在自由空间传播的均匀平面电磁波
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
电磁场与电磁波计算题题解例1 在坐标原点附近区域内,传导电流密度为:25.1/10m A r a J r c -=求:① 通过半径r=1mm 的球面的电流值。
② 在r=1mm 的球面上电荷密度的增加率。
③ 在r=1mm 的球内总电荷的增加率。
解:①Amm r rmm r d d d r rd J I c 97.31401sin 105.02025.1=====⋅=⎰⎰⎰πϕθθθππ② 因为 5.25.1225)10(1--==⋅∇r r r rd d r J c 由电流连续性方程,得到:38/1058.111m A mm mmr t ⨯-==∇-==∂∂ρ③ 在r=1mm 的球内总电荷的增加率A I td d 97.3-=-=θ例2 在无源的自由空间中,已知磁场强度m A z t a y /)10103(cos 1063.295-⨯⨯=-求位移电流密度d J 。
解:由于0=c J ,麦克斯韦第一方程成为t∂∂=⨯∇ ∴ H tJ d ⨯∇=∂∂=yy H y a ∂∂=294/)10103sin(1063.2m A z t a zH a x y x-⨯⨯-=∂∂=-例3 在无源的区域中,已知调频广播电台辐射的电磁场的电场强度m v z a y /)9.201028.6sin(1092-⨯=-求空间任一点的磁感强度B 。
解:由麦克斯韦第二方程E t⨯-∇=∂∂yy E y a ∂∂=z E a y x∂∂= )9.201028.6cos(109.2092z t a x -⨯⨯-=- 将上式对时间t 积分,若不考虑静态场,则有 )9.201028.6cos(109.2092z t a t d tB x -⨯⨯-=∂∂=⎰⎰- T z t a t d x )9.201028.6sin(1033.3911-⨯⨯-=- 例4 已知自由空间中,电场强度表达式为)(cos z t w a E x β-=;求磁场强度的H 表达式。
电磁场与电磁波计算题题解例1 在坐标原点附近区域内,传导电流密度为:25.1/10m A r a J r c -=求:① 通过半径r=1mm 的球面的电流值。
② 在r=1mm 的球面上电荷密度的增加率。
③ 在r=1mm 的球内总电荷的增加率。
解:①Amm r rmm r d d d r rs d J I c 97.31401sin 105.02025.1=====⋅=⎰⎰⎰πϕθθθππ② 因为 5.25.1225)10(1--==⋅∇r r r rd d r J c 由电流连续性方程,得到:38/1058.111m A mm r J mmr t c ⨯-==⋅∇-==∂∂ρ③ 在r=1mm 的球内总电荷的增加率A I td d 97.3-=-=θ例2 在无源的自由空间中,已知磁场强度m A z t a H y /)10103(cos 1063.295-⨯⨯=-求位移电流密度d J 。
解:由于0=c J ,麦克斯韦第一方程成为tDH ∂∂=⨯∇ ∴ H tDJ d ⨯∇=∂∂=yz y x H z y x a a a ∂∂∂∂∂∂=294/)10103sin(1063.2m A z t a zH a x y x-⨯⨯-=∂∂=-例3 在无源的区域中,已知调频广播电台辐射的电磁场的电场强度m v z a E y /)9.201028.6sin(1092-⨯=-求空间任一点的磁感强度B 。
解:由麦克斯韦第二方程E tB⨯-∇=∂∂0yzy x E z y x a a a ∂∂∂∂∂∂-=z E a y x∂∂= )9.201028.6cos(109.2092z t a x -⨯⨯-=- 将上式对时间t 积分,若不考虑静态场,则有 )9.201028.6cos(109.2092z t a t d tBB x -⨯⨯-=∂∂=⎰⎰- T z t a t d x )9.201028.6sin(1033.3911-⨯⨯-=- 例4 已知自由空间中,电场强度表达式为)(cos z t w a E x β-=;求磁场强度的H 表达式。
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
2《电磁场与微波技术》补充练习一、填空:1、波速随频率变化的现象称为波的色散,色散波的群速度表达式=z ν⎪⎭⎫⎝⎛-x c λ21。
2、测得一微波传输线的反射系数的模21=Γ,则行波系数K=1/3;若特性阻抗Z 0=75Ω,则波节点的输入阻抗R in (波节)=25欧。
3、微波传输线是一种分布参数电路,其线上的电压和电流沿线的分布规律可由传输线方程来描述。
4、同轴线传输的主模是TEM 模,微带线传输的主模是准TEM 模。
5、矩形波导尺寸a = 2cm, b = 1.1cm.若在此波导中只传输TE 10模,则其中电磁波的工作波长范围为2.2<λ<4。
6、微波传输线按其传输的电磁波波型,大致可划分为TEM 波传输线,TE 、TM 传输线和表面波传输线。
7、长线和短线的区别在于:前者为分布(长线)参数电路,后者为集中参数电路。
8、均匀无耗传输线工作状态分三种:(1)行波(2)驻波(3)行驻波。
10、从传输线方程看,传输线上任一点处的电压或电流等于该处相应的入射波和反射波的叠加。
11、当负载为纯电阻L R ,且0Z R L 时,第一个电压波腹点在终端,当负载为感性阻抗时,第一个电压波腹点距终端的距离在0<z 0<4λ范围内。
12、导波系统中的电磁波纵向场分量的有无,一般分为三种波型(或模):TEM 波;TE 波;TM 波。
13、导波系统中传输电磁波的等相位面沿着轴向移动的速度,通常称为相速;传输信号的电磁波是多种频率成份构成一个“波群”进行传播,其速度通常称为群速。
14、波速随着频率变化的现象称为波的色散,色散波的相速大于无限媒质中的光速,而群速小于无限媒质中的光速。
15、矩形波导传输的主模是TE 10模;同轴线传输的主模是TEM 模。
16、线性媒质的本构关系为→→=E D ε,→→=H B μ;17、媒质为均匀媒质时,媒质的ε、μ、υ与空间坐标无关。
18、媒质的ε、μ、σ与电磁场的幅度无关时,此媒质为线性媒质;19、若媒质的ε、μ、σ与电磁场的方向无关时,则称此媒质为各向同性媒质; 20、若媒质的ε、μ、σ与电磁场的频率无关 时,则称此媒质为非色散媒质。
2016年《电磁场与电磁波》复习题一、选择题1.已知矢量()()()2222x y z E e x axz e xy by e z z czx xyz =++++-+-,试确定常数a 、b 、c ,使E 为无源场【 】。
A .2,1,2a b c ===-B .2,1,2a b c =-==-C .2,1,2a b c ==-=-D .2,1,2a b c ===2.在两种媒质的分界面上,设n e 和t e 分别为界面的切向和法向,则电场1E 和2E 满足的关系式为___________。
【 】A 12()0n e E E ⨯-=B 12()0n e E E ∙-=C 12()0t e E E ∙-=D 12()0t eE E ⨯-=3. 在圆柱坐标系中,三个相互正交的坐标单位矢量为e ρ、e φ、z e ,其中为常矢量单位矢量为【 】。
A .e ρB .e φC .z eD .都不是4. 已知()()22222/x y z E e xyz y e x z xy e x y V m=-+-+,则点()2,3,1P -处E ∇的值为【 】。
A .-10B .5C .10D .-55.同轴线的内导体半径为1r ,外导体的内半径为2r ,内外导体间填充介电常数为0r εεε==的均匀电介质,则同轴线单位长度的电容C 为_________。
【 】 A 122ln(/)r r πε B 212ln(/)r r πε C 122ln(/)r r r πε D 212ln(/)r r r πε 6.已知标量函数2u x yz =,则u在点(2,3,1)处沿指定方向3/504/505/50l x y z e e e e =++的方向导数为【 】。
A .100/ B .112/ C .56/ D .224/7. 一般导电媒质的电导率σ,介电常数ε和电磁波角频率ω之间满足【 】。
A .()/1σωε>>B .()/1σωε<<C .()/1σωε=D .()/1σωε≈ 8.坡印廷矢量S E H =⨯,它的方向表示____方向,大小表示___。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
微波技术 1. 介绍在自由空间传播的均匀平面电磁波,举例:TE波,TM波,TEM波是属于电磁波的三种模式。
TE波指电矢量与传播方向垂直,或者说传播方向上没有电矢量。
TM波是指磁矢量与传播方向垂直。
TEM波指电矢量于磁矢量都与传播方向垂直
2.史密斯图(Smith chart)是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
一条传输线(transmission line)的阻抗(impedance)会随其物理长度而改变,要设计一套阻抗匹配(Impedance matching)的电路。
史密斯图的基本在于以下的算式
当中的Γ代表其线路的反射系数(reflection coefficient),即S参数(S-parameter)里的S11,是归一负载(normalized impedance)值,即。
当中,
是电路的负载值
是传输线的特性阻抗值,通常会使用50Ω。
图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的
是负数。
图表最中间的点(1+j0)代表一个已匹配(matched)的电阻数值(),同时其
反射系数的值会是零。
图表的边缘代表其反射系数的长度是1,即100%反射。
在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
研究生入学考试(电磁场与电磁波)-试卷7(总分60,考试时间90分钟)1. 计算题1. 有一均匀平面波在μ=μ0、ε=4ε0、σ=0的媒质中传播,其电场强度E=若已知平面波的频率f=150 MHz,平均功率密度为0.265μW/m2。
试求:(1)电磁波的波数、相速、波长和波阻抗;(2)t=0、z=0时的电场E(0,0)值;(3)经过t=0.1μs后,电场E(0,0)值出现在什么位置?2. 在自由空间传播的均匀平面波的电场强度复矢量为试求:(1)平面波的传播方向和频率;(2)波的极化方式;(3)磁场强度H;(4)流过与传播方向垂直的单位面积的平均功率。
3. 在空气中,一均匀平面波的波长为12 cm,当该波进入某无损耗媒质中传播时,其波长减小为8 cm,且已知在媒质中的E和H的振幅分别为50 V/m和0.1 A/m。
求该平面波的频率和媒质的相对磁导率和相对介电常数。
4. 均匀平面波的磁场强度H的振幅为A/m,在自由空间沿-ez方向传播,其相位常数β=30 rad/m。
当t=0、z=0时,H在一ey方向。
(1)写出E和H的表达式;(2)求频率和波长。
5. 已知在自由空间传播的均匀平面波的磁场强度为H(z,t)=(ex+ey)×0.8 cos(6π×108t 一2πz)A/m (1)求该均匀平面波的频率、波长、相位常数和相速;(2)求与H(z,t)相伴的电场强度E(z,t);(3)计算瞬时坡印廷矢量。
6. 频率为100 MHz的正弦均匀平面波,沿ez方向传播,在自由空间点P(4,一2,6)的电场强度为E=100ex一70eyV/m,求(1)t=0,P点的|E|;(2)t=1 ns时,P点的|E|;(3)t=2 ns时,点Q(3,5,8)的|E|。
7. 有一频率为100 MHz、沿y方向极化的均匀平面波从空气(x<0区域)中垂直入射到位于x=0的理想导体板上。
设入射波电场Ei的振幅为10 V/m,试求:(1)入射波电场Ei和磁场Hi的复矢量;(2)反射波电场Er和磁场Hr的复矢量;(3)合成波电场E1和磁场H1的复矢量;(4)距离导体平面最近的合成波电场E1为零的位置;(5)距离导体平面最近的合成波电场H1为零的位置。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处A= ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 任一矢量场在无限大空间不可能既是 无源场 又是 无旋场 ,但在局部空间 可以有 以及 。
5. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
6. 电流连续性方程的微分和积分形式分别为 和 。
7. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B8. 两种不同的理想介质的交界面上,(A )1212 , E E H H ==(B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C9. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则空间位移电流密度d J(A/m 2)为:ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇E J H B E Dσ=μ=ε= , ,t q S d J S ∂∂-=⋅⎰ t J ∂ρ∂-=⋅∇ 0A ∇⋅=0A ∇⨯=(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 10. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
自测题八一、填空题(每题2分.共10分)1、已知真空中有恒定电流J(r).则空间任意点磁感应强度B的旋度为。
2、极化方向既不平行也不垂直于入射面的线极化波斜入射在一个无限大介质平面上.__________________时反射波只有平行极化分量。
3、自由空间中原点处的源(ρ或J)在t时刻发生变化.此变化将在时刻影响到r处的位函数(ψ或A)。
4、在球坐标系中.电偶极子辐射场(远场)的空间分布与坐标的关系是_______。
5、已知体积为V的介质的介电常数为ε.其中的静电荷(体密度为ρ)在空间形成电位分布ψ和电场分布E和D.则空间的静电能量密度为。
空间的总静电能量为________________。
二、选择填空题(每题2分.共10分.每题只能选择一个答案.否则判为错)1、以下关于时变电磁场的叙述中.不正确的是()。
A.电场是有旋场B.电场和磁场相互激发C.电荷可以激发电场D.磁场是有源场2、以下关于在导电媒质中传播的电磁波的叙述中.正确的是()。
A.不再是平面波B.电场和磁场不同相C.振幅不变D.以TE波形式传播3、两个载流线圈之间存在互感.对互感没有影响的是()。
A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.空间介质4、用镜像法求解静电场边值问题时.判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称B.电位ψ所满足的方程是否改变C.边界条件是否改变D.同时选择B和C5、区域V全部用非导电媒质填充.当此区域中的电磁场能量减少时.一定是()。
A.能量流出了区域B.能量在区域中被损耗C.电磁场做了功D.同时选择A和C自测题八答案一、1. μJ(r)2. θ=θB3. t+r/c4. ∝sinθ/r二、1.D 2.B 3.C 4.D 5.A自测题七一、填空题(每题2分.共20分;选择填空题每题只能选择一个答案.否则判为错)1、已知真空中的电荷分布为ρ(r).则空间任意点电场强度E的散度为_______。
在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。
此时,电矢量E,磁矢量H和传播方向k两两垂直。
只是在这种情况下,才可以说电磁波是横波。
沿一定途径(比如说波导)传播的电磁波为导行电磁波。
根据麦克斯韦方程,导行电磁波在传播方向上一般是有E和H分量的。
光的传播形态分类:根据传播方向上有无电场分量或磁场分量,可分为如下三类,任何光都可以这三种波的合成形式表示出来。
1、TEM波:在传播方向上没有电场和磁场分量,称为横电磁波。
若激光在谐振腔中的传播方向为z方向,那么激光的电场和磁场将没有z方向的分量!实际的激光模式是准TEM模,即允许Ez、Hz分量的存在,但它们必须<<横向分量,因为较大的Ez意味着波矢方向偏离光轴较大,容易溢出腔外,所以损耗大,难于形成振荡。
2、TE波(即是物光里的s波):在传播方向上有磁场分量但无电场分量,称为横电波。
在平面光波导(封闭腔结构)中,电磁场分量有Ey, Hx, Hz,传播方向为z方向。
3、TM波(即是物光里的p波):在传播方向上有电场分量而无磁场分量,称为横磁波。
在平面光波导(封闭腔结构)中,电磁场分量有Hy, Ex, Ez,传播方向为z方向。
微波工程、电磁场理论等课程中有关于TEM、TE、TM模的更为详细的描述。
在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。
此时,电矢量E,磁矢量H和传播方向k两两垂直。
只是在这种情况下,才可以说电磁波是横波。
沿一定途径(比如说波导)传播的电磁波为导行电磁波。
根据麦克斯韦方程,导行电磁波在传播方向上一般是有E和H分量的。
光的传播形态分类:根据传播方向上有无电场分量或磁场分量,可分为如下三类,任何光都可以这三种波的合成形式表示出来。
1、TEM波:在传播方向上没有电场和磁场分量,称为横电磁波。
若激光在谐振腔中的传播方向为z方向,那么激光的电场和磁场将没有z方向的分量!实际的激光模式是准TEM模,即允许Ez、Hz分量的存在,但它们必须<<横向分量,因为较大的Ez意味着波矢方向偏离光轴较大,容易溢出腔外,所以损耗大,难于形成振荡。
2、TE波(即是物光里的s波):在传播方向上有磁场分量但无电场分量,称为横电波。
在平面光波导(封闭腔结构)中,电磁场分量有Ey, Hx, Hz,传播方向为z方向。
3、TM波(即是物光里的p波):在传播方向上有电场分量而无磁场分量,称为横磁波。
在平面光波导(封闭腔结构)中,电磁场分量有Hy, Ex, Ez,传播方向为z方向。
微波工程、电磁场理论等课程中有关于TEM、TE、TM模的更为详细的描述。