||a b >,取2a =-,1b =,则a b <,则“||||a b >”是‘a b >”不必要条件; 则a R ∈,b R ∈.“a b >”是“||||a b >”的既不充分也不必要条件, 故选:D .8.(5分)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( )A .2000(10.2)x mg -B .2000(10.2)x mg -C .2000(10.2)x mg -D .20000.2x mg【解答】解:由题意知,该种药物在血液中以每小时20%的比例递减,给某病人注射了该药物2500mg ,经过x 个小时后,药物在病人血液中的量为2000(120%)20000.8()x x y mg =⨯-=⨯,即y 与x 的关系式为20000.8x y =⨯. 故选:B .9.(5分)如图,向量a b -等于( )A .123e e -B .123e e -C .123e e -+D .123e e -+【解答】解:如图,设123a b AB e e -==-,∴123a b e e -=-.故选:B .10.(5分)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( ) A .①③B .①④C .②③D .②④【解答】解:由图可知,点A 纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对; 故选:C .二、填空题共6小题,每小题4分,共24分.11.(4分)已知方程2410x x -+=的两根为1x 和2x ,则2212x x += 14 . 【解答】解:方程2410x x -+=的两根为1x 和2x ,124x x +=,121x x =,222121212()216214x x x x x x +=+-=-=,故答案为:14.12.(4分)已知向量(1,2)a =-,(3,)b m =-,其中m R ∈.若a ,b 共线,则||b =【解答】解:,a b 共线,60m ∴-=,6m ∴=,(3,6)b =-,∴||35b =.故答案为:13.(4分)已知函数3()log f x x =.若正数a ,b 满足19a b =,则f (a )f -(b )= 2- . 【解答】解:正数a ,b 满足19a b =,3()log f x x =, 则f (a )f -(b )3331log log log 29a xb ====-. 故答案为:2-.14.(4分)函数22,0,()3,0x x f x x x +<⎧=⎨->⎩的零点个数是 2 ;满足0()1f x >的0x 的取值范围是 .【解答】解:函数22,0,()3,0x x f x x x +<⎧=⎨->⎩可得0x <时,20x +=,解得2x =-;0x >时,230x -=,解得x =函数的零点有2个.满足0()1f x >,可得0021x x <⎧⎨+>⎩,解得0(1,0)x ∈-.0231x x >⎧⎨->⎩,解得0(2,)x ∈+∞. 故答案为:2;(1-,0)(2⋃,)+∞.15.(4分)已知集合2{|60}A x x x =--,{|}B x x c =>,其中c R ∈.①集合RA = {|23}x x -<< ;②若x R ∀∈,都有x A ∈或x B ∈,则c 的取值范围是 . 【解答】解:①集合2{|60}{|2A x x x x x =--=-或3}x ,{|23}R A x x ∴=-<<;②对x R ∀∈,都有x A ∈或x B ∈,A B R ∴=,集合{|2A x x =-或3}x ,{|}B x x c =>,2c ∴-,c ∴的取值范围是:(-∞,2]-,故答案为:{|23}x x -<<,(-∞,2]-.16.(4分)给定函数()y f x =,设集合{|()}A x y f x ==,{|()}B y y f x ==.若对于x A ∀∈,y B ∃∈,使得0x y +=成立,则称函数()f x 具有性质P .给出下列三个函数: ①1y x =; ②1()2x y =; ③y lgx =. 其中,具有性质P 的函数的序号是 ①③ .【解答】解:对①,(A =-∞,0)(0⋃,)+∞,(B =-∞,0)(0⋃,)+∞,显然对于x A ∀∈,y B ∃∈,使得0x y +=成立,即具有性质P ;对②,A R =,(0,)B =+∞,当0x >时,不存在y B ∈,使得0x y +=成立,即不具有性质P ; 对③,(0,)A =+∞,B R =,显然对于x A ∀∈,y B ∃∈,使得0x y +=成立,即具有性质P ; 故答案为:①③.三、解答题共6小题,共76分.解答应写出文字说明,演算步骤或证明过程.17.(12分)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈. (Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随机抽取2人完成访谈问卷,求2人中恰有1名女生的概率. 【解答】解:(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=.(Ⅱ)记这5人中的3名男生为1B ,2B ,3B ,2名女生为1G ,2G , 则样本空间为:1{(B Ω=,2)B ,1(B ,3)B ,1(B ,1)G ,1(B ,2)G ,2(B ,3)B ,2(B ,1)G ,2(B ,2)G ,3(B ,1)G ,3(B ,2)G ,1(G ,2)}G ,样本空间中,共包含10个样本点.设事件A 为“抽取的2人中恰有1名女生”,则1{(A B =,1)G ,1(B ,2)G ,2(B ,1)G ,2(B ,2)G ,3(B ,1)G ,3(B ,2)}G ,事件A 共包含6个样本点.从而63()105P A ==. 所以抽取的2人中恰有1名女生的概率为35.18.(12分)在直角坐标系xOy 中,记函数3()log (82)x f x =-的图象为曲线1C ,函数()g x =2C . (Ⅰ)比较f (2)和1的大小,并说明理由;(Ⅱ)当曲线1C 在直线1y =的下方时,求x 的取值范围;(Ⅲ)证明:曲线1C 和2C 没有交点.【解答】解:(Ⅰ)因为233(2)log (82)log 4f =-=,又函数3log y x =是(0,)+∞上的增函数,所以f (2)33log 4log 31=>=.(Ⅱ)因为“曲线C 在直线1y =的下方”等价于“()1f x <”, 所以3log (82)1x -<.因为 函数3log y x =是(0,)+∞上的增函数, 所以0823x <-<, 即528x <<,所以x 的取值范围是2(log 5,3).(Ⅲ)因为()f x 有意义当且仅当820x ->, 解得3x <.所以()f x 的定义域为1(,3)D =-∞. ()g x 有意义当且仅当30x -,解得3x .所以()g x 的定义域为2[3D =,)+∞.因为12D D =∅,所以曲线1C 和2C 没有交点.19.(13分)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立. (Ⅰ)求图中a 的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率; (Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明) 【解答】解:(Ⅰ)由图可得0.010.190.290.451a ++++=, 所以0.06a =.(Ⅱ)设事件A 为“队员甲进行1次射击,中靶环数大于7”. 则事件A 包含三个两两互斥的事件:中靶环数为8,9,10, 所以P (A )0.450.290.010.75=++=.设事件i A 为“队员甲第i 次射击,中靶环数大于7”,其中1i =,2,则12()()0.75P A P A ==.设事件B 为“队员甲进行2次射击,恰有1次中靶环数大于7”.则1212B A A A A =+,1A ,2A 独立.所以121231133()()()44448P B P A A P A A =+=⨯+⨯=.所以,甲恰有1次中靶环数大于7的概率为38.(Ⅲ)队员甲的射击成绩更稳定. 20.(13分)已知函数2||1()1x f x x +=-. (Ⅰ)证明:()f x 为偶函数;(Ⅱ)用定义证明:()f x 是(1,)+∞上的减函数; (Ⅲ)当[4x ∈-,2]-时,求()f x 的值域.【解答】解:(Ⅰ)证明:根据题意,2||1()1x f x x +=-,则()f x 的定义域为{|D x x R =∈,且1}x ≠±;对于任意x D ∈,因为22||1||1()()()11x x f x f x x x -++-===---,所以()f x 为偶函数.(Ⅱ)当(1,)x ∈+∞时,211()11x f x x x +==--, 任取1x ,2(1,)x ∈+∞,且12x x <,那么2112121211()()11(1)(1)x x f x f x x x x x --=-=----; 因为121x x <<,所以210x x ->,12(1)(1)0x x -->,从而12()()0f x f x ->,即12()()f x f x >. 所以()f x 是(1,)+∞上的减函数;(Ⅲ)由(Ⅰ)、(Ⅱ)得,()f x 在[4-,2]-上单调递增, 又由1(4)3f -=,(2)1f -=,则有1()13f x ; 所以当[4x ∈-,2]-时,()f x 的值域是1[,1]3.21.(13分)设某商品的利润只由生产成本和销售收入决定.生产成本C (单位:万元)与生产量x (单位:千件)间的函数关系是3C x =+;销售收入S (单位:万元)与生产量x 间的函数关系是1835,06,814, 6.x x S x x ⎧++<<⎪=-⎨⎪⎩ (Ⅰ)把商品的利润表示为生产量x 的函数; (Ⅱ)为使商品的利润最大化,应如何确定生产量? 【解答】解:(Ⅰ)设商品的利润为Y (万元), 依题意得1822,06,811, 6.x x Y S C x x x ⎧++<<⎪=-=-⎨⎪-⎩.(Ⅱ)当06x <<时,18228Y x x =++-. 所以182(8)188Y x x =-++- 92[(8)]188x x=--++- 94(8)1868x x--+=-. 当且仅当988x x-=-,即5x =时取等号, 所以,当06x <<时,Y 有最大值6(万元). 当6x 时,115Y x =-.综上,当5x =时,Y 取得最大值6(万元).因此,当生产量确定为5千件时,商品的利润取得最大值6万元.22.(13分)设函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P ,M 是非空数集.记(){|()f P y y f x ==,}x P ∈,(){|()f M y y f x ==,}x M ∈.(Ⅰ)若[0P =,3],(,1)M =-∞-,求()()f P f M ;(Ⅱ)若P M =∅,且()f x 是定义在R 上的增函数,求集合P ,M ;(Ⅲ)判断命题“若P M R ≠,则()()f P f M R ≠”的真假,并加以证明.【解答】解:(Ⅰ)因为[0P =,3],(,1)M =-∞-, 所以()[0f P =,3],()(1f M =,)+∞, 所以()()[0f P f M =,)+∞.(Ⅱ)因为()f x 是定义在R 上的增函数,且(0)0f =,所以当0x <时,()0f x <,所以(,0)P -∞⊆. 同理可证(0,)P +∞⊆. 因为PM =∅,所以(P =-∞,0)(0⋃,)+∞,{0}M =. (Ⅲ)该命题为真命题.证明如下: 假设存在非空数集P ,M ,且PM R ≠,但()()f P f M R =.首先证明0P M ∈.否则,若0P M ∉,则0P ∉,且0M ∉,则0()f P ∉,且0()f M ∉, 即0()()f P f M ∉,这与()()f P f M R =矛盾.若0x P M ∃∉,且00x ≠,则0x P ∉,且0x M ∉,所以0()x f P ∉,且0()x f M -∉.因为()()f P f M R =,所以0()x f P -∈,且0()x f M ∈.所以0x P -∈,且0x M -∈.所以00()f x x -=-,且000()()f x x x -=--=,根据函数的定义,必有00x x -=,即00x =,这与00x ≠矛盾. 综上,该命题为真命题.纯公益资料,欢迎用于学术研讨,禁止用于任何的商业模式。
北京市西城区2022-2023学年高一上册期末考试数学试卷(含答案)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|51}A x x =-<≤<,2{|9}B x x =≤9,则A B =(A )[5,3]-(B )(3,1]-(C )[3,1)-(D )[3,3]-(2)已知命题:p 1x ∃<,21x ≤,则p⌝为(A )1x ∀≥,21x >(B )1x ∃<,21x >(C )1x ∀<,21x >(D )1x ∃≥,21x >(3)如图,在平行四边形ABCD 中,AC AB -=(A )CB(B )AD(C )BD (D )CD (4)若a b >,则下列不等式一定成立的是(A )11a b<(B )22a b >(C )e e a b--<(D )ln ln a b>(5)不等式2112x x +-≤的解集为(A )[3,2]-(B )(,3]-∞-(C )[3,2)-(D )(,3](2,)-∞-+∞ (6)正方形ABCD 的边长为1,则|2|AB AD +=uu u r uuu r(A )1(B )3(C (D (7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心.已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离(单位:km )之间满足的关系为80022000C s s=++,则当C 最小时,的值为(A )20(B )(C )40(D )400(8)设2log 3a =,则122a +=(A )8(B )11(C )12(D )18(9)已知为单位向量,则“||||1+-=a b b ”是“存在0λ>,使得λb =a ”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失.在人员密集区域,人员疏散是控制事故的关键,而能见度(单位:米)是影响疏散的重要因素.在特定条件下,疏散的影响程度与能见度满足函数关系:0.20.1,1.4,0.110,110,b x k ax x x ⎧<⎪⎪=+⎨⎪⎪>⎩≤≤,,(,a b 是常数).如图记录了两次实验的数据,根据上述函数模型和实验数据,的值是(参考数据:lg30.48≈)(A )0.24-(B )0.48-(C )0.24(D )0.48第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
2019-2020学年北京市西城区高一(上)期末数学试卷一、选择题1.已知集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},那么A∩B=()A. {﹣1,1}【答案】CB. {﹣2,0}C. {﹣2,0,2}D. {﹣2,﹣1,0,1}【解析】【分析】利用交集直接求解.【详解】∵集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},A∩B={﹣2,0,2}.故选:C.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.x y 02.方程组的解集是()y 2x22A.{(1,﹣1),(﹣1,1)} C.{(2,﹣2),(﹣2,2)}B.{(1,1),(﹣1,﹣1)} D.{(2,2),(﹣2,﹣2)}【答案】A【解析】【分析】求出方程组的解,注意方程组的解是一对有序实数.x y 0x 1x 1【详解】方程组的解为或,y 2y 1y 1x22其解集为{(1,1),(1,1)}.故选:A.【点睛】本题考查集合的表示,二元二次方程组的解是一对有序实数,表示时用小括号括起来,表示有序,即代表元可表示为(x,y),一个解可表示为(1,1).13.函数y=x的定义域是()x 1A. [0,1)B. (1,+∞)C. (0,1)∪(1,+∞)D. [0,1)∪(1,+∞)【答案】D 【解析】 【分析】x 0由偶次根式的被开方数大于等于0,分式的分母不为0,可得到不等式组 x 1 0,解出即可求得定义域.x 0【详解】依题意, x 1 0,解得x ≥0 且x ≠1,即函数的定义域为[0,1)∪(1,+∞),故选:D .【点睛】本题考查函数定义域的求法及不等式的求解,属于基础题. 4.下列四个函数中,在(0,+∞)上单调递减的是( ) y l og xA. y =x +1 【答案】DB. y =x ﹣1 C. y =2xD.2 12【解析】 【分析】根据题意,依次分析选项中函数的单调性,综合即可得答案. 【详解】根据题意,依次分析选项:对于A ,y =x +1,为一次函数,在 (0,+∞)上单调递增,不符合题意;对于B ,y =x ﹣1,为二次函数,在 (0,+∞)上单调递增,不符合题意; 2 对于C ,y =2 ,为指数函数,在 (0,+∞)上单调递增,不符合题意;x y l og x对于D ,,为对数函数,在 (0,+∞)上单调递减,符合题意;1 2故选:D .【点睛】本题考查函数的单调性的判断,关键是掌握常见函数的单调性,属于基础题. 5.设a =log 2 A. a <b <c 【答案】A0.4,b =0.4 ,c =2 ,则a ,b ,c 的大小关系为()20.4B. a <c <bC. b <a <cD. b <c <a【解析】【分析】利用对数函数和指数函数的性质求解,要借助于中间值0 和 1 比较.【详解】∵log 0.4<log 1=0,∴a<0,22∵0.4 =0.16,∴b=0.16,2∵2 >2 =1,∴c>1,0.40∴a<b<c,故选:A.【点睛】本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.b0c d06.若a,,则一定有()A.ac b d ac bdB.C.ad bcD.ad bc【答案】B【解析】d0c d0,由于a b0试题分析:根据c,有bd,ac bd,故选B.,两式相乘有ac考点:不等式的性质.a,b R ,则a b a b7.设“”的()”是“A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】b试题分析:因为a成立,a,b的符号是不确定的,所以不能推出a b成立,反之也不行,所以是既不充分也不必要条件,故选D.考点:充分必要条件的判断.8.某种药物的含量在病人血液中以每小时 20%的比例递减.现医生为某病人注射了 2000mg 该药物,那么 x 小时后病人血液中这种药物的含量为( )A. 2000(1﹣0.2x )mgB. 2000(1﹣0.2)x mgD. 2000•0.2x mgC. 2000(1﹣0.2 )mgx 【答案】B 【解析】 【分析】利用指数函数模型求得函数 y 与 x 的关系式.【详解】由题意知,该种药物在血液中以每小时 20%的比例递减,给某病人注射了该药物 2000mg ,经过 x 个小时后,药物在病人血液中的量为 y =2000× (1﹣20%) =2000×0.8 (mg ), x x 即 y 与 x 的关系式为 y =2000×0.8. x 故选:B .【点睛】本题考查了指数函数模型的应用问题,是基础题. r r9.如图,向量a b 等于()u r u u r A. 3 ﹣ u r u u r e 3eu r u u r 3e eu r u u r e 3eD.e eB. C.12121212【答案】B 【解析】 【分析】r r根据向量减法法则,表示出a b,然后根据加法法则与数乘运算得出结论. u r u u rr r a b e 3e,【详解】 = 12故选:B .【点睛】本题考查向量的线性运算,掌握线性运算法则是解题基础.本题属于基础题.10.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1) 所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调 整后y 与x 的函数图象,给出下列四种说法,①图(2)对应的方案是:提高票价,并提高成本;②图(2) 对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图 (3)对应的方案是:提高票价,并降低成本.其中,正确的说法是()A. ①③B. ①④C. ②③D. ②④【答案】C 【解析】 【分析】解题的关键是理解图象表示的实际意义,进而得解.【详解】由图可知,点A 纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图 (2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对; 故选:C .【点睛】本题考查读图识图能力,考查分析能力,属于基础题.二、填空题11.已知方程x ﹣4x+1=0 的两根为x 和 x ,则x +x =_____. 222 1 2 1 2【答案】14 【解析】 分析】利用韦达定理代入即可.【详解】方程x ﹣4x+1=0 的两根为x 和x , 2 1 2x +x =4,x x =1, 1 2 1 2x +x = (x +x ) ﹣2x x =16﹣2=14, 2 2 2 1 2 1 2 1 2故答案为:14.【点睛】考查韦达定理的应用,基础题.r r r r r12.已知向量a =(1,﹣2),b =(﹣3,m ),其中 m ∈R .若a ,b 共线,则|b |=_____.【答案】3 5 【解析】 【分析】由向量共线的坐标表示求出 m ,再由模的坐标运算计算出模.r r【详解】∵ , 共线,∴m -6=0,m =6,a br∴ b (3) 6 3 5 . 22 故答案为:3 5 .【点睛】本题考查向量共线的坐标表示,考查向量的模,属于基础题. a 1b 913.已知函数 f (x )=log 3x .若正数 a ,b 满足,则 f (a )﹣f (b )=_____. 【答案】2 【解析】 【分析】直接代入函数式计算.a 1f (b) l og a l og b l og l og 2 【详解】 f (a) . b 93 3 3 3 故答案为: .2 【点睛】本题考查对数的运算,掌握对数运算法则是解题基础.本题属于基础题.x 2,x 0f x 14.函数 的零点个数是_____;满足 f (x 0 )>1 的 x 的取值范围是_____. x 2 3,x 0【答案】 (1). 2 (2). (﹣1,0)∪(2,+∞)【解析】 【分析】(x) 0 直接解方程 f 求出零点即可知零点个数,注意分段函数分段求解.解不等式 f (x )>1 也同样由函数 0 解析式去求解.0 f (x) x3 0 0 , 3 ,当 x 时, f(x) x 2 0, x 2 ,共 2 个零点,即 【详解】 x 时, 2 x 零点个数为 2;0 f (x) x3 1 x 0 ( ) 2 1, 1 时, f x x ,即 1 0 ,x当 x ∴ f 时, , 2 ,当 x 2 x (x ) 1 (1,0) U (2, ) 的 的取值范围是 x. 0 0故答案为:2;(1,0)U (2, ).【点睛】本题考查分段函数,已知分段函数值求自变量的值,解不等式都要分段求解,注意各段的取值范 围即可.15.已知集合 A ={x |x ﹣x ﹣6≥0},B ={x |x >c },其中 c ∈R .①集合∁ A =_____;②若∀x ∈R ,都有 x ∈A 或 2 Rx ∈B ,则 c 的取值范围是_____. 【答案】 (1). {x |﹣2<x <3}(2). (﹣∞,﹣2]【解析】 【分析】①先求出集合 A ,再利用补集的定义求出∁ A ;R ②由对∀x ∈R ,都有 x ∈A 或 x ∈B ,所以 A ∪B =R ,从而求出 c 的取值范围. 【详解】①∵集合 A ={x |x ﹣x ﹣6≥0}={x |x ≤﹣2 或 x ≥3}, 2 ∴∁ A ={x |﹣2<x <3}; R②∵对∀x ∈R ,都有 x ∈A 或 x ∈B ,∴A ∪B =R , ∵集合 A ={x |x ≤﹣2 或 x ≥3},B ={x |x >c }, ∴c ≤﹣2,∴c 的取值范围是: (﹣∞,﹣2], 故答案为:{x |﹣2<x <3}; (﹣∞,﹣2].【点睛】本题考查的知识点是集合的交集,并集,补集运算,集合的包含关系判断及应用,难度不大,属 于基础题.16.给定函数 y =f (x ),设集合 A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得 x +y =0 成立,1x1则称函数f(x)具有性质P.给出下列三个函数:①;②y ;③y=lgx.其中,具有性质的函Pyx2数的序号是_____.【答案】①③【解析】【分析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0 成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0 成立,即具有性质P;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题17.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5 人中男生、女生各多少名?(Ⅱ)从这5 人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.3【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)5【解析】【分析】(Ⅰ)利用分层抽样按比例计算出这5 人中男生人数和女生人数.(Ⅰ)记这5人中3名男生为B,B,B,2 名女生为G,G,利用列举法能求出抽取的2人中恰有1 名女1 2 3 1 2生的概率.【详解】(Ⅰ)这5人中男生人数为19232012832053,女生人数为52.(Ⅰ)记这5人中的3名男生为B,B,B,2 名女生为G,G,1 2 3 1 2则样本空间为:Ω={(B,B),(B,B),(B,G),(B,G),(B,B),(B,G),(B,G),(B,G),(B,G),1 2 1 3 1 1 1 2 2 3 2 1 2 2 3 1 3 2(G ,G )},1 2 样本空间中,共包含 10 个样本点. 设事件 A 为“抽取的 2 人中恰有 1 名女生”,则 A ={ (B ,G ), (B ,G ), (B ,G ), (B ,G ), (B ,G ), (B ,G )}, 1 1 1 2 2 1 2 2 3 1 3 2 63P A事件 A 共包含 6 个样本点. 从而 10 5 3所以抽取的 2 人中恰有 1 名女生的概率为 .5【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.x 3f x l og8 2 的图象为曲线 C ,函 数 g x 18.在直角坐标系 xOy 中,记函数 的图象为曲线x13C . 2(Ⅰ)比较 f (2)和 1 的大小,并说明理由;(Ⅱ)当曲线 C 在直线 y =1 的下方时,求 x 的取值范围; 1 (Ⅲ)证明:曲线 C 和 C 没有交点.1 2 【答案】(Ⅰ)f (2)>1,理由见解析;(Ⅱ)(log 5,3);(Ⅲ)证明见解析 2 【解析】 【分析】 (Ⅰ)因为 f2l og 8 2 l og 4 ,求出 f (2)的值,结合函数的单调性判断 f (2)和 1 的大小.2332 1 (Ⅰ)因为“曲线 C 在直线 y =1 的下方”等价于“f (x )<1”,推出log 8 .求解即可.x3(Ⅰ)求出两个函数的定义域,然后判断曲线C 和 C 没有交点.1 2 f 2 l og 8 2 l og 4 【详解】解: (Ⅰ)因为,2 33又函数 y =log x 是 (0,+∞)上的增函数, 3 所以 f (2)=log 4>log 3=1.3 3 (Ⅰ)因为“曲线 C 在直线 y =1 的下方”等价于“f (x )<1”,log 8 2 1 所以.x 3因为 函数 y =log x 是 (0,+∞)上的增函数,3 所以 0<8﹣2 <3, x 即 5<2<8, x 所以 x 的取值范围是 (log 5,3).2(Ⅰ)因为f(x)有意义当且仅当8﹣2 >0,x解得x<3.所以f(x)的定义域为D=(﹣∞,3).1g(x)有意义当且仅当x﹣3≥0,解得x≥3.所以g(x)的定义域为D=[3,+∞).2因为D∩D=,1 2所以曲线C和C没有交点.1 2【点睛】本题考查函数与方程的应用,考查转化思想以及计算能力,是中档题.19.根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求图中a的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1 次中靶环数大于7的概率;(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)3【答案】(Ⅰ)0.06;(Ⅱ);(Ⅲ)甲8【解析】【分析】(I)由频率分布图中频率之和为1,可计算出a;(I I)事件“甲恰有1次中靶环数大于7”表示第一次中靶环数大于7,第二次中靶环数不大于7,和第一次中靶环数不大于7,第二次中靶环数大于1,由相互独立事件的概率公式可计算概率;(I I I)估计两人中靶环数的均值差不多都是8,甲5 个数据分布均值两侧,而乙6个数据偏差较大,甲较稳定.a1(0.190.450.290.01)0.06【详解】(I)由题意;(II)记事件 A 甲中射击一次中靶环数大于 7,则 P (A) 0.45 0.29 0.01 0.75,甲射击 2 次,恰有 1 次中靶数大于 7 的概率为:3P P(AA) P(AA) P(A)P(A) P(A)P(A)0.750.25 0.250.75; 8(III)甲稳定.【点睛】本题考查频率分布图,考查相互独立事件同时发生的概率,考查用样本数据特征估计总体的样本 数据特征,属于基础题.x 1, 20.已知函数. f x x21 (Ⅰ)证明:f (x )为偶函数;(Ⅱ)用定义证明:f (x )是(1,+∞)上的减函数; (Ⅲ)当 x ∈[﹣4,﹣2]时,求 f (x )的值域.1,1 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)3【解析】 【分析】(I)用偶函数定义证明; (II)用减函数定义证明;(III)根据偶函数性质得函数在[4,2] 上的单调性,可得最大值和最小值,得值域. 【详解】(I)函数定义域是{x |x 1},x 1 x 1 f (x )f (x) , (x ) 1 x 12 2 (x) ∴ f 是偶函数;1 x 1 1 x 11 x x (II)当 x 时, f x,设, 1 x 1 x 1 1 2 x2 2 11xx(x ) f (x )则 f , 2 1 1 2x11 x21 (x 1)(x 1)121 x x x 1 0, x1 0, x x 0,∵,∴ 121221f (x ) f (x ) 0 f (x ) f (x ) ,∴ ,即 1 2 1 2在(1,)上是减函数;(x) ∴ f(III)由 (I) (II)知函数 f(x) [4,2] 在 上是增函数, 4 1 1 2 1 (x)f (4)f (x) f (2) , 1, ∴ f (43 (2) 1min2 max 2 1[ ,1] ∴所求值域为 . 3【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.21.设某商品的利润只由生产成本和销售收入决定.生产成本C (单位:万元)与生产量 x (单位:千件)183x 5,0 x 6 8 间的函数关系是C =3+x ;销售收入S (单位:万元)与生产量x 间的函数关系是Sx . 14, x 6(Ⅰ)把商品的利润表示为生产量 x 的函数; (Ⅱ)为使商品的利润最大化,应如何确定生产量?182x 2,0 x 6 y x 8 11 x , x 6【答案】(Ⅰ) ;(Ⅱ)确定 5 千件时,利润最大. 【解析】 【分析】(I)用销售收入减去生产成本即得利润; (II)分段求出利润函数的最大值可得生产产量.183x5 (3 x),0 x6 S C 8 y (万元),则 y【详解】(I)设利润是 x , 14 (3 x), x 6 182x 2,0 x 6 y x 8 11 x , x 6∴ ; 18 9 0 x 6时, 2 2 2[(8 x) ]18 y x (II), x 8 8 x9 由“对勾函数”知,当8 x,即 x 6 5时, 6 , y 8 xm ax 6 11 5 当 x ∴ x时, y x 是减函数, x 时, y, m ax5时, 6 ,ym ax∴生产量为 5 千件时,利润最大.【点睛】本题考查分段函数模型的应用,解题关键是列出函数解析式.属于基础题.x , x P f x 22.设函数 其中 P ,M 是非空数集.记 f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }. x , x M(Ⅰ)若 P =[0,3],M =(﹣∞,﹣1),求 f (P )∪f (M );(Ⅱ)若 P ∩M =∅,且 f (x )是定义在 R 上 增函数,求集合 P ,M ; (Ⅲ)判断命题“若 P ∪M ≠R ,则 f (P )∪f (M )≠R ”的真假,并加以证明.的【答案】(Ⅰ)[0,+∞);(Ⅱ)P =(﹣∞,0)∪(0,+∞),M ={0};(Ⅲ)真命题,证明见解析 【解析】 【分析】(Ⅰ)求出 f (P )=[0,3],f (M )= (1,+∞),由此能过求出 f (P )∪f (M ).(Ⅰ)由 f (x )是定义在 R 上的增函数,且 f (0)=0,得到当 x <0 时,f (x )<0, (﹣∞,0)⊆P . 同理可证 (0, +∞)⊆P . 由此能求出 P ,M .(Ⅰ)假设存在非空数集 P ,M ,且 P ∪M ≠R ,但 f (P )∪f (M )=R .证明 0∈P ∪M .推导出 f (﹣x )=﹣x ,且 0 0 f (﹣x )=﹣ (﹣x )=x ,由此能证明命题“若 P ∪M ≠R ,则 f (P )∪f (M )≠R ”是真命题. 0 0 0 【详解】(Ⅰ)因为 P =[0,3],M =(﹣∞,﹣1), 所以 f (P )=[0,3],f (M )=(1,+∞), 所以 f (P )∪f (M )=[0,+∞).(Ⅰ)因为 f (x )是定义在 R 上的增函数,且 f (0)=0, 所以当 x <0 时,f (x )<0,所以(﹣∞,0)⊆P . 同理可证(0,+∞)⊆P . 因为 P ∩M =∅,所以 P =(﹣∞,0)∪(0,+∞),M ={0}. (Ⅰ)该命题为真命题.证明如下:假设存在非空数集 P ,M ,且 P ∪M ≠R ,但 f (P )∪f (M )=R . 首先证明 0∈P ∪M .否则,若 0∉P ∪M ,则 0∉P ,且 0∉M , 则 0∉f (P ),且 0∉f (M ),即 0∉f (P )∪f (M ),这与 f (P )∪f (M )=R 矛盾. 若∃x ∉P ∪M ,且 x ≠0,则 x ∉P ,且 x ∉M , 00 0 0所以 x ∉f (P),且﹣x ∉f (M). 0 0 因为 f (P)∪f (M)=R , 所以﹣x ∈f (P),且 x ∈f (M). 0 0 所以﹣x ∈P ,且﹣x ∈M . 0 0所以 f ( x )=﹣x ,且 f ( x )=﹣(﹣x )=x , - - 0 0 0 0 0根据函数的定义,必有﹣x =x ,即 x =0,这与 x ≠0 矛盾. 0 0 0 0 综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等 基础知识,考查运算求解能力,是中档题.所以 x ∉f (P),且﹣x ∉f (M). 0 0 因为 f (P)∪f (M)=R , 所以﹣x ∈f (P),且 x ∈f (M). 0 0 所以﹣x ∈P ,且﹣x ∈M . 0 0所以 f ( x )=﹣x ,且 f ( x )=﹣(﹣x )=x , - - 0 0 0 0 0根据函数的定义,必有﹣x =x ,即 x =0,这与 x ≠0 矛盾. 0 0 0 0 综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等 基础知识,考查运算求解能力,是中档题.。
北京市西城区2015 — 2016学年度第一学期期末试卷高一数学试卷满分:150分考试时间:120分钟A卷 [必修模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.【知识点】三角函数应用【试题解析】因为,是第二或三象限角,或终边在x轴负半轴,又,是第一或三象限角,所以,是第三象限的角,故答案为:C【答案】C【知识点】线性运算【试题解析】因为,故答案为:B【答案】B【知识点】平面向量坐标运算【试题解析】因为向量共线,所以,得,故答案为:B【答案】B【知识点】三角函数的图像与性质【试题解析】因为在是减函数,在先增后减,在是减函数,在是增函数,故答案为:C【答案】C【知识点】倍角公式【试题解析】因为所以,是最小正周期为的奇函数故答案为:D【答案】D【知识点】三角函数图像变换【试题解析】因为所以,可以将函数的图象向右平移个单位长度故答案为:D【答案】D的值可以是(【知识点】三角函数的图像与性质【试题解析】因为直线是函数图象的一条对称轴,所以,,由选项可知a只能是。
故答案为:A【答案】A【知识点】三角函数的图像与性质【试题解析】因为非零向量,夹角为,且,,所以,,,因为为非零向量,解得=故答案为:A【答案】A交点个数为(【试题解析】因为由图像可知共7个交点故答案为:C【答案】C【知识点】三角函数的图像与性质 【试题解析】因为当时,,当时单增所以,①②③均正确 故答案为:D 【答案】D二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin45π= _____. 【知识点】诱导公式 【试题解析】因为故答案为:【答案】12. 如图所示,D 为ABC △中BC 边的中点,设AB =a ,AC =b , 则BD =_____.(用a ,b 表示)ABC【知识点】平面向量基本定理 【试题解析】因为故答案为:【答案】13. 角α终边上一点的坐标为(1,2),则tan 2α=_____. 【知识点】倍角公式 【试题解析】因为角终边上一点的坐标为,所以, 故答案为:【答案】14. 设向量(0,2),)a b ==,则,a b 的夹角等于_____. 【知识点】平面向量坐标运算 【试题解析】因为所以,的夹角等于。
北京市西城区2015 — 2016学年度第一学期期末试卷高一数学2016.1试卷满分:150分考试时间:120分钟A卷 [必修模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符a若向量=的值可以是(交点个数为(二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 11. sin45π= _____. 12. 如图所示,D 为ABC △中BC 边的中点,设AB =a ,AC =b , 则BD =_____.(用a ,b 表示)13. 角α终边上一点的坐标为(1,2),则tan 2α=_____. 14. 设向量(0,2),)a b ==,则,a b 的夹角等于_____. 15. 已知(0,)α∈π,且cos sin8απ=-,则α=_____. 16. 已知函数()sin f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3π上单调递增,ABCD则ω的值为_______.三、解答题:本大题共3小题,共36分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知2απ∈π(,),且3sin 5α=. (Ⅰ)求tan()4απ-的值;(Ⅱ)求sin2cos 1cos 2ααα-+的值.18.(本小题满分12分)如图所示,C B ,两点是函数()sin(2)3f x A x π=+(0>A )图象上相邻的两个最高点,D 点为函数)(x f 图象与x 轴的一个交点.(Ⅰ)若2=A ,求)(x f 在区间[0,]2π上的值域; (Ⅱ)若CD BD ⊥,求A 的值.19.(本小题满分12分)如图,在ABC △中,1AB AC ==,120BAC ∠=. (Ⅰ)求AB BC ⋅的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP xAB yAC =+,其中,x y ∈R . 求xy 的最大值.ABCPB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分. 把答案填在题中横线上. 1.设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B =ð_____.2.2log =_____,31log 23+=_____.3.已知函数()f x =1,2,1.x x xx ⎧-⎪⎨⎪<⎩≥1, 且()(2)0f a f +=,则实数a = _____. 4.已知函数)(x f 是定义在R 上的减函数,如果()(1)f a f x >+在[1,2]x ∈上恒成立,那么实数a 的取值范围是_____.5. 通过实验数据可知,某液体的蒸发速度y (单位:升/小时)与液体所处环境的温度x (单位:℃)近似地满足函数关系ekx by +=(e 为自然对数的底数,,k b 为常数). 若该液体在0℃的蒸发速度是0.1升/小时,在30℃的蒸发速度为0.8升/小时,则该液体在20℃的蒸发速度为_____升/小时.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数26()1xf x x =+. (Ⅰ)判断函数)(x f 的奇偶性,并证明你的结论; (Ⅱ)求满足不等式(2)2xxf >的实数x 的取值范围.7.(本小题满分10分)设a 为实数,函数2()2f x x ax =-.(Ⅰ)当1a =时,求()f x 在区间[0,2]上的值域;(Ⅱ)设函数()()g x f x =,()t a 为()g x 在区间[0,2]上的最大值,求()t a 的最小值.8.(本小题满分10分)设函数()f x 定义域为[0,1],若()f x 在*[0,]x 上单调递增,在*[,1]x 上单调递减,则称*x 为函数()f x 的峰点,()f x 为含峰函数.(特别地,若()f x 在[0,1]上单调递增或递减,则峰点为1或0)对于不易直接求出峰点*x 的含峰函数,可通过做试验的方法给出*x 的近似值. 试验原理为:“对任意的1x ,2(0,1)x ∈,12x x <,若)()(21x f x f ≥,则),0(2x 为含峰区间,此时称1x 为近似峰点;若12()()f x f x <,则)1,(1x 为含峰区间,此时称2x 为近似峰点”.我们把近似峰点与*x 之间可能出现....的最大距离称为试验的“预计误差”,记为d ,其值为=d }}1,max{},,max{max{212121x x x x x x ---(其中},max{y x 表示y x ,中较大的数).(Ⅰ)若411=x ,212=x .求此试验的预计误差d .(Ⅱ)如何选取1x 、2x ,才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明1x 的取值即可).(Ⅲ)选取1x ,2(0,1)x ∈,12x x <,可以确定含峰区间为2(0,)x 或1(,1)x . 在所得的含峰区间内选取3x ,由3x 与1x 或3x 与2x 类似地可以进一步得到一个新的预计误差d '.分别求出当411=x 和125x =时预计误差d '的最小值.(本问只写结果,不必证明)北京市西城区2015 — 2016学年度第一学期期末试卷高一数学参考答案及评分标准 2016.1 A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C ;2.B ;3.B ;4.C ;5.D ;6.D ;7.A ;8.A ;9.C ; 10.D. 二、填空题:本大题共6小题,每小题4分,共24分.11. 2- 12. 1()2-b a ; 13. 43-;14.3π; 15. 85π; 16. 32. 三、解答题:本大题共3小题,共36分. 17.(本小题满分12分) 解:(Ⅰ)因为2απ∈π(,),且3sin 5α=,所以4cos 5α==-. ………………3分 所以sin 3tan cos 4ααα==-. ………………5分 所以tan 1tan()741tan αααπ--==-+. ………………7分 (Ⅱ)由(Ⅰ)知,24sin 22sin cos 25ααα==-, ………………9分2321cos 22cos 25αα+==. ………………11分所以244sin2cos 1255321cos 2825ααα-+-==-+. ………………12分 18.(本小题满分12分)(Ⅰ)由题意()2sin(2)3f x x π=+,因为02x π≤≤,所以02x ≤≤π.所以42333x πππ≤+≤. ………………3分所以sin(2)123x π-≤+≤. ………………6分 所以2)(3≤≤-x f ,函数)(x f的值域为[. ………………8分 (Ⅱ)由已知(,)12B A π,13(,)12C A π,(,0)3D π, ………………11分所以(,)4DB A π=-,3(,)4DC A π=.因为CD BD ⊥,所以⊥,223016DB DC A -π⋅=+=,解得A =又0A >,所以4A =. ………………12分 19.(本小题满分12分)解:(Ⅰ)()AB BC AB AC AB ⋅=⋅- ………………2分213122AB AC AB =⋅-=--=-. ………………4分(Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,1(,)22C -. ………………5分 设(cos ,sin )P θθ,[0,]3θ2π∈, ………………6分 由AP xAB yAC =+,得1(cos ,sin )(1,0)(2x y θθ=+-. 所以cos ,sin 22y x y θθ=-=.所以cos 3x θθ=+,3y θ=, ………………8分 2211cos sin 2cos 2333xy θθθθθ+=+- 2112cos 2)323θθ=-+………………10分21sin(2)363θπ=-+. ………………11分 因为2[0,]3θπ∈,2[,]666θππ7π-∈-. 所以,当262θππ-=,即3θπ=时,xy 的最大值为1. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. {|01}x x <≤;2. 1,62; 3. 1-; 4. {2}a a <; 5. 0.4. 注:2题每空2分.二、解答题:本大题共3小题,共30分. 6.(本小题满分10分) 解:(Ⅰ)因为26()1x f x x =+,所以26()1xf x x --=+ ()f x =-. ………………4分 所以()f x 为奇函数. ………………6分(Ⅱ)由不等式(2)2xxf >,得262221xx x⋅>+. ………………8分 整理得225x<, ………………9分所以22log 5x <,即21log 52x <. ………………10分 7.(本小题满分10分)解: (Ⅰ)当1a =时,2()2f x x x =-. 二次函数图象的对称轴为1x =,开口向上.所以在区间[0,2]上,当1x =时,()f x 的最小值为1-. ………………1分 当0x =或2x =时,()f x 的最大值为0. ………………2分 所以()f x 在区间[0,2]上的值域为[1,0]-. ………………3分 (Ⅱ)注意到2()2f x x ax =-的零点是0和2a ,且抛物线开口向上.当0a ≤时,在区间[0,2]上2()()2g x f x x ax ==-,()g x 的最大值()(2)44t a g a ==-. ………………4分当01a <<时,需比较(2)g 与()g a 的大小,22()(2)(44)44g a g a a a a -=--=+-,所以,当02a <<时,()(2)0g a g -<;当21a ≤<时,()(2)0g a g ->.所以,当02a <<时,()g x 的最大值()(2)44t a g a ==-. ………5分当21a ≤<时,()g x 的最大值2()()t a g a a ==. ………………6分 当12a ≤≤时,()g x 的最大值2()()t a g a a ==. ………………7分 当2a >时,()g x 的最大值()(2)44t a g a ==-. ………………8分所以,()g x的最大值244,2,(),22,44, 2.a a t a a a a a ⎧-<⎪⎪=≤≤⎨⎪->⎪⎩………………9分所以,当2a =时,()t a的最小值为12-………………10分 8.(本小题满分10分) 解:(Ⅰ)由已知114x =,212x =. 所以 121212max{max{,},max{,1}}d x x x x x x =---1111111max{max{,},max{,}}max{,}4442422===. ………………4分(Ⅱ)取113x =,23x 2=,此时试验的预计误差为31. ………………5分以下证明,这是使试验预计误差达到最小的试验设计. 证明:分两种情形讨论1x 点的位置. ① 当311<x 时,如图所示, 如果 21233x ≤<,那么 2113d x ≥->;如果2213x ≤≤,那么 2113d x x ≥->. ………………7分 ② 当311>x ,113d x ≥>.综上,当113x ≠时,13d >. ………………8分 (同理可得当223x ≠时,13d >) 即113x =,23x 2=时,试验的预计误差最小. (Ⅲ)当411=x 和125x =时预计误差d '的最小值分别为14和15. ………………10分注:用通俗语言叙述证明过程也给分.11x 2x 31。