电磁感应现象中的感生电场(无答案)
- 格式:pdf
- 大小:561.97 KB
- 文档页数:4
第3节涡流、电磁阻尼和电磁驱动课标解读课本要求课标解读1.通过实验,了解涡流现象。
2.能举例说明涡流现象在生产生活中的应用。
3.了解电磁阻尼和电磁驱动。
1.物理观念:通过实验,了解电磁阻尼和电磁驱动。
2.科学恩维:了解感生电场,知道感生电动势产生的原因。
会判断感生电动势的方向,并会计算它的大小。
3.科学探究:通过实验了解涡流现象,知道涡流是怎样产生的,了解涡流现象的利用和危害。
4.科学态度与责任:通过对涡流实例的分析,了解涡流现象在生产生活中的应用。
自主学习·必备知识教材研习教材原句要点一电磁感应现象中的感生电场麦克斯韦认为,磁场变化①时会在空间激发一种电场。
这种电场与静电场不同②,它不是由电荷产生的,我们把它叫作感生电场。
如果此刻空间存在闭合导体,导体中的自由电荷就会在感生电场的作用下做定向运动③,产生感应电流,也就是说导体中产生了感应电动势。
要点二涡流当某线圈中的电流随时间变化时,由于电磁感应,附近的另一个线圈中可能会产生感应电流。
实际上,这个线圈附近④的任何导体⑤,如果穿过它的磁通量发生变化,导体内都会产生感应电流。
如果用图表示这样的感应电流,看起来就像水中的漩涡,所以把它叫作涡电流⑥,简称涡流。
要点三电磁阻尼和电磁驱动当导体在磁场中运动⑦时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼⑧。
如果磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用常常称为电磁驱动⑨。
自主思考①均匀变化的磁场和非均匀变化的磁场产生的感生电场有什么不同?周期性变化的磁场产生的感生电场有何特点?答案:提示均匀变化的磁场产生恒定的感生电场,非均匀变化的磁场产生变化的感生电场。
周期性变化的磁场产生周期性变化的感生电场,且频率相等。
②感生电场和静电场有什么不同?答案:提示①静电场由电荷激发,感生电场由变化的磁场激发。
②静电场的电场线不闭合,感生电场的电场线是闭合的。
5 电磁感应现象的两类情况麦克斯韦在他的电磁理论中指出:变化的磁场能在周围空间激发电场,这种电场叫感生电场.二、感生电动势的产生感生电场产生的电动势叫感生电动势.2.感生电动势大小:E =n ΔΦΔt. 3.方向判断:由楞次定律和右手螺旋定则判定.三、动生电动势的产生导体运动产生的电动势叫动生电动势.2.动生电动势大小:E =Blv (B 的方向与v 的方向垂直).3.方向判断:右手定则.1.判断下列说法的正误.(1)只要磁场变化,即使没有电路,在空间也将产生感生电场.( √ )(2)处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用.( √ )(3)动生电动势(切割磁感线产生的电动势)产生的原因是导体内部的自由电荷受到洛伦兹力的作用.( √ )(4)产生动生电动势时,洛伦兹力对自由电荷做了功.( × )2.研究表明,地球磁场对鸽子识别方向起着重要作用.在北半球若某处地磁场磁感应强度的竖直分量约为5×10-5T.鸽子以20m/s 的速度水平滑翔,鸽子两翅展开可达30cm 左右,则可估算出两翅之间产生的动生电动势约为________V ,________(填“左”或“右”)侧电势高. 答案 3×10-4 左一、感生电场和感生电动势如图1所示,B 变化时,就会在空间激发一个感生电场E .如果E 处空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流.图12.变化的磁场周围产生的感生电场,与闭合电路是否存在无关.如果在变化的磁场中放一个闭合回路,回路中就有感应电流,如果无闭合回路,感生电场仍然存在.3.感生电场可用电场线形象描述.感生电场是一种涡旋电场,电场线是闭合的,而静电场的电场线不闭合.4.感生电场(感生电动势)的方向一般由楞次定律判断,感生电动势的大小由法拉第电磁感应定律E =n ΔΦΔt计算. 例1 (多选)(2017·温州中学高二上学期期中)下列说法中正确的是( )D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向答案 AC解析 变化的电场可以产生磁场,变化的磁场可以在周围产生电场,故A 正确;恒定的磁场在周围不产生电场.故B 错误;感生电场的方向也同样可以用楞次定律和右手螺旋定则来判定,故C 正确;感生电场的电场线是闭合曲线,其方向不一定是沿逆时针方向,故D 错误. 例2 (多选)某空间出现了如图2所示的一组闭合的电场线,这可能是( )图2AB 方向磁场在迅速减弱AB 方向磁场在迅速增强BA 方向磁场在迅速增强BA 方向磁场在迅速减弱答案 AC闭合回路(可假定其存在)的感应电流方向就表示感生电场的方向.判断思路如下:二、动生电场和动生电动势如图3所示,导体棒CD 在匀强磁场中运动.图3CD 向右匀速运动,由左手定则可判断自由电子受到沿棒向下的洛伦兹力作用,C 端电势高,D 端电势低.随着C 、D 两端聚集电荷越来越多,在CD 棒间产生的电场越来越强,当电场力等于洛伦兹力时,自由电荷不再定向运动,C 、D 两端形成稳定的电势差.感生电动势 动生电动势 产生原因 磁场的变化 导体做切割磁感线运动移动电荷的 非静电力 感生电场对自由电荷的电场力 导体中自由电荷所受洛伦兹力沿导体方向的分力回路中相当于电源的部分 处于变化磁场中的线圈部分 做切割磁感线运动的导体方向判断方法 由楞次定律判断 通常由右手定则判断,也可由楞次定律判断大小计算方法 由E =n ΔΦΔt 计算 通常由E =Blv sin θ计算,也可由E =n ΔΦΔt计算 例3 (多选)如图4所示,导体AB 在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是( )图4答案 AB解析 根据动生电动势的定义,选项A 正确.动生电动势中的非静电力与洛伦兹力有关,感生电动势中的非静电力与感生电场有关,选项B 正确,选项C 、D 错误.[学科素养] 通过例1、例2和例3,加深对感生电动势和动生电动势的理解,掌握它们方向的判断方法,并会对两者进行区分,体现了“科学思维”的学科素养.三、导体棒转动切割产生动生电动势的计算1.当导体棒在垂直于匀强磁场的平面内,其一端固定,以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图5所示. 图5ω绕圆心匀速转动时,如图6所示,相当于无数根“辐条”转动切割,它们之间相当于电源的并联结构,圆盘上的感应电动势为E =Br v =12Br 2ω. 图6例4 长为l 的金属棒ab 以a 点为轴在垂直于匀强磁场的平面内以角速度ω匀速转动,如图7所示,磁感应强度大小为B .求:图7(1)金属棒ab 两端的电势差;(2)经时间Δt (Δt <2πω)金属棒ab 所扫过的面积中通过的磁通量为多少?此过程中的平均感应电动势多大?答案 (1)12Bl 2ω (2)12Bl 2ωΔt 12Bl 2ω 解析 (1)ab 两端的电势差:U ab =E =Bl v =12Bl 2ω. (2)经时间Δt 金属棒ab 所扫过的扇形面积ΔS =12l 2θ=12l 2ωΔt ,ΔΦ=B ΔS =12Bl 2ωΔt . 由法拉第电磁感应定律得: E =ΔΦΔt =12Bl 2ωΔt Δt =12Bl 2ω. 1.(对感生电场的理解)如图8所示,内壁光滑的塑料管弯成的圆环平放在水平桌面上,环内有一带负电的小球,整个装置处于竖直向下的磁场中,当磁场突然增强时,小球将( )图8答案 A2.(对感生电场的理解)如图9所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板,磁场垂直于环面向里,磁感应强度以B =B 0+kt (k >0)的规律随时间变化,t =0时,P 、Q 两板电势相等,两板间的距离远小于环的半径,经时间t ,电容器P 板( )图9t 成正比C.带正电,电荷量是kL 2C 4π D.带负电,电荷量是kL 2C 4π 答案 D解析 磁感应强度以B =B 0+kt (k >0)的规律随时间变化,由法拉第电磁感应定律得:E =ΔΦΔt=S ΔB Δt =kS ,而S =πr 2=π(L 2π)2=L 24π,经时间t 电容器P 板所带电荷量Q =EC =kL 2C 4π;由楞次定律和安培定则知电容器P 板带负电,故D 选项正确.3.(转动切割产生的电动势)(2017·慈溪市高二上学期期中)如图10所示,导体棒ab 长为4L ,匀强磁场的磁感应强度为B ,导体绕过b 点垂直纸面的轴以角速度ω匀速转动,则a 端和b 端的电势差U 的大小等于( )图10 BL 2ω B.BL 2ωBL 2ωBL 2ω答案 D解析 ab 棒以b 端为轴在纸面内以角速度ω匀速转动,则a 、b 两端的电势差大小U =E =12B (4L )2ω=8BL 2ω.故选D. 4.(平动切割产生的动生电动势)如图11所示,“∠”形金属框架MON 所在平面与磁感应强度为B 的匀强磁场垂直,金属棒ab 能紧贴金属框架运动,且始终与ONab 从O 点开始(t =0)匀速向右平动时,速度为v 0,∠MON =30°.图11(1)试求bOc 回路中感应电动势随时间变化的函数关系式;(2)闭合回路中的电流随时间变化的图象是________.答案 (1)E =33Bv 20t (2)B 解析 (1)t =0时ab 从O 点出发,经过时间t 后,ab 匀速运动的距离为s ,则有s =v 0t .由tan30°=bc s ,有bc =v 0t ·tan30°.则金属棒ab 接入回路的bc 部分切割磁感线产生的感应电动势为E =Bv 0bc =Bv 02t tan30°=33Bv 02t . (2)l Ob =v 0t ,l bc =v 0t tan30°,l Oc =v 0tcos30°,单位长度电阻设为R 0,则回路总电阻R =R 0(v 0t +v 0t tan30°+v 0t cos30°)=R 0v 0t (1+3),则回路电流I =E R =(3-3)Bv 06R 0,故I 为常量,与时间t 无关,选项B 正确.一、选择题考点一 感生电场和感生电动势1.(多选)在空间某处存在一变化的磁场,则 ( )A.在磁场中放一闭合线圈,线圈中一定会产生感应电流B.在磁场中放一闭合线圈,线圈中不一定会产生感应电流C.在磁场中不放闭合线圈,在变化的磁场周围一定不会产生电场D.在磁场中不放闭合线圈,在变化的磁场周围一定会产生电场答案 BD解析 由感应电流产生的条件可知,只有闭合回路中的磁通量发生改变,才能产生感应电流,如果闭合线圈平面与磁场方向平行,则线圈中无感应电流产生,故A 错,B 对;感生电场的产生与变化的磁场周围有无闭合回路无关,故C 错,D 对.2.在如下图所示的四种磁场情况中能产生恒定的感生电场的是( )答案 C解析均匀变化的磁场产生恒定的电场,故C正确.3.(多选)著名物理学家费曼曾设计过这样一个实验装置:一块绝缘圆板可绕其中心的光滑轴自由转动,在圆板的中部有一个线圈,圆板四周固定着一圈带电的金属小球,如图1所示.当线圈接通电源后,将产生图示逆时针方向的电流.则下列说法正确的是( )图1A.接通电源瞬间,圆板不会发生转动C.若金属小球带负电,接通电源瞬间圆板转动方向与线圈中电流方向相反D.若金属小球带正电,接通电源瞬间圆板转动方向与线圈中电流方向相反答案BD解析线圈接通电源瞬间,变化的磁场产生感生电场,从而导致带电小球受到电场力,使其转动,A错误;不论线圈中电流是增大还是减小,都会引起磁场的变化,从而产生不同方向的电场,使小球受到电场力的方向不同,所以会向不同方向转动,B正确;接通电源瞬间,产生顺时针方向的电场,如果小球带负电,圆板转动方向与线圈中电流方向相同,C错误;同理可知D正确.4.现代科学研究中常用到高速电子,电子感应加速器就是利用感生电场加速电子的设备.电子感应加速器主要由上、下电磁铁磁极和环形真空室组成.当电磁铁绕组通以变化的电流时,产生变化的磁场,穿过真空盒所包围的区域内的磁通量也随时间变化,这时真空盒空间内就产生感应涡旋电场,电子将在涡旋电场作用下加速.如图2所示(上图为侧视图、下图为真空室的俯视图),若电子被“约束”在半径为R的圆周上运动,当电磁铁绕组通有图中所示的电流时( )图2A.若电子沿逆时针运动,保持电流的方向不变,当电流增大时,电子将加速B.若电子沿顺时针运动,保持电流的方向不变,当电流增大时,电子将加速C.若电子沿逆时针运动,保持电流的方向不变,当电流减小时,电子将加速答案 A解析当电磁铁绕组通有题图中所示的电流时,由安培定则可知将产生向上的磁场,当电磁铁绕组中电流增大时,根据楞次定律和安培定则可知,这时真空盒空间内产生顺时针方向的感生电场,电子沿逆时针运动,电子将加速,选项A正确;同理可知选项B、C错误;由于电子被“约束”在半径为R的圆周上运动,被加速时电子做圆周运动的周期减小,选项D错误.5.如图3甲所示,线圈总电阻r=0.5Ω,匝数n=10,其端点a、b与Ra、b两点电势差的大小为( )图3解析 根据法拉第电磁感应定律得:E =n ·ΔΦΔt =10×,0.4)V =2V.I =E R 总=21.5+0.5A =1A.a 、b 两点的电势差相当于电路中的路端电压,其大小为U =IR =1.5V ,故A 正确. 考点二 动生电动势abcd 位于纸面内,cd 边与磁场边界平行,如图4甲所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图乙所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )图4tt答案 BC解析 由题图Et 图象可知,导线框经过0.2s 全部进入磁场,则速度v =l t =,0.2)m/s =0.5 m/s ,选项B 正确;由图象可知,E =0.01V ,根据E =Blv 得,B =E lv =,0.1×0.5)T =0.2T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在tt =0.6s 这段时间内,导线框中的感应电流I =E R =,0.005)A =2A, 所受的安培力大小为F =BIl =0.2×2×0.1N=0.04N ,选项D 错误.7.如图5所示,等腰直角三角形OPQ 区域内存在匀强磁场,另有一等腰直角三角形导线框abc 以恒定的速度v 沿垂直于磁场方向穿过磁场,穿越过程中速度方向始终与ab 边垂直,且保持ac 平行于OQ .关于线框中的感应电流,以下说法正确的是( )图5答案 D解析 线框中感应电流的大小正比于感应电动势的大小,又感应电动势E =BL 有v ,L 有指切割磁感线部分两端点连线在垂直于速度方向上的投影长度,故开始进入磁场时感应电流最大,开始穿出磁场时感应电流最小,选项A 、B 错误.感应电流的方向可以用楞次定律判断,可知选项D 正确,C 错误.8.(多选)如图6所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于abab 边以角速度ωbc 边的长度为l .下列判断正确的是( )图6abcaC.|U bc |=12Bl 2ω D.|U bc |=Bl 2ω解析 金属框abc 平面与磁场方向平行,转动过程中磁通量始终为零,所以无感应电流产生,选项A 正确,B 错误;由转动切割产生感应电动势得|U bc |=12Bl 2ω,选项C 正确,D 错误. 9.(2017·温州中学高二上学期期中)如图7所示,半径为r 的金属圆盘在垂直于盘面的磁感应强度大小为B 的匀强磁场中绕圆心O 点以角速度ω沿逆时针方向匀速转动,圆盘的圆心和边缘间接有一个阻值为R 的电阻,则通过电阻R 的电流的大小和方向分别为(金属圆盘的电阻不计)( )图7A.I =Br 2ωR,由c 到d B.I =Br 2ωR,由d 到c C.I =Br 2ω2R,由c 到d D.I =Br 2ω2R,由d 到c 答案 D解析 将金属圆盘看成无数条金属辐条组成的,这些辐条切割磁感线,产生感应电流,由右手定则判断可知:通过电阻R 的电流的方向为从d 到c ,金属圆盘产生的感应电动势为:E =12Br 2ω,通过电阻R 的电流的大小为:I =E R =Br 2ω2R.故选D. 10.如图8所示,导体棒AB 的长为2R ,绕O 点以角速度ω匀速转动,OB 长为R ,且O 、B 、A 三点在一条直线上,有一磁感应强度为B 的匀强磁场充满转动平面且与转动平面垂直,那么AB 两端的电势差大小为( )图8A.12BωR 2BωR 2 BωR 2BωR 2答案 C解析 A 点线速度v A =ω·3R ,B 点线速度v B =ωR ,AB 棒切割磁感线的平均速度v =v A +v B 2=2ωR ,由E =Blv 得,AB 两端的电势差大小为E =B ·2R ·v =4BωR 2,C 正确.11.如图9所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间变化的变化率ΔB Δt的大小应为( ) 图9A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π答案 C解析 设半圆的半径为L ,电阻为R ,当线框以角速度ω匀速转动时产生的感应电动势E 1=12B 0ωL 2.当线框不动,而磁感应强度随时间变化时E 2=12πL 2·ΔB Δt ,由E 1R =E 2R 得12B 0ωL 2=12πL 2·ΔB Δt ,即ΔB Δt =ωB 0π,故C 项正确. 12.(多选)如图10所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,从O 点开始以速度v 匀速右移,该导轨与金属杆均由粗细相同的同种金属制成,则下列判断正确的是 ( )图10答案 AC解析 设金属杆从O 点开始运动到题图所示位置所经历的时间为t ,∠EOF =θ,金属杆切割磁感线的有效长度为L ,故E =BLv =Bv ·vt tan θ=Bv 2tan θ·t ,即电路中感应电动势的大小与时间成正比,C 选项正确;电路中感应电流I =E R =Bv 2tan θ·t ρl S,而l 为闭合三角形的周长,即l =vt +vt ·tan θ+vtcos θ=vt (1+tan θ+1cos θ),所以I =Bv tan θ·Sρ(1+tan θ+1cos θ)是恒量,所以A 正确.二、非选择题 13.如图11所示,线框由导线组成,cd 、ef 两边竖直放置且相互平行,导体棒ab 水平放置并可沿cd 、ef 无摩擦滑动,导体棒ab 所在处有垂直线框所在平面向里的匀强磁场且B 2=2T ,已知ab 长L =0.1m ,整个电路总电阻R =5Ω,螺线管匝数n =4,螺线管横截面积S 2.在螺线管内有如图所示方向磁场B 1,若磁场B 1以ΔB 1Δt=10T/s 均匀增加时,导体棒恰好处于静止状态,试求:(取g =10 m/s 2)图11(1)通过导体棒ab 的电流大小;(2)导体棒ab 的质量m 的大小;(3)若B 1=0,导体棒ab 恰沿cd 、ef 匀速下滑,求棒ab 的速度大小.答案 (1)0.8A (2)0.016kg (3)20m/s解析 (1)螺线管产生的感应电动势:E =n ΔΦΔt =n ΔB 1ΔtS 得E =4×10×0.1V=4V通过导体棒ab 的电流I =E R(2)导体棒ab 所受的安培力F =B 2IL导体棒静止时受力平衡有F =mg解得m =0.016kg.(3)ab 匀速下滑时 E 2=B 2LvI ′=E 2RB 2I ′L =mg联立解得v =20m/s14.如图12甲所示,固定在水平面上电阻不计的光滑金属导轨,间距dCDEF 矩形区域内有竖直向上的匀强磁场,磁感应强度B 按如图乙所示规律变化,CFt =0时,金属棒ab 从图示位置由静止在恒力F 作用下向右运动到EFab 电阻为1Ω,求:图12(1)通过小灯泡的电流;(2)恒力F 的大小;(3)金属棒的质量.解析 (1)金属棒未进入磁场时,电路的总电阻R 总=R L +R ab =5 Ω回路中感应电动势为:E 1=ΔΦΔt =ΔB Δt S =0.5 V 灯泡中的电流为I L =E 1R 总=0.1 A. (2)因灯泡亮度始终不变,故第4 s 末金属棒刚好进入磁场,且做匀速运动,此时金属棒中的电流I =I L =0.1 A金属棒受到的恒力大小:F =F 安=BId =0.1 N.(3)因灯泡亮度始终不变,金属棒在磁场中运动时,产生的感应电动势为E 2=E 1=0.5 V 金属棒在磁场中匀速运动的速度v =E 2Bd =0.5 m/s金属棒未进入磁场时的加速度为a =v t =0.125 m/s 2 故金属棒的质量为m =F a =0.8 kg.。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第八章电磁感应电磁场习题解答-感生电场习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第八章电磁感应电磁场习题解答8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链.解线圈中总的感应电动势当时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B1 与B2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx、长为d 的面元dS,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为当电流以变化时,线圈中的互感电动势为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B)的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距形导轨左侧距离为x,则即由于静止的形导轨上的电动势为零,则ε =-2RvB.式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c)所示的坐标系,在导体上任意处取导体元dl,则由矢量(v ×B)的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量.由法拉第电磁感应定律可知,ε =0又因ε =εOP +εPO即εOP =-εPO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP,处于均匀磁场中,并绕OO′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析如前所述,本题既可以用法拉第电磁感应定律计算(此时必须构造一个包含OP导体在内的闭合回路,如直角三角形导体回路OPQO),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势显然,εQO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求杆中的感应电动势,杆的哪一端电势较高?分析本题可用两种方法求解.(1)用公式求解,建立图(a)所示的坐标系,所取导体元,该处的磁感强度.(2)用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB在一个静止的形导轨上滑动,如图(b)所示.设时刻t,杆AB 距导轨下端CD的距离为y,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx、长为y 的面元dS,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A,故点A 电势较高.8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1)管内外由磁场变化激发的感生电场分布;(2)如,求距螺线管中心轴r =5.0 cm处感生电场的大小和方向.分析变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆(若电场线是其他类型的曲线则与其对称性特点不符),同一圆周上各点的电场强度Ek 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当时,电场线绕向与前者相反.解如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l(半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R,r >R,由于,故电场线的绕向为逆时针.(2)由于r >R,所求点在螺线管外,因此将r、R、的数值代入,可得,式中负号表示Ek的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP、OQ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处的感生电场强度Ek 处处垂直,故,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有证2 由题8-17可知,在r <R 区域,感生电场强度的大小设PQ 上线元dx 处,Ek的方向如图(b)所示,则金属杆PQ 上的电动势为讨论假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势?该如何求解?8 -23 如图所示,一面积为4.0 cm2 共50 匝的小圆形线圈A,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1)两线圈的互感;(2)当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析设回路Ⅰ中通有电流I1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M21 =Φ21I1 ;也可设回路Ⅱ通有电流I2 ,穿过回路Ⅰ的磁通量为Φ12 ,则.虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS.反之,如设线圈A 通有电流I,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解(1)设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为则两线圈的互感为(2)互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A、C 的半径分别为R 和r,两线圈相距为d.若r很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -26 一个直径为0.01 m,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1)如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少?磁能密度是多少?*(2)从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析单一载流回路所具有的磁能,通常可用两种方法计算:(1)如回路自感为L(已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2)由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L.解(1)密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度处处相等,(2)自感为L,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律,当电流稳定后,其最大值按题意1,则,将其代入中,得8 -31 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中的电流连续,即.解忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流,由此得位移电流密度的大小。
涡流、电磁阻尼和电磁驱动1.知道感生电动势的产生以及与感生电场的联系,会判断感生电动势的方向并计算其大小。
2.了解涡流的产生过程。
3.了解涡流现象的利用和危害。
4.通过对涡流实例的分析,了解涡流现象在生活和生产中的应用。
5.了解电磁阻尼和电磁驱动及应用。
知识点一电磁感应现象中的感生电场[情境导学]电磁感应现象中的感生电场与电荷周围的静电场从产生机理上看有什么区别?提示:电磁感应现象中的感生电场是由变化的磁场激发产生的,静电场是由电荷激发产生的。
[知识梳理]1.感生电场麦克斯韦认为,磁场变化时会在空间激发一种电场,它与静电场不同,不是由电荷产生的,我们把它叫作感生电场。
2.感生电动势由感生电场产生的感应电动势。
3.感生电动势中的非静电力就是感生电场对自由电荷的作用。
4.感生电场的方向判断由磁场的方向和强弱变化,根据楞次定律判断。
[初试小题]1.判断正误。
(1)感生电场线是闭合的。
(√)(2)磁场变化时,可以产生感生电场,并不需要电路闭合这一条件。
(√)(3)感生电场是产生感生电动势的原因。
(√)(4)感生电动势与动生电动势一样都是由于磁场变化产生的。
(×)2.某空间出现了如图所示的一组闭合电场线,方向从上向下看是顺时针的,这可能是( )A.沿AB方向磁场在迅速减弱B.沿AB方向磁场在迅速增强C.沿BA方向磁场恒定不变D.沿BA方向磁场在迅速减弱解析:选A 感生电场的方向从上向下看是顺时针的,假设在平行感生电场的方向上有闭合回路,则回路中的感应电流方向从上向下看也应该是顺时针的,由右手螺旋定则可知,感应电流的磁场方向向下,根据楞次定律可知,原磁场有两种可能:原磁场方向向下且沿AB方向减弱或原磁场方向向上且沿BA方向增强。
所以A正确。
知识点二涡流[情境导学]在一铁块的外面绕有如图所示的线圈,当线圈通有如图所示的交变电流时,请问铁块中有感应电流吗?如果有,它的形状像什么?提示:铁块中有感应电流,它的形状像水中的旋涡。
一、电磁感应现象中的感生电场┄┄┄┄┄┄┄┄①1.感生电场:磁场变化时在空间激发的一种电场。
2.感生电动势:由感生电场产生的感应电动势。
3.感生电动势中的非静电力:感生电场对自由电荷的作用。
4.感生电场的方向:与所产生的感应电流的方向相同,可根据楞次定律和右手定则判断。
[注意](1)感生电场是一种涡旋电场,电场线是闭合的。
(2)感生电场的方向可由楞次定律判断。
如图所示,当磁场增强时,产生的感生电场是与磁场方向垂直且阻碍磁场增强的电场。
(3)感生电场的存在与是否存在闭合电路无关。
①[判一判]1.感生电场线是闭合的(√)2.磁场变化时,可以产生感生电场,并不需要电路闭合这一条件(√)3.感生电场是产生感生电动势的原因(√)4.处于变化磁场中的导体,其内部自由电荷定向移动,是由于受到感生电场的作用(√)二、电磁感应现象中的洛伦兹力┄┄┄┄┄┄┄┄②1.动生电动势:由于导体切割磁感线运动而产生的感应电动势。
2.动生电动势中的非静电力自由电荷因随导体棒运动而受到洛伦兹力,非静电力与洛伦兹力有关。
3.动生电动势中的功能关系闭合回路中,导体棒做切割磁感线运动时,克服安培力做功,其他形式的能转化为电能。
[注意]有些情况下,动生电动势和感生电动势具有相对性。
例如,将条形磁铁插入线圈中,如果在相对磁铁静止的参考系内观察,线圈运动,产生动生电动势;如果在相对线圈静止的参考系中观察,线圈中磁场变化,产生感生电动势。
②[填一填]如图所示,导体棒向右运动切割磁感线时,棒中的电子受的洛伦兹力方向为________,棒上端的电势比下端的电势________(填“高”或“低”)。
解析:电子随导体棒向右运动,同时受向下的洛伦兹力,有向下的分速度,电子的合速度向右下方,洛伦兹力向左下方;根据右手定则,棒上端的电势高于下端的电势。
答案:左下方高磁场变化时会在空间激发感生电场,处在感生电场中的闭合导体中的自由电荷在电场力的作用下定向运动,产生感应电流,或者说,导体中产生了感应电动势。