三元一次方程组的解法及运用
- 格式:docx
- 大小:265.62 KB
- 文档页数:7
三元一次方程组及其应用要点一、三元一次方程及三元一次方程组的概念1. 三元一次方程的定义:含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释:(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;2.找出能够表达应用题全部含义的相等关系;3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;4.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组类型一、三元一次方程及三元一次方程组的概念1. 下列方程组不是三元一次方程组的是().A. B. C.D.类型二、三元一次方程组的解法2. 解三元一次方程组3. 已知方程组的解使得代数式x-2y+3z的值等于-10,求a的值.【巩固训练】:知识点1.三元一次方程组的概念1.下列是三元一次方程组的是( )A.⎩⎨⎧2x =5,x 2+y =7,x +y +z =6B.⎩⎪⎨⎪⎧3x -y +z =-2,x -2y +z =9,y =-3C.⎩⎨⎧x +y -z =7,xyz =1,x -3y =4D.⎩⎨⎧x +y =2,y +z =1,x +z =9知识点2.三元一次方程组的解法2.将三元一次方程组⎩⎨⎧5x +4y +z =0,①3x +y -4z =11,②x +y +z =-2,③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( )A.⎩⎨⎧4x +3y =2,7x +5y =3B.⎩⎨⎧4x +3y =2,23x +17y =11C.⎩⎨⎧3x +4y =2,7x +5y =3D.⎩⎨⎧3x +4y =2,23x +17y =113.对于方程组⎩⎨⎧x +y +z =6,①y -z =4,②x -y -2z =3.③(1)若先消去x ,可得含y ,z 的方程组是__ __;(2)若先消去y ,可得含x ,z 的方程组是__ 或 或 __;(3)若先消去z ,可得含x ,y 的方程组是__ 或 或 __.知识点3.利用三元一次方程组求待定系数4.当x =0,1,-1时,二次三项式ax 2+bx +c 的值分别为5,6,10,则a =__ __,b =__ __,c =__ __.5.在等式y =ax 2+bx +c 中,当x =-1时,y =4;当x =2时,y =4;当x =1时,y =2.(1)求a ,b ,c 的值;(2)当x =-2时,求y 的值.知识点4.三元一次方程组的简单应用6.某次知识竞赛共出了30道试题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小丰同学不答的题比答错的题多3道,他的总分为81分,则他答对了( )A .19道题B .20道题C .21道题D .22道题【易错点】忽略集中消同一未知数导致不会解三元一次方程组.7.解下列三元一次方程组:(1)⎩⎨⎧2x +y =4,①x +3z =1,②x +y +z =7;③ (2)⎩⎨⎧x +z -3=0,①2x -y +2z =2,②x -y -z =-3.③8、如图所示,已知前两架天平两端保持平衡.要使第三架天平两端保持平衡,则应在天平的右托盘上放__ __个圆形物品.9.有一个三位数,它的十位上的数字等于个位上的数字与百位上的数字的和,个位上的数字与十位上的数字之和等于8,百位上的数字与个位上的数字对调后所得的三位数比原来的三位数大99.求原来的三位数.10.某汽车在相距70 km的甲、乙两地往返行驶,因为行驶中有一坡度均匀的小山,该汽车从甲地到乙地需要2.5 h,而从乙地到甲地需要2.3 h,假设汽车在平地、上坡、下坡的行驶过程中的时速分别为30 km,20 km,40 km.问:从甲地到乙地的过程中,平地路、上坡路、下坡路各为多少千米.11.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入y元.(1)求x,y的值;(2)若营业员小丽某月的总收入不低于3 800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.求某顾客想购买甲、乙、丙各一件共需多少元.【作业】:一、选择题1. 下列方程组中是三元一次方程组的是( ).A .2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B .2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C .1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D .::3:4:524x y z x y z =⎧⎨++=⎩ 2. 已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A. 3B.4C.0D.-13. 下列说法正确的是( ).A.方程3220x y z ++=有唯一组解.B.若x 、y 、z 是非负数,则三元一次方程3x+5y+2z =0只有一组解.C. 方程4x+y+2z =7是三元一次方程.D.三元一次方程组有且只有一组解.4.已知代数式2ax bx c ++,当x =-1时,其值为4;当x =1时,其值为8;当x =2时,其值为25;则当x =3时,其值为 ( ).A .1个B .2个C .3个D .4个5.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,则这对夫妇共有( )个子女.A .1个B .2个C .3个D .4个6.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ) .A .11支B .9支C .7支D .5支二、填空题7. 若12||(1)5210b a a x y z +--++=是一个三元一次方程,那么a =_______,b =________.8.已知2234x y y z x z +++===-,则x+2y+z =________. 9.当a =________时,方程组352,2718x y a x y a -=⎧⎨+=-⎩的解x 、y 互为相反数. 10.已知303340x y z x y z -+=⎧⎨--=⎩,则x :y :z =________. 11.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元;购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需________元钱.12. 方程x+2y+3z =14 (x <y <z)的正整数解是 .三、解答题13.解方程组:(1):3:2:5:466x y y z x y z =⎧⎪=⎨⎪++=⎩ (2)3222311410x y x x y z x y z ++=⎧⎪++=⎨⎪--=-⎩14. 已知等式(27)(38)810-+-=+对于一切有理数x都成立,求A,B的值.A B x A B x15.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完,此时厂家需付甲、丙成,厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由.。
三元一次方程组及其解法三元一次方程组是由三个一次方程组成的方程组,每个方程都是关于三个未知数的线性方程。
解决三元一次方程组的方法有多种,包括代入法、消元法、克莱姆法等。
本文将以消元法为例,介绍如何解决三元一次方程组。
消元法是一种代数方法,通过对方程进行逐步变换,将三元一次方程组转化为只有一个未知数的方程,从而求得其解。
下面以一个具体的三元一次方程组为例进行解答。
假设我们有以下三元一次方程组:```2x + 3y - z = 7x - 2y + 3z = 123x + 2y + z = 10```我们可以通过消元法将方程组转化为简化形式。
我们可以选择任意两个方程,并通过消元的方式将它们的某一未知数消去。
在这个例子中,我们可以选择第一和第二个方程。
我们通过第一行乘以2,第二行乘以3,然后将它们相加,将x消去:```4x + 6y - 2z = 143x - 6y + 9z = 36```将上述两个方程相加,我们得到:```7x + 7z = 50```接下来,我们再选择另外两个方程进行消元。
我们可以选择第一行乘以3,第三行乘以2,然后将它们相加,将x消去:```6x + 9y - 3z = 216x + 4y + 2z = 20```将上述两个方程相减,我们得到:```5y - 5z = 1```现在我们得到了两个只包含y和z的方程,接下来我们可以通过解这两个方程得到y和z的值。
这里我们可以选择将第二个方程乘以5,然后与第一个方程相减,将z消去:```5y - 5z = 125y - 25z = 25```将上述两个方程相减,我们得到:```-20y = -24```解得y = 1.2。
将y = 1.2代入其中一个方程,我们可以求得z的值:```5(1.2) - 5z = 16 - 5z = 1-5z = -5```解得z = 1。
将y = 1.2和z = 1代入其中一个方程,我们可以求得x的值:```2x + 3(1.2) - 1 = 72x + 3.6 - 1 = 72x = 7 - 3.6 + 12x = 4.4```解得x = 2.2。
1.三元一次方程组的概念含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.三元一次方程组的解法(Ⅰ)用代入消元法解三元一次方程组的步骤:①利用代人法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求三元一次方程组的解.(Ⅱ)用加减消元法解三元一次方程组的步骤:①利用加减法消去一个未知数,得出一个二元一次方程组;②解这个二元一次方程组,求得两个未知数的值;③将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起,就是所求的三元一次方程组的解.三元一次方程组的解法①要根据方程组的特点决定先消去哪个未知数.②原方程组的每个方程在求解过程中至少要用到一次.③将所求得的一组未知数的值分别代入原方程组的每一个方程中进行检验,看每个方程等号左、右两边的值是否相等,若都相等,则是原方程组的解,只要有一个方程等号左、右两边的值不相等,就不是原方程组的解.【例1】方程组323231112x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩的解是A.363xyz=⎧⎪=⎨⎪=⎩B.543xyz=⎧⎪=⎨⎪=⎩C.282xyz=⎧⎪=⎨⎪=⎩D.381xyz=⎧⎪=⎨⎪=⎩【答案】D。
要点一、三元一次方程及三元一次方程组的概念1. 三元一次方程的定义: 含有三个相同的未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程. 要点诠释: (1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次. (2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义: 一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释: (1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可. (2) 在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解要点二、三元一次方程组的解法解三元一次方程组的一般步骤 (1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组; (2)解这个二元一次方程组,求出两个未知数的值; (3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程; (4)解这个一元一次方程,求出最后一个未知数的值; (5)将求得的三个未知数的值用“{”合写在一起. 要点诠释: (1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是: (2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤: 1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; 2.找出能够表达应用题全部含义的相等关系; 3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组; 4.解这个方程组,求出未知数的值;. . . .解三元一次方程组,设,则 ,解之,得. 故原方程组的解为,得,则得:, 解得,故原方程组的解为.已知方程组的解使得代数式∴. 解得. 解法二: ①+②+③,得2(x+y+z)=12a. 即x+y+z=6a ④ ④-①,得z=3a,④-②,得x=a,④-③,得y=2a. ∴, 把x=a,y=2a,z=3a代入x-2y+3z=10得 a-2×2a+3×3a=-10. 解得. 【总结升华】当方程组中三个方程的未知数的系数都相同时,可以运用此题解法2中的技巧解这类方程组。
三元一次方程组的解法及运用
三元一次方程组的解法
基本步骤:
①利用代入法或加减法,把方程组中的一个方程与另两个方程分别组成两组,消去两组中的同一
个未知数,得到关于另外两个未知数的二元一次方程组。
②解这个二元一次方程组,求得两个未知数的值;
③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写
在一起的就是所求的三元一次方程组的解。
2x 6y 3z 6①
例解方程组3x 15y 7z 6②
4x 9y 4z 9③
思路探索:此方程组中没有一个未知数的系数的绝对值是1,所以考虑用加减消元法,选择消去系数较简单的未知数x,由①和②,①和③两次消元,得到关于y,z的二元一次方程组,最后求x。
课时训练试题:
解下列方程组
y 2x 7
(1)5x3y 2z2 (2)
3x 4z 4
7x 6y 7z 100
(3)x2y z0 (4)3x y 2z0
3x 2y z 3
(5)2x y z 4(6)4x 3y 2z 10 4x 9y 12
3y 2z 1
7x 5z 43
4
2x 4y 3z 9
3x 2y 5z 11
5x 6y 8z 0
2x 6y3z 6
3x 12y7z 3 4x 3y 4z 11
x y 1
x:y:z 1:2:3
(7)(8)y z 2
2x y 3z 15
z x 3
实际问题与二元一次方程:
常见题型有以下几种情形:
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
例 1.有大小两种货车,2辆大车与3辆小车一次可以运
货15.5吨,5辆大车与6辆小车一次可以运
货
35
吨。
3辆大车
与
5辆小车一次可以运货多少吨?
?
(2)行程问题(基本关系:路程=速度×时间。
)
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
①同时不同地:甲的时间 =乙的时间
甲走的路程-乙走的路程=原来甲、乙相距的路程
②同地不同时;甲的时间 =乙的时间-时间差
甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
船(飞机)航行问题:相对运动的合速度关系是:
顺水(风)速度=静水(无风)中速度+水(风)流速度;
逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
例2、张强与李毅二人分别从相距20 千米的两地出发,相向而行。
如果张强比李毅早出发30分钟,那么在李毅出发后 2 小时,他们相遇;如果他们同时出发,那么 1 小时后两人还相距11 千米。
求张强、李毅每小时各走多少千米?
例3.甲,乙两地相距160千米,一辆汽车和一辆拖拉机同时由两地相向而行,1小时20分钟相遇。
相遇后,拖拉机继续前行,汽车在相遇处停留1小时后掉转车头原速返回,且半小时后追上拖拉机。
这时,汽车,拖拉机各走了多少千米?
例4;甲乙两人分别从相距30千米的AB两地同时相向而行,经历3小时相距3千米,再经过2小时,甲到B地所剩的路程是乙到A地所剩路程的2倍,求甲乙两人的速度.
(3)工程问题工作总量=工作时间×工作效
率;工作时间=工作总量÷工作效率;
工作效率=工作总量÷工作时间
甲的工作量+乙的工作量=甲乙合作的工作总量,
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量
未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
例5.某城市为缓解缺水状况,实施了一项引水工程,就是把200千米以外的一条大河的水引到城市中
来,把这个工程交给了甲乙两个施工队,工期50天完成,甲乙两队合作了30天后,乙队因另外有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天也比原来多修0.4千米,结果如期完成。
问:甲,乙两队原计划每天各修多少千米?
工作量=工作效率×工作时间(相对应的)
例6.(遵义07)某中学准备改造面积为1080m2的旧操场,现有甲、乙两个工程队都想承建这项工程.经
协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造10m2;甲
工程队每天所需费用160元,乙工程队每天所需费用200元.
(1)求甲乙两个工程队每天各改造操场多少平方米?
(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择.
第一种方案:由甲单独改造;
第二种方案:由乙单独改造;
第三种方案:由甲、乙一起同时进行改造;
你认为哪一种方案既省时又省钱?试比较说明.
例7、某工厂为生产一种零件,购买了一台昂贵的特殊的机床,有两名工人轮流生产,每天只能工作8小时。
如果一天中,甲工作5小时,乙工作3小时,则一天可生产67只零件;如果一天中甲工作3小时,乙工作5小时,则一天可生产69只零件,问:甲乙两工人每小时各生产多少只零件?
(4)、经济问题
例8.某人用24000元买进甲,乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试
问此人买的甲乙两股票各是多少元?
(5) 、分配问题
例9.初一某班45名同学被平均分配到甲,乙,丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到
乙,丙两处支援,调动后乙处的人数恰好为丙处人数的
1.5 倍.问从甲处调到乙,丙各多少人?
练习
1、某高校共有5个大餐厅和2个小餐厅,经过测试同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开
放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1 个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7 个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
2、2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球
类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.
(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其
中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类
门票各多少张?
比赛项目票价(元/场)
男篮1000足球800乒乓球500
3、星期天,七年级车,划船的同学每
1、2两班部分同学相约去某公园玩碰碰车或划船.已知玩碰碰车的同学每人租用一辆4人合租一条船,两班各花了115元.活动人数如下表:
班级玩碰碰车的同学划船的同学
1 11人
2 8人
16人
20人
试求碰碰车每辆车租金多少元;游船每条船租金多少元.
4、“海之南”水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共 3200 千克,全部售出后收
入30400元。
已知“妃子笑”荔枝每千克售价 8元,“无核Ⅰ号”荔枝每千克售价 12 元,问该种植场今
年
这两种荔枝各收获多少千克?
5、某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:注:(获利=售价-进价)
(1) 该商场购进A 、B 两种商品各多少件?
(2)商场第二次以原进价购进 A 、B 两种商品.购进 B 种商品的件数不变,而购进 A 种商品的件数是第一 次的2倍,A 种商品按原价出售,而 B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利 不少于81600元, B 种商品最低售价为每件多少元 ?
A B 进价(元/件) 1200 1000 售价(元/件)
1380
1200。