1547种基因毒性杂质
- 格式:pdf
- 大小:5.87 MB
- 文档页数:30
01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
遗传毒性杂质遗传毒性:泛指各种因素(物理、化学因素)与细胞或生物体的遗传物质发生作用而产生的毒性。
1、致突变性:与DNA相互作用产生直接潜在的影响,使基因突变(bacteria reverse mutation(Ames)试验)2、致癌性:具有致癌可能或倾向(需要长期研究!)3、警示结构特征:一些特殊的结构单元具有与遗传物质发生化学反应的能力,会诱导基因突变或者导致染色体重排或断裂,具有潜在的致癌风险。
遗传毒性物质:在很低的浓度下即可诱导基因突变以及染色体的断裂和重排,因此具有潜在的致癌性。
EMA通告(1)、具体事项:1、哪些品种中会出现甲磺酸酯(或甲磺酸烷基酯)。
特别是甲磺酸盐等形式的API或其合成中用到甲磺酸的API,甲磺酸烷基酯-甲磺酸甲酯、乙酯、其它低级醇酯,应认定为潜在杂质。
2、羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸盐的API。
应说明类似物质磺酸烷基酯或芳基酯污染的危险。
3、限度要求:无其它毒性数据时,这些高风险杂质应依据TTC设定限度。
1.5μg÷以g为单位的最大日剂量得ppm限度。
4、法律依据:EP专论要求凡以甲磺酸盐和羟乙基磺酸盐形式存在的API,均应在其生产过程中采取以下安全措施:必须对生产工艺进行评估以确定家磺酸烷基酯(羟乙基磺酸烷基酯)形成的可能,特别是反应溶媒含低级醇的时候,很可能会出现这些杂质。
必需时需对生产工艺进行验证以说明在成品中未检出这类杂质。
(2)、落实措施:1、API生产是否涉及在甲磺酸(羟乙基磺酸盐、苯磺酸盐、对甲苯磺酸等低分子量磺酸)或相应酰氯存在下,使用甲醇、乙醇、正丙醇、异丙醇等低级脂肪醇(如甲醇、乙醇、正丙醇、异丙醇等)。
2、对相应酯形成的可能性是否降到最低。
3、是否有有效的清除精制步骤。
设备清洗-是否设计的低级脂肪醇的使用(方法,TTC限度)?起始物料(低分子量磺酸盐或酰氯)中是否控制了其低级脂肪醇酯(方法,TTC限度)?当被磺酸酯或相关物质污染的磺酸用于API合成时能否保证其中潜在的遗传毒性杂质不超过TTC?应考虑各种烷基或芳基磺酸酯杂质累积的风险。
药物研发与⽣产中存在的基因毒性杂质种类有哪些基因毒性杂质来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物,也可能是由药物在合成、储存或者制剂过程中的降解产⽣的。
如果药物中的基因毒性杂质分析⽅法及控制不当,可能会导致临床隐患,同时也会影响新药上市的时间。
因为体内基因毒性杂质对DNA具有潜在的破坏性,这种破坏可能会导致肿瘤的产⽣。
当基因毒性化合物,如环氧化物或芳⾹胺作为反应物和试剂参与反应制备原料药时,极有可能给最终的活性药物成分(API)带来基因毒性杂质污染,因此对基因毒性杂质的严格检测、控制和预防在⼯艺化学过程中是必须的。
在药物研发与⽣产中,常见的基因毒性杂质种类有烷基卤化物、磺酸酯、肼类化合物、环氧化合物、四甲基哌啶氧化物、酰卤类化合物、芳⾹胺、硼酸、和⼄酰胺等。
⼼邀⽣物的分析化学和纯化分离团队为客户提供⾼质量的分析和纯化分离服务, 如利⽤HPLC等各种技术分离监管起始原料、中间体、API和药物产品中的杂质。
1、烷基卤化物烷基卤化物也叫做卤代烷烃,是⼀类含有⼀个或者多个卤原⼦的化合物,根据所含卤原⼦的种类,可以分为氟化烷、氯代烷和碘代烷。
卤代烷烃的反应活性很强,能直接与⽣物⼤分⼦如DNAs、RNAs和蛋⽩质发⽣烷化基反应,可能会导致DNA突变。
卤代烷烃在药物合成中⼤量使⽤,结构种类繁多,是基因毒性杂质中最多见的⼀类。
常见的卤代烷烃杂质分析⽅法有⽓相⾊谱法(GC)、HS-GC-ECD法、⽓质联⽤技术(GC-MS)、固相微萃取技术等。
2、磺酸酯磺酸酯根据取代基的不同可以分为烷基磺酸酯和芳基磺酸酯。
与卤代烷烃类似,磺酸酯也是直接与⽣物⼤分⼦如DNAs、RNAs和蛋⽩质发⽣烷化基反应,可能会导致DNA突变。
对于此类基因毒性杂质分析除了需要克服灵敏度、选择性以及样品基质⼲扰等挑战外,磺酸酯的⾼反应活性也为分析⽅法的开发带来了难度。
如采⽤GC法测定挥发性烷基磺酸酯时,磺酸酯会在进样⼝⾼温分解或者样品中的磺酸与醇类溶剂瞬间反应⽣成磺酸酯。
基因毒性杂质介绍及检测⽅法1什么是基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity ,GTI)是指化合物本⾝直接或间接损伤细胞DNA,产⽣基因突变或体内诱变,具有致癌可能或者倾向。
潜在基因毒性的杂质(Potential Genotoxic Impurity ,PGI)从结构上看类似基因毒性杂质,有警⽰性,但未经实验证明的黄曲霉素类、亚硝胺化合物、甲基磺酸酯等化合物均为常见的基因毒性杂质,许多化疗药物也具有⼀定的基因毒性,它们的不良反应是由化疗药物对正常细胞的基因毒性所致,如顺铂、卡铂、氟尿嘧啶等。
2为何着重研究基因毒性杂质基因毒性物质特点是在很低浓度时即可造成⼈体遗传物质的损伤,进⽽导致基因突变并可能促使肿瘤发⽣。
因其毒性较强,对⽤药的安全性产⽣了强烈的威胁,近年来也越来越多的出现因为在已上市药品中发现痕量的基因毒性杂质残留⽽发⽣⼤范围的医疗事故,被FDA强⾏召回的案例,给药⼚造成了巨⼤的经济损失。
例如某知名国际制药巨头在欧洲市场推出的HIV蛋⽩酶抑制剂维拉赛特锭(Viracept, mesylate),2007 年7⽉,EMA暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸⼄酯超标,甲基磺酸⼄酯是⼀种经典的基因毒性杂质,该企业为此付出了巨⼤的代价,先内部调查残留超标的原因,因在仪器设备清洗时⼄醇未被完全清除⽽残留下来,与甲基磺酸反应形成甲基磺酸⼄酯。
在被要求解决污染问题后还被要求做毒性研究,以更好的评估对患者的风险。
同时有多达25000 名患者暴露于这个已知的遗传毒性。
直到解决了这所有问题后 EMA才恢复了它在欧洲的市场授权。
近年来各国的法规机构如ICH、FDA、EMA等都对基因毒性杂质有了更明确的要求,越来越多的药企在新药研发过程中就着重关注基因毒性杂质的控制和检测。
3哪些化合物是基因毒性杂质杂质的结构多种多样,对于绝⼤多数的杂质⽽⾔,往往没有充分的毒性或致癌研究数据,因⽽难以对其进⾏归类。
关于药物中的基因毒性杂质众所周知,药物并⾮纯净物质,其在⽣产贮运过程中常常会引⼊或产⽣“杂质”,⽽由于杂质的存在,⼜往往会带来潜在的安全性问题,所以科研⼈员通常需要在充分研究的基础上对杂质加以有效控制。
⽽基因毒性杂质危害性⼤,需要严格控制其在药物中的限度,保障⽤药安全。
基因毒性杂质的检测⾯临杂质种类多和化学性质活泼等问题,分析⽅法复杂多样,从⽽对药物中基因毒性杂质的检测⽅法提出了很⾼的要求。
⼀、基因毒性杂质基因毒性杂质( genotoxic impurity,GTI) 定义为“经过适当遗传毒性实验模型,如细菌基因突变( Ames) 实验,证实具有遗传毒性的杂质”。
其主要包括PGLS( potentially genotoxic impurities有潜在基因毒性的杂质)和GTLs( genotoxic impurities基因毒性杂质)两种。
基因毒性杂质可能从基因突变、染⾊体畸变、DNA 损伤与修复等⼏个⽅⾯同DNA 发⽣直接或间接的相互作⽤,从⽽改变DNA 结构与构象或引起DNA 的损伤,进⽽影响DNA的功能或改变其遗传特性,最终引起突变、癌变、畸变等遗传毒性。
新药合成、原料纯化、储存运输〔与包装物接触)等过程都可能产⽣基因毒性杂质,故⽽,近年来药审机构及研发⼈员对其愈发关注!各国药品监督管理部门对药物中基因毒性杂质的控制出台了⼀系列的指导⽂件,旨在严格控制该类杂质在药物中的限度。
⼆、有关基因性杂质的参考指南1.EMEA(欧洲药品管理局)2000年,欧洲监管机构率先开始关注基因毒性杂质,Pharm Europa发表了⼀篇⽂章,提到注意在成盐⼯艺中,磺酸在⼄醇溶液中形成磺酸酯的潜在风险。
2002年,专利药物委员会(CPMP,现为⼈⽤药物委员会CHMP)发布了⼀份关于基因毒性杂质的意见书,指南中将基因毒性杂质的限度根据有⽆阈值分为两类。
2006年⾸先颁布了《基因毒性杂质限度指南》,并⾃2007年1⽉1⽇起正式实施。
什么是基因毒性杂质对于基因毒性杂质的定义主要是指:在以DNA 反应物质为主要研究对象的体内/ 体外试验中,如果发现它们对DNA 有潜在的破坏性,那可称之为基因毒性。
对没有进行体内实验的情况下,也可以根据关联系做一些相关的体外实验去评估该物质在体内的毒性。
如果没有关联评估的,体外基因毒性物质经常被考虑为假定的体内诱变剂和致癌剂。
GUIDELINE ON THE LIMITS OF GENOTOXIC IMPURITIES ( EMEA/CHMP/QWP/251344/2006 )基因毒性杂质的风险按照目前的法规来说,(体内)基因毒性物质在任何摄入量水平上对DNA 都有潜在的破坏性,这种破坏可能导致肿瘤的产生。
因此,对于基因毒性致癌物,不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。
可接受风险的摄入量对于那些可以与DNA 进行反应的化合物,由于在较低的剂量时机体保护机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。
目前,对于一个给定诱变剂,我们很难从实验方面证明它的基因毒性存在一个阀值。
特别是对某些化合物,它们可以与非DNA 靶点进行反应,或一些潜在的突变剂,在与关键靶位结合之前就迅速失去了毒性。
由于缺乏支持基因毒性阀值存在的有力证据,而使得我们很难界定一个安全的服用量。
所以有必要采取一个新观点:确定一个可接受其风险的摄入量。
可接受其风险的摄入量即毒理学阈值一般通用的被定义为Threshold of Toxicological Concern (TTC)。
具体含义为:一个“ 1.5ug/day ”的TTC 值,即相当于每天摄入1.5ug 的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(一生中致癌的风险小于100000 分之1 )。
按照这个阀值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。
在特定的条件下一些基因毒性杂质也可以有较高的阈值。