船舶设计原理
- 格式:doc
- 大小:40.50 KB
- 文档页数:17
1、非国际航行海船的航区划分。
1) 远海航区:系指国内航行超出近海航区的海域。
(2) 近海航区:系指中国渤海、黄海及东海距岸不超过200n mile 的海域;台湾海峡;南海距岸不超过120n mile (台湾岛东海岸、海南岛东海岸及南海岸距岸不超过50n mile)的海域。
(3) 沿海航区:系指台湾岛东海岸、台湾海峡东西海岸、海南岛东海岸及南海岸距岸不超过10nmile 的海域和除上述海域外距岸不超过20n mile 的海域;距有避风条件且有施救能力的沿海岛屿不超过20n mile 的海域。
但对距海岸超过20n mile 的上述岛屿,本局将按实际情况适当缩小该岛屿周围海域的距岸范围。
(4) 遮蔽航区:系指在沿海航区内,由海岸与岛屿、岛屿与岛屿围成的遮蔽条件较好、波浪较小的海域。
在该海域内岛屿之间、岛屿与海岸之间的横跨距离应不超过10n mile。
2、续航力是指在规定的航速或主机功率下,船上所带的燃料储备量可供连续航行的距离。
3、自持力是指船上所带的淡水和食品可供使用的天数4、船级是指新船准备入哪个船级社, 要求取得什么船级标志, 确定设计应满足的规范。
船籍是指在哪国登记注册的船舶, 确定新船应遵守的船籍国政府颁布的法定检验规则。
5、载重线是法规对船舶最大装载吃水线以及船体开口封闭条件的规定6、规定船舶最小干舷主要从甲板淹湿性和储备浮力这两个基本点来考虑, 与此相关的主要有以下几个方面的影响因素。
(1 ) 影响甲板淹湿性的因素季节区共分为: 北大西洋冬季区、冬季区、夏季区、热带区、夏季淡水区和热带淡水区 (2 ) 影响储备浮力大小的因素(3 ) 水灌进主船体内部的可能程度“A”型船舶———专为载运散装液体货物而设计的一种船舶“B”型船舶———达不到上述“A”型船舶各项条件的所有船舶。
(4 ) 船舶的破舱稳性7、干舷是指船中处从干舷甲板的上表面量至有关载重线的垂直距离。
干舷甲板通常是最高一层露天全通甲板, 该甲板上所有露天开口设有永久性的关闭装置, 其下所有的舷侧开口设有永久性的水密关闭装置。
船舶设计原理)
首先,船舶结构设计是船舶设计的基础。
船舶结构设计包括船体的外
形设计、船体材料的选择和结构计算等。
外形设计需要考虑船舶的用途和
载货能力等,以确保船舶具有良好的航行性能和稳定性。
船体材料的选择
需要根据船舶的用途、航行环境和造船成本等因素进行综合考虑。
结构计
算包括了船体的强度计算和稳定性计算等,以确保船舶具有足够的结构强
度和稳定性。
其次,流体力学是船舶设计中的重要内容。
流体力学研究船舶在水中
的运动规律,包括阻力的计算、船舶速度的预测以及船舶操纵性能的分析等。
阻力的计算是船舶性能预测的关键,其结果直接影响船舶的运行效率
和船载性能。
船舶速度的预测需要考虑到船舶的形状、推进系统和载荷等
因素。
船舶操纵性能的分析需要考虑到舵、推进器和船体的流体力学特性,以确保船舶具有良好的操纵性能和船舶安全性。
最后,船体抗浪性能是船舶设计中的重要考虑因素。
船体抗浪性能包
括抗浪稳性和抗浪能力两个方面。
抗浪稳性是指船舶在受到外界波浪作用
时的稳定性能,需要通过分析船体的动态特性来评估。
抗浪能力是指船舶
在恶劣海况下的耐波性能,需要通过船体结构设计和防浪设备的选择来保证。
综上所述,船舶设计原理是船舶设计中的基本原则和规范。
船舶结构
设计、流体力学和船体抗浪性能是船舶设计原理的重要内容。
船舶设计原
理的应用可以保证船舶具有良好的航行性能、结构强度和抗浪能力,从而
提高船舶的安全性和经济性。
船舶设计原理1. 引言船舶设计原理是指在设计船舶时需要遵循的一系列原则和规范。
船舶设计是将船体及其配套设施按照一定的航行、载重和舒适性要求进行布置和设计的过程。
本文将介绍一些常用的船舶设计原理和考虑因素。
2. 载荷和排水如何影响船舶设计载荷和排水是决定船舶设计的关键因素之一。
载荷是指船舶能够携带的货物、燃料、乘客和所需设备的总重量。
排水是指船舶在水中排开的体积。
船舶的设计需确保良好的浮力和稳定性,同时考虑船舶的载重能力和吃水线。
3. 船体设计原理船体设计原理是指船舶外部结构的设计。
船体设计需要考虑以下几个方面:•稳定性:船体的稳定性是指船舶在各种力和环境条件下保持平衡的能力。
设计师需要考虑船舶的桨叶、重心和船体形状等因素,以确保船体稳定性。
•水动力性能:船舶需要具备良好的水动力性能,包括航行速度、推进效率和操纵性能等。
设计师需要考虑船体船型、排水量和航行条件等因素,以优化水动力性能。
•舒适性:船舶的舒适性是指船员和乘客在船舶上的舒适程度。
设计师需要考虑船舶的抗震性、船舱布局和通风等因素,以提供良好的舒适性体验。
4. 推进系统设计原理推进系统设计原理是指船舶的动力来源和推进装置的设计。
推进系统设计需要考虑以下几个方面:•主机选择:主机是船舶的主要动力来源,设计师需要根据船舶的型号、尺寸和用途等因素选择合适的主机类型和数量。
•螺旋桨设计:螺旋桨是船舶的主要推进装置,设计师需要考虑螺旋桨的直径、叶片数和螺距等因素,以提供足够的推力和效率。
•推进效率:设计师需要优化推进系统的设计,以提高推进效率和减少燃油消耗。
这包括减少阻力、提高螺旋桨效率和优化船舶的船体形状等。
5. 船舶系统设计原理船舶系统设计原理是指船舶上各个系统的设计和布置。
船舶系统包括船舶结构、电气系统、水系统和排污系统等。
设计师需要考虑系统的功能需求和相互之间的协调性,以确保船舶的安全性和正常运行。
6. 船舶性能评估和验证船舶设计完成后,需要对船舶的性能进行评估和验证。
造船生产设计知识点总结造船工艺是指通过设计、制造和建造船体所需的技术和工艺过程。
在船舶建造领域中,生产设计是非常重要且必不可少的一部分。
本文将总结一些造船生产设计的核心知识点,以便读者全面了解和应用于实际项目中。
一、船舶设计原理1.1 水动力学原理在船舶设计中,水动力学是一个核心原理。
它研究船体在水中运动的性能,包括阻力、推力、浮力等。
设计师需要了解水动力学的基本概念和计算方法,以便进行船舶外形的优化设计。
1.2 结构力学原理结构力学原理是指在船舶设计中考虑船体结构的强度和稳定性。
设计师需要掌握结构设计的基本原则,包括荷载计算、材料选择和结构设计标准等。
1.3 稳性原理稳性原理是指船舶在水中的平衡性和稳定性。
设计师需要了解稳性计算方法和稳定性要求,以确保船舶在各种工况下都能保持稳定。
二、船舶结构设计2.1 船体外形设计船体外形设计是指确定船舶的尺寸、型号和形状。
设计师需要考虑船舶的使用目的、载货量、船速等因素,以确定最佳的船体外形。
2.2 船体内部布局设计船体内部布局设计是指确定船舱、机舱、船舶设备等各个功能区域的位置和布置。
设计师需要考虑到船体结构的强度和稳定性,并合理安排各个功能区域的布局。
2.3 船体结构设计船体结构设计是指确定船体的结构布置和连接方式。
设计师需要考虑到船舶的荷载和使用要求,选择合适的结构材料和连接方式,确保船体的强度和稳定性。
三、生产工艺设计3.1 分段建造分段建造是一种常用的船舶建造工艺。
它将船体分割成多个可独立制造的小段,然后逐段制造和组装。
设计师需要确定合理的分段方案和制造顺序,以便提高生产效率和质量。
3.2 焊接工艺焊接是船舶建造中常用的连接方式之一。
设计师需要选择适合的焊接方法和材料,开展焊接工艺评定和焊接接头设计,以确保焊接质量符合要求。
3.3 喷涂工艺船体的喷涂工艺是确保船体表面防腐和美观的重要步骤。
设计师需要选择适合的涂料和喷涂方法,制定喷涂工艺规范,以确保船体的防腐性能和外观质量。
船舶设计原理船舶设计原理是指在设计和建造船舶时所要遵循的一系列原则和规范。
这些原理不仅包括船体结构设计,还包括船舶机电设备的选择和安装,船舶稳性和操纵性的考虑等方面。
在船舶设计中,船体结构、船型布置和机电设备的可靠性都是设计的核心内容。
本文将重点介绍船舶设计原理的第3章。
第3章主要是关于船体结构的设计原理。
船体结构是船舶的骨架,承受着风浪、船载荷等外力的作用,因此在设计中应该注重结构的强度和刚度。
船体主要由船壳、船底、甲板和船舱等部位组成,每个部分的设计都要考虑到船舶性能和使用要求。
船壳是船舶的外部壳体,其主要作用是保护船舶内部设备和货物免受外界环境的影响。
船体结构设计时,需要确定船壳的材质和厚度,以及不同部位的承载能力。
船壳的材料一般采用钢材或铝合金,其选择应根据船舶类型、用途和航行环境等因素综合考虑。
船底是船舶的底部结构,承受着船舶自身重量和水压等力的作用。
船底结构设计时,需要考虑到船舶的稳定性和良好的浮力性能,并确保船舶在各种条件下的安全性。
船底的设计还要考虑到船舶的航行性能,如减小阻力、提高航速等因素。
甲板是船舶的上部结构,承受着甲板上的设备和货物的重量,并提供船员的工作和活动空间。
甲板结构设计时,需要考虑到甲板的强度和稳定性,以及甲板上的设备布置和船员的工作需求。
甲板的设计还要考虑到船舶的不同航行状态和环境下的安全性。
船舱是船舶内部的空间区域,用于存放货物、设备和提供船员的居住和工作空间。
船舱结构设计时,需要考虑到货物的稳定存放和船员的安全需求。
船舱的设计还要考虑到货物的装载和卸载过程中的稳定性和安全性。
总之,船舶设计原理中的船体结构设计是船舶设计的重要组成部分。
通过合理设计船壳、船底、甲板和船舱等结构,能够保证船舶的强度、稳定性和安全性,提高船舶的航行性能和经济效益。
未来随着船舶技术的不断进步,船体结构设计原理也将不断完善和发展,以满足船舶设计的需求。
船舶工程设计的原理和技术船舶作为人类交通与贸易的重要工具之一,其设计与建造无不体现着科学原理和技术实践的结合。
本文将以船舶工程设计的原理和技术为主题,探讨其背后的复杂性与创新性。
1. 船舶工程设计的原理船舶工程设计的首要原理是船身的稳定性。
船舶航行时受到各种力的作用,如浮力、重力、惯性力和风浪等。
合理设计船体形状和分布重量,以确保船舶在不受外力干扰时,能够始终保持稳定性,避免倾覆的危险。
其次,船舶的流体力学原理也是船舶工程设计的基础。
船舶在水中航行时,会受到阻力、推力和风力的影响。
设计师需要根据航行条件、船型和用途等因素,合理选取主机参数、推进器类型和推进效率等,以确保船舶在各种环境下都能够有效航行。
另外,船舶工程设计还需要考虑船体结构的强度与稳定性。
船舶在航行过程中,不仅会承受海浪的冲击和航速的振动,还可能受到碰撞、冰块以及货物和设备的载荷等外界因素的影响。
设计师需要合理选用材料、计算结构受力情况,确保船舶在各种环境下都能够承受外力并保持结构的完整性。
2. 船舶工程设计的技术在现代船舶工程设计中,计算机辅助设计(CAD)和计算流体力学(CFD)等技术已经广泛应用。
CAD可以实现船舶三维建模和设计绘图,大大提高了设计的精确度和效率。
而CFD技术则通过对流场、阻力和推力等参数的数值模拟,为设计者提供了更准确的数据分析和优化。
此外,虚拟现实(VR)和增强现实(AR)技术的应用也为船舶工程设计带来了革命性的变化。
通过虚拟现实技术,设计师可以在虚拟环境中实时观察和调整船舶的设计,从而提前发现并解决潜在问题。
增强现实技术则可以在实际环境中提供设计信息的叠加,帮助设计者更好地理解和操作设计。
此外,船舶工程设计还需要考虑船舶的节能与环保。
通过应用先进的能源管理系统、节能型推进器和抗污染技术等,可以降低船舶的能耗和排放,减少对环境的影响。
3. 船舶工程设计的挑战与前景船舶工程设计的挑战在于巨大的复杂性和多变的环境。
船舶设计原理设计船舶设计原理是指在设计一艘船舶时所遵循的原则和规范。
通过运用这些原理,可以使船舶在航行中具有良好的稳定性、操纵性和抗风浪能力,以及满足船舶设计的特定要求。
一、船体设计原理:1. 良好的流线型设计:船舶表面应平滑流线,以减小阻力,并提高船舶的航行速度和燃油效率。
2. 充分考虑稳定性:设计船舶时需要考虑船体的稳定性,以确保在航行、装卸货物等操作过程中船舶的平稳性。
3. 合理的结构强度:船舶的结构需要足够坚固,以承受海洋的力量和负荷。
4. 良好的抗风浪设计:船舶需要具备良好的抗风浪能力,以保证船只在恶劣海况下能够安全航行。
5. 充分考虑船舶的运营效益:在设计中需考虑运营成本、维护费用和环境影响等因素,以提高船舶的经济性和可持续发展。
二、船舶动力系统设计原理:1. 足够的推力:根据船舶的用途和尺寸,选择合适的动力系统,以确保船舶具备足够的推力。
2. 优化的燃油效率:设计时应选择具有良好燃油效率的动力系统,以降低能源消耗和碳排放。
3. 合适的操纵性能:设计船舶时需要考虑船舶的操纵性能,以确保船舶能够灵活、精准地进行转向和停泊等操作。
4. 安全性和可靠性:动力系统应具备良好的安全性和可靠性,以保证船舶在航行中的稳定性和航行安全性。
三、船舶舱室设计原理:1. 良好的舱室布局:设计船舶时需要合理布局舱室,以实现船舶内部空间的最大化利用和人员、货物的有效分配。
2. 舒适性考虑:船舶舱室设计应充分考虑乘员的舒适度,如合理的座椅布局、通风设施和噪音控制等。
3. 安全性和防火设计:舱室设计需考虑船舶内部的安全性和防火设计,如合适的逃生通道、防护设施和火灾报警系统等。
4. 舱室通风和空调系统:船舶舱室设计应考虑船舶内部的通风和空调系统,以确保良好的空气质量和乘员的舒适度。
综上所述,船舶设计原理包含船体设计原理、船舶动力系统设计原理和船舶舱室设计原理,通过遵循这些原理可以使船舶在航行中具备良好的稳定性、操纵性和抗风浪能力,并满足船舶设计的特定要求。
船舶设计原理期末总结船舶设计原理是船舶工程专业的核心课程之一,通过学习该课程,我对船舶设计的理论基础、运算方法以及实际应用有了更深入的了解。
在本学期的学习中,我逐步掌握了船舶设计原理的基本知识和方法,提高了船舶设计水平,为将来成为一名优秀的船舶设计师奠定了坚实的基础。
船舶设计原理课程主要涉及船舶的几何形状设计、稳性和浮力计算、阻力和推进性能计算、船舶结构设计等方面的内容。
这些内容相互关联,旨在使学生理解和掌握船舶设计的基本原理和方法。
本学期的学习过程中,我逐步学习了这些内容,并进行了实践训练,逐渐熟悉了船舶设计的整个流程。
在几何形状设计方面,我学习了船舶的线型设计原理和方式。
线型设计是船舶设计中最基础的环节,它决定了船舶的典型线型形态和外形。
通过学习线型设计的基本理论和方法,我了解了如何根据船舶的类型和用途确定合适的线型形态,并掌握了用CAD软件进行线型设计的基本技巧。
而在稳性与浮力计算方面,我学习了船舶的稳性原理和浮力计算方法。
稳性是船舶设计中一个非常重要的指标,它决定了船舶的平衡性和安全性。
通过学习稳性的基本原理和计算方法,我能够进行船舶的稳性计算,并根据计算结果对船舶的设计进行优化。
同时,我还学习了浮力计算的方法,了解了船舶的浮力原理,并掌握了浮力计算的基本步骤和技巧。
在阻力和推进性能计算方面,我学习了船舶的阻力和推进性能计算方法。
阻力和推进性能是衡量船舶性能的重要指标,对船舶的航行速度和燃油消耗有着重要影响。
通过学习阻力的计算原理和方法,我能够进行船舶阻力的计算,并根据计算结果对船舶的外形和排水量进行优化。
同时,我还学习了推进性能的计算方法,了解了船舶的推进原理,并掌握了推进性能计算的基本步骤和技巧。
在船舶结构设计方面,我学习了船舶的结构设计原理和计算方法。
船舶的结构设计是船舶设计的重要环节,它决定了船舶的强度和刚度。
通过学习结构设计的基本原理和计算方法,我能够进行船舶结构的设计,并根据设计结果对船舶的结构进行优化。
船舶的原理和设计应用1. 船舶原理简介•浮力原理:船舶利用其形状和底部的空腔产生的浮力来支撑和抵消其重力,实现浮起和悬浮。
•推进原理:船舶利用推进器或推进螺旋桨通过推动水来产生推进力,从而推动船体前进。
2. 船舶设计的基本原则•浮力满足:船舶设计应该满足所需的载荷和乘员数量,并保证浮力充足。
•推进效率:船舶设计应该考虑推进系统布局和推进器的选择,以提高推进效率。
•良好的稳定性:船舶应该设计具有良好的纵向和横向稳定性,以保证船舶在不同水面条件下的稳定性和安全性。
•良好的操纵性:船舶设计应该考虑良好的操纵性和机动性,以便在不同的操作环境下灵活应对。
•节能减排:船舶设计应该注重节能减排,采用高效的推进系统和船舶材料,以降低能耗和环境污染。
3. 船舶设计的关键要素1.船体结构设计–船舶的结构设计应该满足强度要求和刚度要求,考虑到船舶在不同环境下的承载能力和安全性。
–船舶的船体形状设计应该满足涉水阻力和航行稳定性要求。
–船舶的舱室和甲板布局设计应该满足船舶使用需求,并考虑操作和工作效率。
2.推进系统设计–船舶的推进系统设计应考虑推进器的数量、布局和功率分配,以及动力系统的选型和配置。
–船舶的推进系统应满足航行速度和操纵性的要求,并考虑到能耗和环境污染的问题。
3.船舶控制系统设计–船舶的控制系统设计包括舵机系统、操纵台和自动驾驶系统等,用于实现船舶的操纵和操纵精度的控制。
–船舶的控制系统应满足操纵性和安全性的要求,提供方便和准确的操作界面。
4.船舶配套设备设计–船舶的配套设备设计包括供电系统、通信系统、消防系统、救生系统和辅助设备等,用于支持船舶的正常运行和应对突发情况。
–船舶的配套设备设计应满足安全性和船舶功能要求,并考虑到能耗和环境保护。
4. 船舶设计应用的发展趋势•绿色船舶设计:注重船舶的节能减排和环境保护,采用新材料和新技术,提高船舶的能效和环保性能。
•智能船舶设计:利用先进的计算机和信息技术,实现船舶的自动化控制和智能化管理,提高船舶的操纵性和航行安全性。
船舶设计原理船舶设计原理是指在设计一艘船舶时所需要考虑的各种因素和原则。
船舶设计的目的是为了使船舶在航行中能够具有良好的稳定性、操纵性和航行性能,同时还要考虑船舶的结构强度、船体形状、动力系统等方面的设计。
船舶设计原理涉及到船舶的各个方面,是船舶设计的基础和核心。
首先,船舶设计原理中最重要的一点是船舶的稳定性。
船舶的稳定性是指船舶在航行中受到外部力作用时能够保持平衡的能力。
船舶的稳定性设计包括静态稳性和动态稳性两个方面。
静态稳性是指船舶在静止状态下的平衡能力,而动态稳性则是指船舶在航行中受到外部扰动时的平衡能力。
在船舶设计中,需要根据船舶的使用环境和功能要求来进行稳性计算和设计,以确保船舶具有良好的稳定性。
其次,船舶的流线型设计也是船舶设计原理中的重要内容。
船舶的流线型设计是指通过对船体形状的设计,使船舶在航行中能够减小阻力、提高航行速度和燃油效率。
流线型设计需要考虑船舶的船体形状、船尾设计、船舶的水动力性能等方面。
通过合理的流线型设计,可以使船舶在航行中具有更好的航行性能和经济性。
另外,船舶的结构强度设计也是船舶设计原理中的重要内容之一。
船舶在航行中会受到各种外部力的作用,如波浪载荷、风载荷等,因此需要对船舶的结构强度进行设计和计算。
结构强度设计需要考虑船舶的材料选择、结构设计、荷载计算等方面,以确保船舶具有足够的结构强度和安全性。
最后,船舶的动力系统设计也是船舶设计原理中不可忽视的部分。
船舶的动力系统设计包括船舶的主机选择、推进器设计、船舶的动力性能计算等方面。
通过合理的动力系统设计,可以使船舶具有良好的航行性能和经济性能。
综上所述,船舶设计原理涉及到船舶的稳定性、流线型设计、结构强度设计和动力系统设计等方面。
在船舶的设计过程中,需要综合考虑这些因素,以确保船舶具有良好的航行性能和安全性能。
船舶设计原理是船舶设计的基础,对于船舶的设计和建造具有重要的指导意义。
船舶设计原理第一章1. 船舶设计分为船体、轮机、电气设计;其中船体设计又分为总体、结构和舾装设计;总体设计的工作主要包括:主尺度和船型参数的确定、总布置设计、型线设计、各项性能的计算和保证。
2. 船舶设计的特点:1)必须贯彻系统工程的思想,考虑问题要全面,决策时要统筹兼顾;2)设计工作是由粗到细,逐步近似,反复迭代完成的。
船舶设计也可以说是一个多参数、多目标、多约束的求解和优化问题。
3.船舶设计的基本要求:适用、经济;安全、可靠;先进、美观4.续航力是指在规定的航速(通常为服务航速)或主机功率下,船上所带的燃料储备量可供连续航行的距离。
自持力是指船上所带淡水和食品可供使用的天数。
船舶设计一般分为初步设计、详细设计、生产设计和完工文件四个阶段。
前一阶段的设计结果是后一阶段设计的依据,后一阶段是前一阶段的深入和发展。
第二章1.图纸审查是指新船或改建船舶在设计阶段按规定的送审图纸资料目录将设计资料送交审图部门审查,审图部门审查后提出对设计图纸资料的审查意见书,设计单位依此修改设计并提交对审图意见的答复书。
这个图纸审查的过程通常称为“送审”。
2.干舷是指船中处从干舷甲板的上表面量至有关载重线的垂直距离。
最小干舷是根据规范有关规定计算得到的最小干舷值,它是保证安全性而限制船在劳动过程最大吃水而提出的要求。
船舶具有足够的干舷一方面可以保证有一定的储备浮力,另一方面可以减少甲板上浪。
最小干舷主要从甲板淹湿性和储备浮力这两个基本点来考虑。
3.“A”型船舶——专为载运散装液体货物而设计的一种船舶。
“B”型船舶——达不到上述“A”型船舶各项条件的所有船舶。
4.船长L是指最小型深85%处水线部长的96%,或沿该水线从首柱前缘至舵杆中心线的长度,取其大者。
5.B—60型船舶:船长超过100m的B型船舶,在计算干舷时,其基本干舷取为B型船舶表列干舷值减去了对应船长的B型船舶表列干舷与A 型船舶表列干舷值之差的60%,这种船称为B—60型船舶。
B—100型船舶:当基本干舷的减小值增大到B 型船舶表列干舷和A型船舶表列干舷的总差值时(即B型船舶的基本干舷取为A型船舶的表列干舷),这种船称为B—100型船舶。
6.完整稳性是指船舶未受破损时受外力作用发生倾斜而不致倾覆,当外力作用消失后,船舶仍能回复到原来平衡位置的能力。
(气象衡准也称为突风和横摇衡准)。
7.船体和上建及露天设备上结冰,结冰会增加重量并使重心升高,影响船舶稳性。
8.船舶登记吨位(RT)是指按船舶吨位丈量规范设计得到的船舶内部容积。
包括总吨位(GT)和净吨位(NT)。
总吨位是以全船围蔽处所的总容积(扣除特别规定的免除处所容积以后)来量计,它表征了船舶的大小。
净吨位是按船舶能用于营利部分的有效容积(即载货处所容积和以乘客人数折算所得的容积)来量计,它表征船舶营利的一种能力。
第三章1.空船重量(不变重量)LW=船体钢料重量WH、舾装重量WO和机电设备重量WM。
载重量(可变重量)DW,包括货物、旅客、船员、行李、油水、食品、备品、供应品以及压载水的重量。
2.如果重量计算得过轻,即浮力小于重力,则可能能出现:新船不能在预定航线上航行或必须减载航行;船舶干舷减少,储备浮力减小,船舶大倾角稳性与抗沉性难以满足,甲板容易上浪,船舶结构也可能不满足要求。
3.主尺度(L、B、D、d和CB)对船体钢料重量WH的影响:L>B>D>d>CB4.船舶加固定压载的主要原因如下:1.某些船稳性不足,加固定压载以降低重心高度; 2.某些特殊船舶的满载吃水太浅或排水量太小,用固定压载以加大吃水和排水量; 3.有的船因布置的特殊要求导致浮态不理想,用加固定压载来调整纵倾或横倾。
(通常,固定压载只是在某些特定的船舶上加载,例如托船、客船等,这些船舶的载重量要求不高,但稳性要求很高,或者船舶在使用中本身需要一定的排水量。
对于一般运输货船,设计时采用加固定压载的方法是不允许的,因为它损失了船的装载能力。
有一种特殊情况是新船设计建造完工后,发现重心过高或浮态很不好,用加固定压载来作为一种补救措施,以便在新船牺牲了部分装载能力后还能继续使用。
)第四章1.运输船舶中,载重量DW占排水量比例较大的船称为载重型船舶,例如散货船、油船等。
这类船舶对载重量和舱容的要求是确定船舶主尺度时考虑的主要因素。
如果船舶的主尺度主要由所需的布置地位决定,而载重量不作为主要的考虑因素,则这类船称为布置地位型船,例如客船。
船舶所需的舱容和布置地位的大小,是由船舶的用途、装载货物的种类和数量、人员以及设备的多少决定的。
2.容积折扣系数kc是指船舱内能用于装货的容积与型容积之比。
第五章1.船舶总体设计方案构思主要包括以下几个方面的内容:1).船型特征和总布置设想;2.考虑和初步选择主尺度;3.主尺度技术性能的估算与分析;4.其他重要方面的考虑(如船舶的主要装备、法规和规范的要求等)。
2.船舶主尺度是船长L、型宽B、型深D、和设计吃水d,通常把方形系数CB及主尺度比参数也归为主尺度的范围。
(习惯上把主尺度、排水量、载重量及载客数、航速、主机功率、船员人数等统称为船舶主要要素。
)3.主尺度选择的方法主要有:母型船方法;统计方法;经验方法。
(选母型船的标准:相近,优良)4.减小阻力,提高推进效率始终是船舶设计中研究快速性问题的两大方面。
5.船舶的完整稳性包括初稳性和大倾角稳性。
与初稳性相关的因素主要有:重心高度、型宽以及流水线面系数。
与大倾角稳性有关的因素除了上述因素以外,还与干舷、上层建筑(符合封闭条件的部分)、进水口位置以及受风面积和形心高度有关。
从保证稳性考虑,降低重心高度无论对初稳性还是大倾角稳性都是很重要的。
船舶的初稳性高必须从上下限来考虑:初稳性高下限是从保证安全和使用要求来考虑的,其最低限度必须满足法规对各种装载情况初稳性高的要求。
初稳性高上限是从横摇缓和性方面来考虑的。
初稳性高越大,船的横摇周期就越短,横摇加速度也越大,这对船舶的安全性也不利,并使船上作业困难,设备易产生故障,货物受捐赠,更使人员易晕船或感到不舒服。
因此,设计中对初稳性控制是要求在保证初稳性高下限的条件下力求使横摇周期长一些,横摇运动缓和些。
(在船舶设计中,由总布置来调整重心高度的余地较小,初稳性高很大程度上由所选择的船宽决定。
)提高稳性的方法有:降低重心高度;增加船宽;增加干舷高度;提高船舶的进水角色;减小自由液面的面积;减小船舶受风面积即上建高度和长度;降低急牵力矩;增大船舶的横摇阻尼减小横摇角;舷墙上开排水孔;采取措施防止载荷移动,减小横摇附加力矩。
6.耐波性中的主要问题:横摇、纵摇与升沉、风浪中的失速(舭龙骨是最简单又有效的减摇装置。
)7.操纵性包括:航向稳定性;回转性能;转首性及跟从性;停船性能。
8.一般来说,总阻力会随着船长的增加而减小,但是L大造价会增加,虽然取较大的L对阻力性能可能有利,可节省燃料开支,但一般来说,船长增加对综合经济性指标的不利影响总是比较大的。
所谓“经济船长”的杒不是从经济性有利的方面来选择船长。
9.选择船宽时首先考虑的基本因素是浮力、总布置(舱容及布置地位)、和初稳性高(上下限要求)。
设计吃水的选择主要从浮力及保证螺旋桨有适宜的直径这两个方面来考虑。
型深的选择据不同情况主要从舱容、布置地位、稳性和船舶纵总强度等方面来考虑。
10.载重型船舶因浮力的需要,选择大的CB,可以减小L和B,对减轻空船重量是很有利的。
但是CB对阻力影响很敏感,所以,通常是选取与Fn的配合上不引起阻力显著增加的值,这样选择的CB也称为“经济方形系数”。
11.主尺度选择的一般步骤:确定一个主尺度的选择范围;主尺度的第一次近似,拟定一组主尺度初始值;估算重量重心,重力和浮力是否平衡;校核布置地位和舱容是否符合要求;估算航速、稳性、干舷等主要性能指标,校核是否符合要求;初步确定了一个主尺度的可行方案;主尺度方案的优化。
第六章1.控制船体型线的要素主要是:横剖面面积曲线;设计水线和甲板边线;横剖线形状;侧面轮廓线。
2.在方形系数CB已确定的情况下,因Cp=CB/CM,所以菱形系数Cp的选择要和中剖面系数CM联系起来考虑。
3.平行中体长度和位置:在一定的Fn范围内,船体采用适量的平行中体,无论从阻力性能方面还是在使用和建造方面都是有利的。
从阻力方面看,将排水体积适当地向中部集中,采用一段平行中体,对于前体可使进流段尖瘦些,降低兴波阻力;对于后体,可削瘦去流段的船体形状,有利于改善形状阻力。
但是,设置太长的平行中体后,过短的进流段和去流段,会使平行中体的两端形成过硬的“前肩”和“后肩”,这对降低阻力是不利的。
在船舶的使用方面,因平行中体一段的横剖面形状完全相同,故使中部的船舱方整,便于装载货物。
设置平行中体还简化了工艺和降低建造成本。
因此,从实用出发,平行中体长度希望取长些,但以不引起阻力性能恶化为限。
航速高的船不能设置平行中体。
原因是这种船体已很瘦削,设置平行中体后,平行中体和过分瘦削的首尾连接处会形成凸肩,航行时产生的肩波和严重的肩部旋涡使阻力性能恶化。
4.半进流角:近首垂线处设计水线相对中心线的夹角。
5.前倾型首,这种形状的船首相对直立型而言,优点是:水线以上船首可以较为尖,具有劈水作用,减少波浪对船体的冲击;可以改善迎浪中的纵摇和升沉运动,这对小船效果更为明显;具有较好的防撞作用,减少了两船碰撞时水下部分破损的危险性;增加了储备浮力和甲板面积;外形显得较为美观。
6.船尾轮廓线形状的选择主要是考虑舵和螺旋桨的布置以及与横剖面型线的配合。
现代单桨运输船一般采用巡洋舰尾。
(尾框设有底龙骨的称为闭式尾框,不设底龙骨的称为开式尾框)7.舷弧是指首尾垂线处甲板边线高度减去型深后的值,分别称为首舷弧和尾舷弧。
(甲板线包括甲板边线和甲板中心线,甲板边线是一条空间曲线。
)甲板中心线在首尾垂线处相对船中处甲板中心线的升高值称为首尾脊弧。
(梁拱是指在横剖面上甲板中心线相对甲板边线拱起的高度。
)8.球首的作用主要是减小阻力,提高船舶的快速性。
从耐波性方面看,球首增加了纵摇阻尼。
设置球首的不利因素主要是增加了建造成本和影响锚泊设备的布置。
所以决定是否采用球首,不能完全从性能上的利益来考虑,还必须结合经济性方面来分析,即将球首所能得到的平均节省与球首的投资增加联系起来考虑。
(船舶采用特殊船尾型线,其目的主要是改善螺旋桨来流的状态,从而提高推进效率和减小激振力。
从阻力上看,双桨和双尾鳍船尾的粘压阻力降低了,但由于湿面积的增加,摩擦阻力增加了。
)第七章1.主船体是指船的连续露天甲板(通常为上甲板)以下的部分。
2.结构计算船长Ls,即垂线间长,但不小于水线长的96%,且不必大于水线长的97%,Ls大于200m时,取为200m。