圆锥曲线复习题资料.doc
- 格式:doc
- 大小:139.00 KB
- 文档页数:6
圆锥曲线一、椭圆:( 1)椭圆的定义:平面内与两个定点F1 , F2的距离的和等于常数(大于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表示椭圆;2a | F1F2|表示线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离心率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2ec(0 e 1) (离心率越大,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |二、双曲线:( 1)双曲线的定义:平面内与两个定点F1 , F2的距离的差的绝对值等于常数(小于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表示双曲线的一支。
2a | F1 F2|表示两条射线; 2a| F1F2 |没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在 x 轴上中心在原点,焦点在 y 轴上标准x2y21( a 0,b 0)y2x21(a 0, b 0) 22方程 a 2 b 2a bP y2 F图形P y B2x xF1 A 1O A 2F2O B1F1顶点对称轴焦点焦距离心率渐近线A1 ( a,0), A2 ( a,0)B1(0,a), B2 (0, a) x 轴,y轴;虚轴为2b,实轴为2aF1 ( c,0), F2 ( c,0)F1 (0,c), F2 (0, c) | F1F2 | 2c(c 0) c 2 a 2b2ec(e 1)(离心率越大,开口越大)aybx y a xa b通径2b2a (3)双曲线的渐近线:①求双曲线 x 2y21的渐近线,可令其右边的 1 为 0,即得x2y 20 ,因式分解得到xy0。
圆锥曲线复习(对高中生而言,再做一次就是一切)一.弦长1.已知抛物线y 2=2px(p>0),过焦点的弦AB 倾斜角为θ,求证:|AB|=2p sin 2θ,并求|AF|,|BF|。
2.已知圆M :(x+1)2+y 2=1,圆N :(x-1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C 。
(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|3. 已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当O P Q ∆的面积最大时,求l 的方程.4. 设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E.(Ⅰ)证明EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.二:中点弦1.已知椭圆x 24+y 29=1,一组平行直线的斜率是32,求这组直线与椭圆相交时,弦中点的轨迹方程。
2.已知直线l:x-y-2=0,抛物线C:y 2=2px(p>0).(1)若直线l 过抛物线C 的焦点,求抛物线的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P ,Q ,求证:线段PQ 的中点为(2-p,-p)并求p 的取值范围。
三:对称1.已知椭圆: x 24+y 23=1,试确定m 的取值范围,使得椭圆上的两个不同的点关于直线y=4x+m 对称2.已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e=12。
圆锥曲线知识点复习一、轨迹方程1、求轨迹方程的几个步骤:(建-设-列-化-证)a.建系(建立平面直角坐标系,多数情况此步省略)b.设点(求哪个点的轨迹,就设它(x,y ))c.列式(根据条件列等量关系)d.化简(化到可以看出轨迹的种类)e.证明(改成:修正)(特别是①三角形、②斜率、③弦的中点问题) 2、求动点轨迹方程的几种方法a.直接法:题目怎么说,列式怎么列。
b.定义法:先得到轨迹名称c.代入法(相关点法):设所求点(x ,y )另外点(21y x ,)找出已知点和所求点的关系d.参数法:(x,y )中x,y 都随另一个量变化而变化—消参二、弦长若直线b kx y +=与二次曲线的交点为A(1,1,y x )和B (2,2,y x ) 方法一:联立直线与二次曲线方程求出两交点⇒两点间距离方法二:利用弦长公式:||1||212x x k AB -+==2122124)(1x x x x k -+∙+ ||21211y y k -+==212212411y y y y k-+∙+)( 方法三:(半弦长)2=(半径)2-(圆心到直线距离)2(—只适用于圆)三、直线与二次曲线交点方法一:利用圆的圆心与弦中点的连线与弦垂直。
(—只适用于圆)方法二:点差法—不能用于判别存在性问题。
方法三:联立方程后利用两根之和与中点的关系—求存在性问题或求范围时需考虑∆。
五、椭圆1.另椭圆还具有以下性质a.椭圆上到中心的距离最小的点是短轴的两个端点,距离最大的点是长轴的两个端点;b.椭圆上到焦点距离最大、最小的点是长轴的两个端点(天体运动中称“远日点”“近日点”) 最大、最小距离分别为a+c , a-c ;c.设椭圆的两个焦点F 1、F 2当椭圆上的点P 在短轴端点时,21PF F ∠最大。
六、椭圆与双曲线对比七、双曲线2.已知渐近线02222=-b y a x ,可设双曲线方程:)(02222≠=-k k by a x ⎩⎨⎧<>轴焦点在轴焦点在y ,k x ,00k (二)等轴双曲线1、定义:若a=b 即实轴和虚轴等长,这样的双曲线叫做等轴双曲线2、方程:222a y x =-或222a x y =-.3、等轴双曲线的性质:(1)渐近线方程为:x y ±= ;渐近线互相垂直. 3)等轴双曲线方程可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上.九、抛物线说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p 的几何意义:是焦点到准线的距离。
江苏省13大市数学试题分类汇编-圆锥曲线一、填空题1、(常州市2013届高三期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线经过点(1,2),则该双曲线的离心率的值为2、(连云港市2013届高三期末)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2 = 4x 的准线交于A 、B 两点,AB =3,则C 的实轴长为 .3、(南京市、盐城市2013届高三期末)已知1F 、2F 分别是椭圆14822=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .4、(南通市2013届高三期末)已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =0的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为 .5、(徐州、淮安、宿迁市2013届高三期末)已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为,F 若以F 为圆心的圆05622=+-+x y x 与此双曲线的渐近线相切,则该双曲线的离心率为 .6、(苏州市2013届高三期末)在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y E a b a b-=>>的左顶点为A ,过双曲线E 的右焦点F 作与实轴垂直的直线交双曲线E 于B ,C 两点,若ABC ∆为直角三角形,则双曲线E 的离心率为 .7、(泰州市2013届高三期末)设双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 为双曲线上位于第一象限内一点,且12PF F 的面积为6,则点P 的坐标为8、(无锡市2013届高三期末)如图,过抛物线y 2=2px (p>0)的焦点F 的 直线L 交抛物线于点A 、B ,交其准线于点C ,若|BC|=2|BF|,且|AF|=3,则此 抛物线的方程为 。
9、(扬州市2013届高三期末)已知圆C 的圆心为抛物线x y 42-=的焦点,又直线4360x y --=与圆C 相切,则圆C 的标准方程为 .10、(镇江市2013届高三期末)圆心在抛物线22x y =上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 .二、解答题1、(常州市2013届高三期末)如图,在平面直角坐标系xoy 中,已知12,F F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,且2250AF BF +=. (1)求椭圆E 的离心率;(2)已知点()1,0D 为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.2、(连云港市2013届高三期末)已知椭圆C :22221x y a b+=(a >b >0)的上顶点为A ,左,右焦点分别为F 1,F 2,且椭圆C 过点P (43,b3),以AP 为直径的圆恰好过右焦点F 2.(1)求椭圆C 的方程;(2)若动直线l 与椭圆C 有且只有一个公共点,试问:在x 轴上是否存在两定点,使其到直线l 的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.3、(南京市、盐城市2013届高三期末)如图, 在平面直角坐标系xOy 中, 已知椭圆2222:1(0)x y C a b a b +=>>经过点M (32,2),椭圆的离心率223e =, 1F 、2F 分别是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)过点M 作两直线与椭圆C 分别交于相异两点A 、B .xy OF 2(第2题图)PAF 1①若直线MA 过坐标原点O , 试求2MAF ∆外接圆的方程;②若AMB ∠的平分线与y 轴平行, 试探究直线AB 的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.4、(南通市2013届高三期末)已知左焦点为F (-1,0)的椭圆过点E (1,233).过点P (1,1)分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点. (1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证直线MN 恒过定点,并求出定点坐标.5、(徐州、淮安、宿迁市2013届高三期末)如图,在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a b y a x E 的焦距为2,且过点)26,2(. (1) 求椭圆E 的方程;(2) 若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点.M (ⅰ)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值; (ⅱ)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.6、(苏州市2013届高三期末)如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b+=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA =,椭圆的离心率为12. ABMPOlxym(1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB 取得最小值时,求点P 的坐标; (3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ=,求实数λ的取值范围.8、(扬州市2013届高三期末)如图,已知椭圆1E 方程为22221(0)x y a b a b+=>>,圆2E 方程为222x y a +=,过椭圆的左顶点A 作斜率为1k 直线1l 与椭圆1E 和圆2E分别相交于B 、C .(Ⅰ)若11k =时,B 恰好为线段AC 的中点,试求椭圆1E 的离心率e ; (Ⅱ)若椭圆1E 的离心率e =12,2F 为椭圆的右焦点,当2||||2BA BF a +=时,求1k 的值; (Ⅲ)设D 为圆2E 上不同于A 的一点,直线AD 的斜率为2k ,当2122k b k a =时,试问直线BD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.9、(镇江市2013届高三期末)已知椭圆O 的中心在原点,长轴在x 轴上,右顶点(2,0)A 到右焦点的距离与它到右准线的距离之比为23. 不过A 点的动直线12y x m =+交椭圆O 于P ,Q 两点. (1) 求椭圆的标准方程;(2)证明P ,Q 两点的横坐标的平方和为定值;(3)过点 A,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.OMNAC xByy xODCBA。
椭圆及其标准方程椭圆与双曲线性质的比较抛物线图像与性质标准方程一、 知识积累:二、基础回顾:1、已知椭圆2212516x y +=,12,F F 是椭圆的左右焦点,p 是椭圆上一点。
(1)a = ; b = ; c = ; e = ; (2)长轴长= ; 短轴长= ; 焦距= ;12||||PF PF += ; 12FPF ∆的周长= ;2、 已知双曲线221916x y -=,12,F F 是椭圆的左右焦点,p 是椭圆上一点。
(1)a = ; b = ; c = ; e = ; (2)实轴长= ; 虚轴长= ; 焦距= ;12||||||PF PF -= . 渐近线方程: ; 3、抛物线28y x =,M 是抛物线上一点,且点M 到y 轴的距离是4。
(1)p= ;焦点F = ( ) ;准线方程: ;离心率= (2)点M 到该抛物线焦点的距离是 。
4、已知椭圆方程是192522=+y x 的M 点到椭圆的左焦点为1F 距离为6,则M 点到2F 的距离是 。
5.(2005广东)若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( )A .3B .23C .38 D .32 6.(2007全国Ⅰ文、理)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( )(A )112422=-y x (B )141222=-y x (C )161022=-y x (C )110622=-y x 7.(2006浙江文)抛物线28y x =的准线方程是( )(A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =-8.【2012高考安徽文14】过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______。
9.( 2007广东文)在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 ..美术班作业姓名:1、填表:1、 求函数的导数: (1)3213243y x x x =++-,则y '= ;(2)cos x y x= ,则y '= ;(3)2xy x a =+,则y '= ;(4)log a y x x =⋅,则y '= ; 2、已知函数23y x x =+,(1)函数的导数: y '= ;在点()2,10A 处的切线方程的 3、函数1y x x=+在1x =处的导数是 ;相应的切线斜率=k 切 ;切点坐标是 ;切线方程是 。
圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
考纲要求(1)圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质; ③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质; ④ 了解圆锥曲线的简单应用; ⑤ 理解数形结合的思想。
(2)曲线与方程了解方程的曲线与曲线的方程的对应关系。
基本知识回顾(1)椭圆① 椭圆的定义设F1,F2是定点(称焦点),P 为动点,则满足|PF1|+|PF2|=2a (其中a 为定值,且2a >|F1F2|)的动点P 的轨迹称为椭圆,符号表示:|PF1|+|PF2|=2a (2a >| F1F2|)。
② 椭圆的标准方程和几何性质 焦点在x 轴上的椭圆焦点在y 轴上的椭圆标准方程22a x +22by =1(a >b >0)22a y +22bx =1(a >b >0)范围x [,][,]a a y b b ∈-∈-[,][,]x b b y a a ∈-∈-图形对称性 对称轴:x 轴、y 轴 对称中心:原点顶点1212(,0),(,0)(,0),(,0)A a A aB b B b --1212(0,),(0,)(0,),(0,)A a A aB b B b --轴 长轴A 1A 2的长为:2a 短轴B 1B 2的长为:2b焦距F 1F 2=2c离心率e ,(0,1)ce a=∈ a,b,c 关系222a b c =+例题例1:椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = ;12F PF ∠的大小为 。
变式1:已知12F 、F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,p 为椭圆C 上的一点,且→→⊥21PF PF 。
若12PF F ∆的面积为9,则b = 。
例2:若点P 到点F (4,0)的距离比它到定直线x +5=0的距离小1,则P 点的轨迹方程是( )A .y 2=16-xB .y 2=32-xC .y 2=16xD .y 2=32x变式2:动圆与定圆A :(x +2)2+y 2=1外切,且与直线 ∶x =1相切,则动圆圆心P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线变式3:抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( ) A .y x 82=B .y x 42=C .y x 42-=D . y x 82-=变式4:在抛物线y 2=2x 上有一点P ,若 P 到焦点F 与到点A (3,2)的距离之和最小,则点P 的坐标是 。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
专题复习 圆锥曲线(一)【题模一】 圆锥曲线定义的应用:第一定义中要重视“括号”内的限制条件:椭圆:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 当2a =21F F 时,轨迹是线段F 1F 2;当2a <21F F 时,无轨迹;双曲线:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数a 2(21212F F a PF PF <=-),的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
抛物线:平面内与一个定点和一条直线的距离相等的点的轨迹.【讲透例题】1.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段2、设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且1234PF PF =,则12PF F ∆的面积等于 A .3B .210C .45D .3153. 若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( )A.圆B.椭圆C.双曲线D.抛物线4、 已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( ) A .2 B .22C .3 D .35. 已知抛物线2:C y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =( ) A .4B .2C .1D .86. 若抛物线216x y =上一点()00,x y 到焦点的距离是该点到x 轴距离的3倍,则0y =( ) A .12B .2C .1D .27. 已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( ) A .3 B .4 C .5 D .68. 已知双曲线2218:8x y C -=的左焦点为F ,点M 在双曲线C 的右支上,(0,4)A ,当MAF △的周长最小时,MAF △的面积为( ) A .12B .8C .6D .49. 已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在C 的左支上,过点M 作C 的一条渐近线的垂线,垂足为N ,则当2MF MN +取最小值10时,12F NF △面积的最大值为( )A .25B .252C .509D .100910、已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与抛物线24y x =交于点A ,点B 是抛物线的准线上一点,抛物线的焦点F 为双曲线的一个焦点,且ABF 为等边三角形,则双曲线的方程为( )A .2277134x y -=B .2277143x y -=C .2234177x y -=D .227711216x y -=12、已知1F 、2F 分别是双曲线2222:1x yC a b-=(0,0)a b >>的左、右焦点,双曲线C 的右支上一点Q 满足1||OQ OF =,直线1F Q 与该双曲线的左支交于P 点,且P 恰好为线段1F Q 的中点,则双曲线C 的渐近线方程为( ) A .12y x =±B .2y x =±C .23y x =±D .32y x =±【相似题练习】1.平面内有两定点A 、B 及动点P ,设命题甲:“|P A |+|PB |是定值”,命题乙:“点P 的轨迹是以A 、B 为焦点的椭圆”.那么甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2、 已知A(-, 0),B 是圆F:(x -)2+y 2=4(F 为圆心)上的一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程是_______________.3. 已知2F 是双曲线22:193x y C -=的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E x y ++=上一点,则2AB AF +的最小值为( ) A .9B .8C .53D .634、已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若,则|QF|= .5.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是 ( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)6. 已知椭圆22:14x C y +=的焦点是1F ,2F ,点P 为椭圆C 上一点,且1290F PF ∠=︒,则12PF F △的内切圆半径r 为( ) A 3B .23C .23+D .26、已知抛物线2:8C x y =的焦点为F ,O 为原点,点P 是抛物线C 的准线上的一动点,点A 在抛物线C 上,且4AF =,则PA PO +的最小值为( ) A .42B .13C .313 D .467、(多选)已知ABC 的两个顶点,A B 的坐标分别是()()5,0,5,0-,且,AC BC 所在直线的斜率之积等于()0m m ≠且斜率之差等于n ,则正确的是( )A .当0m >时,点C 的轨迹是双曲线.B .当1m =-时,点C 在圆2225x y +=上运动. C .当1m <-时,点C 所在的椭圆的离心率随着m 的增大而增大.D .无论n 如何变化,点C 的运动轨迹是轴对称图形.8、(多选)已知焦点在x 轴上的椭圆过点()3,06,则( ) A .椭圆的标准方程为22193x y +=B .椭圆经过点(0,23C .椭圆与双曲线223x y -=的焦点相同D .直线()11y k x -=-与椭圆恒有交点9、已知1F ,2F 是双曲线C :2213x y -=的两个焦点,点M 在直线30x y -+=上,则12MF MF +的最小值为( ) A .213B .6C .26D .510、已知()15,0F -,()25,0F 是双曲线()222210,0x y a b a b-=>>的两个焦点,过1F 的直线l 与圆222:O x y a +=切于点T ,且与双曲线右支交于点P ,M 是线段1PF 的中点,若1OM TM -=,则双曲线的方程为( )A .221916x y -=B .221169x y -=C .2211213x y -=D .2211312x y -=11、已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F 的直线l 与C 的左、右支分别相交于M 、N 两点,若11MF NF =,2MN b =,则双曲线的离心率为( ) A .52B .5C .2D .62【题模2】 圆锥曲线的标准方程1、椭圆:(1)焦点在x 轴上时12222=+by a x (0a b >>),(参数方程,其中为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
题型一:求曲线轨迹方程1.如图,从双曲线x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为N 。
求线段QN 的中点P 的轨迹方程。
解:设动点P 的坐标为(x,y ),点Q 的坐标为(x 1,y 1)则N ( 2x-x 1,2y-y 1)代入x+y=2,得2x-x 1+2y-y 1=2 ① 又PQ 垂直于直线x+y=2,故111=--x x y y ,即x-y+y 1-x 1=0 ② 由①②解方程组得12321,1212311-+=-+=y x y y x x , 代入双曲线方程即可得P 点的轨迹方程是2x 2-2y 2-2x+2y-1=02.抛物线)0(42>=p px y 的顶点作互相垂直的两弦OA 、OB ,求抛物线的顶点O 在直线AB 上的射影M 的轨迹。
解1(交轨法):点A 、B 在抛物线)0(42>=p px y 上,设A (),42A Ay py ,B (),42B B y p y 所以k OA =A y p 4 k OB =By p4,由OA 垂直OB 得k OA k OB = -1,得y A y B = -16p 2 ,又AB 方程可求得)4(44222p y x py p y y y y y ABA B A A ---=-,即(y A +y B )y--4px--y A y B =0,把 y A y B = -16p 2代入得AB 方程(y A +y B )y--4px+16p 2 =0 ① 又OM 的方程为 x Py y y BA 4-+=②由①②消去得y A +y B 即得0422=-+px y x , 即得2224)2(p y p x =+-。
所以点M 的轨迹方程为2224)2(p y p x =+-,其轨迹是以)0,2(p 为圆心,半径为p 2的圆,除去点(0,0)。
解2(几何法):由解1中AB 方程(y A +y B )y--4px+16p 2 =0 可得AB 过定点(4p,0)而OM 垂直AB ,所以由圆的几法性质可知:M 点的轨迹是以)0,2(p 为圆心,半径为p 2的圆。
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ2024高考数学专项复习第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
2023届高考数学复习:精选好题专项(圆锥曲线)练习题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△.2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上.1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.()2:20C x py p ->AB OP 22‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点 【3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值.()2:20C x py p ->E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,31,2Q ⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值.题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +参考答案题组一、 圆锥曲线中的直线问题1‐1、(山东省“学情空间”区域教研共同体2023届高三入学检测)椭圆的左右焦点分别为,焦距为,点M 为椭圆上位于x 轴上方的一点,,且的面积为2.(1)求椭圆C 的方程;(2)过点的直线l 与椭圆交于A ,B 两点,且,求直线l 的方程.【答案解析】【要点分析】(1)依题意可得,根据椭圆的定义、三角形面积公式及勾股定理求出,即可求出,从而得解;(2)首先求出的坐标,分直线的斜率为与不为两种情况讨论,当直线的斜率不为时,设直线的方程为,,,,联立直线与椭圆的方程,结合韦达定理可得,,由,推出,解得,进而可得答案.【小问1详解】解:因为,所以,即,所以,所以又,,,所以,即,所以,所以,所以椭圆方程为.【小问2详解】解:由(1)知,,所以,即, 当直线的斜率为时,此时,不合题意,2222:1(0)x y C a b a b+=>>12,FF 120MF MF ⋅=12MF F △2F 2AMB π∠=122F MF π∠=2a 2b M l 00l 0l x my =+11(,)A x y 22(,)B x y l 12y y +12y y MA MB⊥1212(0x x y y +-=m 120MF MF ⋅= 12MF MF ⊥ 122F MF π∠=1212122MF F MF MF S ⋅==△124MF MF ⋅=122MF MF a +=122F F c ==2221212MF MF F F +=()2121228MF MF MF MF +-=⋅24248a -⨯=24a =2222b a c =-=22142x y +=124MF MF ⋅=124MF MF +=122MF MF ==(M l 090AMB ∠≠︒当直线的斜率不为时,设直线的方程为,,,联立,得,所以,, 因为, 所以,所以,所以,所以, 所以, 解得或,当时,直线过点,不符合题意, 所以直线的方程为.1‐2、(湖北省重点高中2023届高三上学期10月联考) 已知直线1l:22y x =+与椭圆E :22142x y +=相切于点M ,与直线2l:2y x t =+相交于点 N (异于点M ).(1)求点M 的坐标;(2)直线2l 交E 于点()11,A x y ,()22,B x y 两点,证明:ANM MNB ∽△△. 【答案解析】【要点分析】(1)通过解方程组进行求解即可;(2)将直线2l 方程与椭圆方程联立,结合椭圆弦长公式、相似三角形判定定理进行运算证明即可. 【小问1详解】l 0l x my =+11(,)A x y 22(,)B xy 22142x my x y ⎧=⎪⎨+=⎪⎩22(2)20m y ++-=1222y y m+=-+12222y y m -=+90AMB ∠=︒MA MB⊥1212(0x x y y +-=21212(1)1)()40m y y m y y ++-++=2222(1)4(1)4022m m m m m -+--+=++2230m m --=1m =-3m =1m =-l Ml 30x y --=解:222224y x x y ⎧=-+⎪⎨⎪+=⎩,消y得:220x -+=,解得:x =,故)M ;【小问2详解】联立222y x y x t⎧=-+⎪⎪⎨⎪=+⎪⎩,解之得:,122t N t ⎫-+⎪⎪⎝⎭联立22224y x t x y ⎧=+⎪⎨⎪+=⎩,消y得:2220x t +-=, 由题可得:2Δ820t =->,∴12x x +=,2122x x t =-.12NA t ⎫=-⎪⎪⎭,22NB t ⎫=--⎪⎪⎭,()()212122223222332,2224NA NB x x t x x t t t t t ⎫⎫=--++⎪⎪⎪⎪⎭⎭⎫⎫=--+=⎪⎪⎪⎪⎭⎭2NM t ⎫=--=⎪⎪⎭, 2NM NA NB =,∴AN MNNM NB =,又ANB MNB ∠=∠,∴ANM MNB ∽△△ 1-3、(南京六校联合体2023届高三8月联合调研)(本小题满分12分)已知椭圆C :22154x y +=的上下顶点分别为A,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M,N 两点,直线BM 与AN 交于点G . (1)设AN,BN 的斜率分别为k ,k ,求k ∙k 的值; (2)求证:点G 在定直线上. .(本小题满分12分) 解:设),(),,(2211y x N y x M2222222221422x y x y x y k k -=-⋅+=⋅....................2分 2222154x y +=又22224(15x y =⋅-所以所以54451(4222221-=--=⋅x x k k .....................4分(2)设3:+=kx y PM 224520x y +=联立 得到02530)54(22=+++kx x k1223045kx x k -+=+所以2215425k x x +=⋅ 0)1(400)54(100900222>-=+-=∆k k k .....................6分直线:MB 2211-+=x x y y 直线:NA 2222+-=x x y y联立得:1212)2()2(22x y y x y y -+=-+.....................8分2121(2)(2)2524y y y y x x +++=-⋅-法一:525)(5452121212-=+++⋅-=x x x x k x x k..............10分解得34=y所以点G 在定直线34=y 上 .....................12分法二:由韦达定理得k x x x x 562121-=+2112221121(5)5221x kx kx x x y y kx x kx x x +++==-++所以5)(655)(65121221-=++-++-x x x x x x .........10分解得34=y所以点G 在定直线34=y 上 .....................12分1-4、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知双曲线22:12x C y -=上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ 的面积.解:(1)由题显然直线l 的斜率存在,设:l y kx m =+,设11(,)P x y ,22(,)Q x y ,则联立直线与双曲线得:222(21)4220k x kmx m -+++=,0> ,故122421km x x k +=--,21222221m x x k +=-,12121212111102222AP AQ y y kx m kx m k k x x x x --+-+-+=+=+=----, 化简得:12122(12)()4(1)0kx x m k x x m +--+--=,故2222(22)4(12)()4(1)02121k m kmm k m k k ++-----=--, 即(1)(21)0k m k ++-=,而直线l 不过A 点, 故l 的斜率 1.k =-(2)设直线AP 的倾斜角为α,由tan PAQ ∠=tan 22PAQ ∠=,由2PAQ απ+∠=,得tan AP k α==,即1112y x -=-联立1112y x -=-221112x y -=得1103x -=,153y =,同理,2103x +=,253y --=, 故12203x x +=,12689x x =而1|||2|AP x =-,2|||2|AQ x =-,由tan PAQ ∠=sin 3PAQ ∠=,故12121||||sin |2()4|29PAQ S AP AQ PAQ x x x x =∠=-++= 题组二、 圆锥曲线中的最值问题2‐1、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值..答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分) (2),∴,设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+2AB =OP1c =1EF 2212x y +=1OP =y kx m=+2212x y y kx m ⎧+=⎪⎨⎪=+⎩()222214220kx kmx m +++-=2216880k m ∆=-+>122421kmx x k -+=+21222221m x x k -=+∵,化简得.又设M 是弦AB 的中点,∴,, ∴,令, 则,∴(仅当时取等),又∵(仅当时取等号). 综上,.2‐3、(江苏如皋中学2022~2023学年度高三年级第一学期教学质量调研)已知椭圆2222:1(0)x y E a b a b +=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.解:(1)因为P 在椭圆上,所以12||||2PF PF a +=, 又因为12||3||PF PF =,所以2||2a PF =,13||2aPF =, 因为212PF F F ⊥,所以2222121||||||PF F F PF +=,又12||2F F =,所以22a =,2221b a c =-=,所以椭圆的标准方程为:22 1.2x y +=(2)设11(,)A x y ,22(,)B x y ,2221AB k ==+2222122k m k +=+222,2121kmm M k k -⎛⎫ ⎪++⎝⎭()222224121k OM m k +=⋅+()()()22222222241214122212221k k k OM k k k k +++=⋅=++++2411k t +=≥()()24443134t OMt t t t==≤=-++++1OM ≤=-t=1OP OM MP OM ≤+=+≤214k -=max OP =联立直线l 与椭圆E 的方程:221220x my x y =+⎧⎨+-=⎩,整理可得22(2)210m y my ++-=, 12222m y y m -+=+,12212y y m-=+,所以弦长2122)||||2m AB y y m+=-=+, 设圆222x y +=的圆心O 到直线l的距离为d =,所以||CD ==,所以2222222212)2)3||||41222m m m AB CD m m m m+++⋅=⋅⋅==-++++ 因为233022m <+…,2132222m ∴-<+…,2||||AB CD ∴⋅<,所以2||||AB CD ⋅的取值范围2‐4、(湖南省三湘名校教育联盟2023届高三上学期第一次大联考)(12分)在直角坐标系xOy 中,已知抛物线,P 为直线y =-1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB . (1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.答案解析:(1)当在轴上时,即,设过点的切线方程为,与联立得,由直线和抛物线相切可得,,,∴,,(3分)由,解得, ∴抛物线的方程为.(5分)(2),∴,()2:20C x py p ->P y ()0,1P -P 1y kx =-22x py =2220x pkx p -+=22Δ480p k p =-=2A B x x p =A B y y =)A()B OA OB ⊥(110+⨯=12p =C 2x y =2x y =2y x '=设,,则, 即,同理可得,(8分) 又为直线上的动点,设, 则,,由两点确定一条直线可得的方程为, 即,(10分) ∴直线恒过定点, ∴点到直线距离的最大值为.(12分)题组三、圆锥曲线中的定点、定值问题3‐1、(南京师大附中2022—2023学年度高三第一学期10月检测)(本小题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求OA OB ⋅的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点【答案解析】(1)由已知得22222()1c e a ba c c a b⎧==⎪⎪⎪⋅-=-⎨⎪=+⎪⎪⎩,解得3a b c ⎧=⎪=⎨⎪=⎩,即22:139x y C -=;(2)由题意设()()1122:2,,,,AB l y kx A x y B x y =+()11,A x y ()22,B x y ()1112y y x x x -=-112x x y y =+222x x y y =+P 1y x =-(),1P t t -1121x t t y =-+2221x t t y =-+AB 21xt t y =-+()()2110t x y ---=AB 1,12M ⎛⎫⎪⎝⎭OAB 2OM ==则()12122222222121222124233341301312913933k y kx y y x x k k k x kx x y kx x y y k k ⎧⎧⎧=++=+=⎪⎪⎪⎪⎪⎪--⇒---=⇒⇒⎨⎨⎨---=⎪⎪⎪==⎪⎪⎪--⎩⎩⎩由题意得2120030k x x ∆>⎧⇒<<⎨<⎩①221212222131299128193333k k OA OB x x y y k k k -+-+⋅=+===+<---- ; ②由对称性得直线AD 过定点在y 轴上,设定点(0,)T t ,则有A ,T ,D 三点共线, 即1221122121211212AT DT y t y t x y x yk k x y x t x y x t t x x x x ---+=⇒=⇒+=+⇒=+()()21121212122222x kx x kx kx x t x x x x +++⇒==+++代入韦达定理得92t =-,即直线AD 过定点90,2⎛⎫- ⎪⎝⎭.3‐2、(江苏省海安高级中学2023届高三期初学业质量监测)已知椭圆:的离心率为,短轴长为2.(1)求的方程;(2)过点且斜率不为0的直线与自左向右依次交于点,,点在线段上,且,为线段的中点,记直线,的斜率分别为,,求证:为定值. 【答案解析】【要点分析】(1)根据条件列出关于a,b 的方程,求得a,b 的值,即得答案; (2)设直线方程,,联立椭圆方程,可得根与系数的关系式,表示P点坐标,结合,可得N 点坐标,从而可证明结论. 【小问1详解】E ()222210x y a b a b +=>>2E ()4,0M -l E B C N BC MB NBMC NC=P BC OP ON 1k 2k 12k k (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y MB NBMC NC=由椭圆:的离心率为,短轴长为2,可知 ,则 ,故的方程为;【小问2详解】证明:由题意可知直线的斜率一定存在,故设直线的方程为,设,联立,可得,, 则, 所以,又,所以, 解得, 从而 , 故,即为定值.3‐3、(江苏连云港2023届高三上学期期中考试) 已知椭圆C :()222210x y a b a b +=>>经过点2P ⎛⎫ ⎪ ⎪⎝⎭,E ()222210x y a b a b +=>>2,222c b a==22231,44b a a -=∴=E 2214x y +=l l (4)y k x =+11223300(,),(,),(,),(,)B x y C x y N x y P x y 2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩2222(41)326440k x k x k +++-=22116(112)0,012k k ∆=->∴<<2212122232644,4141k k x x x x k k --+==++220002222164164,,(,414114)4(41k k k kx y x P k k k k k --==∴++++=+MB NB MC NC=31122344x x x x x x -+=+-2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++(1,3)N k -03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=12k k31,2Q ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)过椭圆C 右焦点的直线l 交椭圆于A ,B 两点,交直线x =4于点D .设直线QA ,QD ,QB 的斜率分别为1k ,2k ,3k ,若20k ≠,证明:132k k k +为定值. 【答案解析】【要点分析】(1)将椭圆上两点代入方程,得到方程组,求解,可得到a 、b ;(2)设出直线AB 方程y =k (x -1),得到D 点坐标()4,3k ,联立直线AB 与椭圆方程,得到A ,B 两点坐标之间的关系,根据坐标,分别表示出1k ,2k ,3k ,化简代入即可得到定值. 【小问1详解】将点2P ⎛⎫ ⎪ ⎪⎝⎭,点31,2Q ⎛⎫ ⎪⎝⎭代入椭圆方程()222210x y a b a b +=>>, 得222233141914a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2243a b ⎧=⎨=⎩,所以椭圆方程为22143x y +=.【小问2详解】由题意直线AB 的斜率一定存在,由(1)知,c =1,则椭圆的右焦点坐标为()1,0, 设直线AB 方程为:y =k (x -1),D 坐标为()4,3k .所以23312412k k k -==--, 设()11,A x y ,()22,B x y ,将直线AB 方程与椭圆方程联立得()22223484120kxk x k +-+-=.()()()()22222844341214410k k k k ∆=--+-=+>恒成立,由韦达定理知2122212283441234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,且()111y k x =-,()221y k x =-, 则()()121213121233331122221111y y k x k x k k x x x x ------+=+=+----()12121223221x x k x x x x +-=-⋅-++2222228233424128213434k k k k k k k-+=-⋅--+++21k =-.故13221212k k k k k +-==-(定值). 题组四、 圆锥曲线中的探索性问题4-1、(湖南师大附中2023届高三年级开学初试卷)(本小题满分12分)设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M 是C 上一点,2MF与x 轴垂直,直线1MF 与C 的另一个交点为N ,且直线MN 的斜率为42. (1)求椭圆C 的离心率.(2)设)1,0(D 是椭圆C 的上顶点,过D 任作两条互相垂直的直线分别交椭圆C 于B A .两点,过点D 作线段AB 的垂线,垂足为Q ,判断在y 轴上是否存在定点R ,使得||RQ 的长度为定值?并证明你的结论.【答案解析】(1)由题意知,点M 在第一象限.M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当c x =时,a b y 2=,即.,2⎪⎪⎭⎫ ⎝⎛a b c M …………………(2分) 又直线MN 的斜率为42,所以4222tan 2221===∠acb c a b F MF , 即22222c a ac b -==,即02222=-+a ac c ,………………………………(4分)则01222=-+e e ,解得22=e 或2-=e (舍去), 即.22=e …………………………………(5分)(2)已知)1,0(D 是椭圆的上顶点,则1=b ,椭圆的方程为1222=+y x ,………(6分)设直线AB 的方程为m kx y +=,),(),,(2211y x B y x A ,由⎩⎨⎧=++=2222y x m kx y 可得)*(0)1(24)21(222=-+++m kmx x k , 所以221214kkm x x +-=+,222121)1(2k m x x +-=, 又)1,(11-=y x DA )1,(.22-=y x DB , ………………………………(8分))1)(1()1)(1(21212121-+-++=--+=⋅m kx m kx x x y y x x DB DA221212)1())(1()1(-++-++=m x x m k x x k021)1)(21()(4)1)(1(2)1(214).1(21)1(2).1(222222222222=+-++--+-=-++--++-+=k m k m m k k m m k km m k k m k , 化简整理有01232=--m m ,得31-=m 或.1=m 当1=m 时,直线AB 经过点D ,不满足题意; ………………………………(10分) 当31-=m 时满足方程(*)中0>∆,故直线AB 经过y 轴上定点.31,0⎪⎭⎫ ⎝⎛-G 又Q 为过点D 作线段AB 的垂线的垂足,故Q 在以DG 为直径的圆上,取DG 的中点为⎪⎭⎫ ⎝⎛31,0R ,则||RQ 为定值,且=||RQ .32||21=DG …………………………(12分)4‐2、(南京市2023届高三年级学情调研) 已知抛物线C :()220y px p =>的焦点为F ,过点P (0,2)的动直线l 与抛物线相交于A ,B 两点.当l 经过点F 时,点A 恰好为线段PF 中点. (1)求p 的值;(2)是否存在定点T , 使得TA TB ⋅为常数? 若存在,求出点T 的坐标及该常数; 若不存在,说明理由.【答案解析】【要点分析】(1)结合中点坐标公式表示出点A 的坐标带入抛物线的方程即可求出结果; (2)设出直线的方程与抛物线联立,进而结合根与系数的关系得到TA TB ⋅的表达式,从而可得4040m ⎧+-=⎪⎨-=⎪⎩,因此解方程组即可求出结果.【小问1详解】 因为(),0,0,22p F P ⎛⎫⎪⎝⎭,且点A 恰好为线段PF 中点,所以,14p A ⎛⎫ ⎪⎝⎭,又因为A 在抛物线上,所以2124p p =⋅,即22p =,解得P =【小问2详解】设(),T m n ,可知直线l 斜率存在;设l :2y kx =+,()()1122,,,A x y B x y联立方程得:22y y kx ⎧=⎪⎨=+⎪⎩,所以220y k -+=,所以1212,y y y y k k+==, 又:()()()1212)(TA TB x m x m y n y n ⋅=--+--()()22121244y m y m y n y n ⎛⎫⎛⎫--+-- ⎪⎪ ⎪⎪⎭⎝⎭= ⎝()()222222*********y y m y y m n y y n -++-++=2222484m m n k k k k k ⎛⎫=--++-+ ⎪ ⎪⎝⎭22244m m n k k+-+++=-,令4040m ⎧+=⎪⎨-=⎪⎩,解之得:4m n ⎧=⎪⎨=⎪⎩,即)4T ,此时2218TA TB m n ⋅=+=4‐3、(湖北省鄂东南省级示范高中教改联盟学校2023届高三上学期期中联考)(本题满分12分)设点P 为圆上的动点,过点P 作x 轴垂线,垂足为点Q ,动点M 满足(点P 、Q 不重合)(1)求动点M 的轨迹方程E ;(2)若过点的动直线与轨迹E 交于A 、B 两点,定点N 为,直线NA 的斜率为,直线NB 的斜率为,试判断是否为定值.若是,求出该定值;若不是,请说明理由.22:4C x y +=2MQ =(4,0)T 31,2⎛⎫⎪⎝⎭1k 2k 12k k +答案解析:(1)设点P 为,动点M 为,则Q 点为求得:又即点M 的轨迹方程为:4分(2)设直线AB 方程为:则消x 得 或设A 点,B 点则求得: 8分()00,x y (,)x y ()0,0x ()()00,,0,MQ x x y PQ y =--=-())0022,0,MQ x x y y =∴--=-002x x y =⎧⎪⎨-=⎪⎩2222004443x y x y +=∴+= 221(0)43x y y +=≠4x my =+224143x my x y=+⎧⎪⎨+=⎪⎩()223424360m y my +++=()22(24)436340m m =-⨯+> △2m ∴>2m <-()11,x y ()22,x y 1212222436,3434m y y y y m m +=-⋅=++()121232my y y y =-+()()1212121221212123332392223339my y m y y y y k k my my m y y m y y ⎛⎫+-+--- ⎪⎝⎭∴+=+=+++++()()()1212123923392m y y m y y m y y -+-=-++++()()1212392392m y y m y y -+-=++1=-。
锥曲线专题一、求圆锥曲线的方程
【复习要点】
求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好I员I锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.
-•般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.
定形——指的是二次曲线的焦点位置与对称轴的位置.
定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为/WA-2+/ly2= 1 (/n>0,/2>0).
定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 【例题】
2 9
【例1】双曲线一-三=1(族N)的两个焦点几、F2, P为双曲线上一点,
4 b2
IOPIV5,IPF]l,IFiF2l,IPF2l成等比数列,则"=.
【例2】已知圆G的方程为(》一2)2+侦-1)2=史,椭圆C2的方程为
# +、= 1(。
>/7>0), C2的离心率为遮,如果C1与C2相交于4、B两点,旦线段他 / 人2 \
f 2
恰为圆G的直径,求直线AB的方程和椭圆C2的方程。
B
【例3】过点(1, 0)的直线/与中心在原点,焦点在工轴上且离心率为亭的椭圆C 相交于A、加点,直线日,过线段"的中点,同时椭圆。
上存在-点与右焦点关
于直线I对称,试求直线/与椭圆C的方程.
77
【例4】如图,已知△ Pg的面积为丁,P为线段P|P2的一个三等分点,求以
4
直线OP】、。
户2为渐近线n过点p的离心率为业的双曲线方程.
- 2
【例7】2 /
[例5】过椭圆C:土 + 土 = 1(。
>8>0)上一动点P引圆0: X2 +/ =b2的两条切线
/ b2
PA、P8, A、8为切点,直线48与x轴,y轴分别交于M、N两点。
⑴
已知P点坐标
为(Xo,Vo)并且XoVo。
,试求直线L8方程;⑵ 若椭圆的短轴长
•) 2
为8,并且—+ ,求椭I员1 C的方程;⑶椭圆C
\0M I- IONI? 16
上是否存在点P,由P向圆。
所引两条切线互相垂直?若存在,
请求出存在的条件;若不存在,清说明理由。
【例6】已知椭圆C的焦点是Fi ( 一心,0)> F2(73 , 0),点Fi到相应的准线的距离为吏,过F2点且倾斜角为锐角的直线/与椭圆C交于A、B两点,使得
|F
2B|=3|F
2
A|.
B(-1,O),C(1,O),P 是平面上一动点,旦满Si\PC\ \BC\=PB CB.
已知点
(1)求点P的轨迹C对应的方程;
(2)已知点A (m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD1AE,判断:直线DE是否过定点?试证明你的结论.
(3)已知点A (m,2)在曲线C上,过点A作曲线C的两条弦AD, AE,旦AD, AE的斜率«、幻满足灯・幻=2.求证:直线DE过定点,并求出这个定点.
.2 ,2 9
【例8】已知曲线土-土" = 1(。
> (展>0)的离心率e =—,直线/过A (°, 0)、/ b2
3
B (0, -b)两点,原点O到/的距离是匝.
2
2 2
【例9】已知动点P与双曲线3-; = 1的两个焦点巳、%的距离之和为定值,且cosZFiPF?的最小值为.
(1)求动点P的轨迹方程;
(2)若已知7)(0,3), M . N在动点F的轨迹上且,求实数4的取值范围.
【求圆锥曲线的方程练习】
一、选择题
1.己知直线x+2y—3=0与圆x2+y2+x—6v+w =0相交于P、Q两点,。
为坐标原点,若
OPA-OQ,则 s 等于()
A.3
B.-3
C.l
D.-1
2.中心在原点,焦点在坐标为(0, ±5 VI)的椭圆被直线3尤一),一2=0截得的弦的中点
的横坐标为L,则椭圆方程为()
2
A 2X2 2疽2x2 2y2f
A. --- + ^—= 1
B. -- + —— = 1
25 75 75 25
2 2 2 2
C.—
D.—
25 75 75 25
二、填空题
3.直线/的方程为)F+3,在/上任取一点P,若过点F旦以双曲线12.x2~4y2=3的焦点作椭圆的
焦点,那么具有最短长轴的椭圆方程为.
4.巳知圆过点P(4,—2)、0—1, 3)两点,且在),轴上截得的线段长为点,则该圆的方程为.
三、解答题
5.巳知椭圆的中心在坐标原点,焦点在x轴上,它的一个焦点为F,肱是椭圆上的任意点,IMFI的最大值和最小值的几何平均数为2,椭圆上存在着以为轴的对称点M,和M2,且IM|M2I=^^,试求椭圆的方程.
6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其
t +匕=l(〃>8>0),C2的离心率为毛,如果G与C2相交于A. B两点,月.线段A3恰a 2 为圆G的直径,求直线AB的方程和椭圆C2的方程.。