熟料煅烧中的有关问题的解析(配套)
- 格式:ppt
- 大小:515.50 KB
- 文档页数:21
水泥窑燃烧工艺异常情况原因分析及处理措施一、造成回转窑热耗高的原因1、热耗高的原因:(1 )预热预分解系统、回转窑、篦冷机外表散热。
(2 )不完全燃烧造成的热损失。
(3)系统漏风导致废气量升高造成的热损失。
(4 )生料水分大、细度粗,换热不充分。
(5 )撒料装置效果差,物料分散不均匀。
2、减少热损失的途径:(1 )采取隔热措施降低系统外表热损失。
(2 )在燃料完全燃烧的前提下,保持较少的过剩空气系数,减少废气带走的热量。
(3)严格控制煤粉的细度和水分,保证完全燃烧。
(4)保证喂煤量的稳定,消除不完全燃烧。
(5)加强密封堵漏,消除预热器系统内外漏风、窑头和窑尾外漏风、篦冷机系统内外漏风。
(6 )提高篦冷机效率,减少篦冷机熟料热损失。
(7 )降低废气带走的热损失。
(8)降低窑灰及蒸发(生料和煤粉)水分带走的热损失。
二、预分解窑的塌料1、造成塌料的原因:(1 )预热器或分解炉的设计或结构缺陷;(2 )生料及燃料质量的影响;(3)生产设备及故障的影响。
2、预热器或分解炉的设计或结构缺陷影响及措施:(1 )热风管道风速太低,通过加缩口提高风速解决。
(2)窑尾缩口尺寸过大,缩口风速太低(28m/s〜35m/s ),降低缩口尺寸保证缩口风速。
(3 )各级撤料器的位置、撒料板伸入长度及角度不合理。
保证撒料板的来料能充分撒开。
(4 )下料管设计空间角小于55。
或拐弯太多、物料填充率低、翻板阀配重太重。
十四、篦床上出现“红料流”原因和现象(篦板局部过热,冷却机出料温度偏高):①粗细熟料分布不均匀,冷风偏向粗料一侧。
②篦床速度过快,料层较薄,形成吹穿现象,导致布风不均匀。
措施:①记录生产实况,检修时调整分流盲板予以改善。
②适度降低各段篦床速度,增加冷却风量和窑头收尘器引风机排风量。
十五、篦板温度偏高原因:①熟料粒度过细;②篦床上出现〃红料流〃;③ 风室冷却风量过大,或料层较薄,熟料层被吹穿;④风室冷却风量过小,缺乏以充分冷却熟料;⑤窑皮跨落,篦床上有大量熟料堆积,无法及时冷却所致;⑥篦床速度过快,料层过薄;⑦篦板脱落或篦绛较宽,漏料比拟严重。
低碱熟料煅烧中黏散料产生原因及措施标题:低碱熟料煅烧中黏散料产生原因及措施引言:在熟料煅烧的过程中,出现黏散料会导致生产过程不稳定、工艺效果下降,并且可能对矿窑设备造成损坏。
因此,了解黏散料的产生原因以及相应的措施,对于提高生产效率和保护设备的安全至关重要。
本文将深入探讨低碱熟料煅烧中黏散料产生的原因,并提出可行的解决方案。
一、低碱熟料煅烧中黏散料的原因1. 煅烧温度过低低碱熟料煅烧过程中,如果温度不足以达到矿石中黏性物质的软化点,就容易出现黏散料。
这是因为低温无法将黏性物质完全熔化,导致其成为粘结材料。
2. 石炭燃烧不充分低碱熟料生产过程中,使用石炭进行燃烧,但燃烧不充分会造成煅烧系统内含有高碳残留物。
这些残留物会在煅烧过程中生成焦炭,并且附着在颗粒表面,形成黏散料。
3. 石炭含硫量高石炭中含有一定的硫分,若石炭含硫量过高,会导致煅烧过程中生成硫酸钠,进而与其他矿石中的氧化钠反应,形成黏性物质。
4. 过高的氧气浓度在低碱熟料煅烧过程中,如果氧气浓度过高,会导致煅烧过程中氧化反应速度过快,矿石中的黏性物质没有充分软化,从而形成黏散料。
二、解决低碱熟料煅烧中黏散料问题的措施1. 控制煅烧温度通过提高煅烧温度,确保矿石中的黏性物质能够被完全软化熔融,从而避免黏散料的产生。
此外,还应保持煅烧温度的稳定,以确保矿石中的黏性物质能够充分软化,避免出现过低温度的情况。
2. 提高石炭燃烧效率加强煅烧系统内石炭燃烧的过程控制,确保石炭燃烧充分,减少煅烧过程中的焦炭生成。
采取一些措施,如增加燃烧区域的供氧量和加强燃烧区域与石炭之间的接触,能够有效提高燃烧效率。
3. 降低石炭硫含量通过降低石炭的硫含量,减少煅烧过程中产生的硫酸钠,从而减少黏性物质的生成。
可以采取煅烧前对石炭进行预处理、使用低硫石炭等措施来达到降低石炭硫含量的目的。
4. 控制氧气浓度通过合理调控煅烧系统内的氧气浓度,避免过高的氧气浓度导致反应速度过快,矿石中的黏性物质没有充分软化的问题。
关于熟料煅烧结粒较差分析及
下阶段配料打算分析报告
针对近期出窑熟料结粒较差、飞砂大、细粉料多的现状,结合目前配料方案及原材料使用情况,制定下阶段配料方案,形成分析报告如下。
一、原燃材料状况:
1、矿山资源使用现状
2、粘土资源使用现状
粘土矿自试生产以来,使用黄洼水库南(水库边至蒋庄北东向)粘土,水分18.0%,化学成分见下表:
3、铁质原材料
质量分析;
4、原煤
二、原因分析:
1、八月份熟料成分分析
2、硫碱比
(从液相量、Al2O3、Fe2O3含量及三率值等方面进行分析)
结论:
三:下阶段配料思路:
1、矿山开采方面
根据石灰石矿山现阶段开采方案,在9月份将中采160米以上部分削顶后,开始向东山开拓发展。
采准矿量将受到限制,为有效降低下盘围岩低品位石灰石出矿带来的有害成分高的问题,后期将采取以下几点措施来改善入堆场石灰石成分;
1)要求矿山分厂加大西采148-135米的开采力度,确保高品位石灰石的采准矿量。
2)加快中采148米以上部分的开采进度,确保备矿量有充足的搭配空间。
3)减少下盘围岩低品位石灰石的使用量,降低出矿石灰石中有害成分(K2O+Na2O、MgO、SiO2、SO3)的含量。
2、原燃材料使用方面
通过前期使用的原煤情况来看,由于渤港煤用量大,受内水高、易磨性较差的影响,对原煤粉磨及回转窑煅烧十分不利,为改善原煤使用现状,后期采取措施有;
1)增加淮南煤采购量,以降低入磨煤粉的内水、易磨性等特点,同时使用淮南煤的高Al2O3特性,改善硅率
3、配料控制思路
①原燃材料成分数据
②原煤工业分析:
(2)生料配比如下
(3)生、熟料理论成份。
1、熟料中的f-CaO偏高A、原因:生料成份偏高(KH高,n过高,熔剂矿物过低),生料不均匀,生料细度过粗,煤发热量不均匀,分解率偏低,头煤使用过少等。
B、措施与办法(1)将投料量及窑速适当降低些,先稳住质量。
(2)如火焰细长,窑烧成温度不足,可将火焰调节粗大,提高火焰温度。
(3)若分解率偏低,将分解率适当提高(分解炉出口温度提高)。
(4)若因烟室负压偏低,导致f-CaO偏高时,则检查烟室缩口处结皮情况,及时清除。
(5)若头煤过少,易结大蛋,中部生烧,将头煤使用量增加些。
(6)若因掉窑皮而导致f-CaO偏高,则将窑皮挂平整些,杜绝掉窑皮,稳定头温和炉温。
(7)若因煤粉燃烧不完全时,是将中心风开大些,旋流风开大些。
(8)窑内通风不畅时,将三次风阀关小些。
(9)火焰不顺畅,出现还原气氛时,将总风拉大些(开大高温风机液耦)(10)若因料层过厚结粒过大导致f-CaO偏高,则将窑速开大些。
(11)若煤粉细度、水分较高时,则适当降低。
(12)头煤使用量过多时,减少头煤。
(13)熔剂矿物较高,结粒较大时,将分解炉温度降低些,窑速提高些。
(14)若饱和比料高,结粒细小,则窑速适当降低,投料量降低,分解炉温度升高些。
但如果饱和比过高,就不能过分追求f-CaO合格把炉温控制过高,既要努力降低f-CaO,又要防止出现预热器堵塞等问题。
C、以上原因及措施不能单一而论,f-CaO偏高可能是多种原因共同产生的,或一种诱因引起多种现象,并相互作用形成恶性循环造成f-CaO不能控制,因此对问题要深入分析,找出根本原因,有针对性地采取措施才能解决。
另外可采取的措施有多种,也要认真分析并充分预计各种措施达到的效果,根据情况决定采取的方法。
2、高温风机跳停(以及其它原因引起的窑尾、预热器系统突然出现无负压的情况)。
由于电气或机械原因,高温风机突然出现停机、跳闸的现象或余热发电控制的窑尾、窑头主管道阀门突然关闭的现象,对人员及窑的安全有严重影响。
培训材料熟之三料质量控制及煅烧方面的影响因素一、熟料质量控制的重要性1、熟料质量是确保水泥质量的核心,熟料质量达不到要求,难以磨制优质的水泥产品。
其中配料和煅烧是决定熟料质量的关键。
2、从生料到熟料,是一个化学反应过程。
化学反应,最基本的核心就是要求参预化学反应的物质间的比例要满足理论要求。
参预化学反应的某一物质的量,不得过剩或者不足,否则,化学反应形成的结果,不是当初设计的结果。
因此,熟料生产过程实际上要求是很精细的,不是表面上的那种粗糙现象。
3、设计合理的熟料率值,通过良好的煅烧,才干生产出优质的水泥熟料。
1、原料磨工艺变化现代水泥企业,以节能高效为主要导向,装备和工艺流程日益简化和高效。
2、原料磨由过去的球磨机改为现代立磨,原料磨工艺装备的改变,对产品质量的影响。
3、球磨机的工艺特点,决定了生料细度更加均匀,900 孔细度小,只在 3.0%以内, 1800 孔细度在 12%以内。
立磨的生料细度粗, 900 孔细度在 6.0-8.0%, 1800 孔细度在 22%摆布。
由上看出,现代水泥工业改成立磨后,生料的颗粒级配产生了较大的变化,立磨的生料粗大颗粒占比例明显上升,中等颗粒的比例,也较球磨机增加了一倍。
4、现代水泥工业、细度标准的变化。
80 年代,国家旋窑管理规程对细度有控制要求,最开始的标准规定生料细度小于等于 10%,作为一次水泥工艺管理的标准来执行,其后更改为 12%。
后来随着先进水泥工艺发展,生料细度作为一次过程控制指标,再也不强制执行,由企业根据自身生产需要自行控制。
质量体系认证,也将细度标准作为企业自行制定来审核,细度标准被企业自身不断放松标准。
按照现行立磨的生产工艺,生料细度按 10%、12%、16% 等等标准,已经无法满足当前立磨工艺的要求,根据立磨的特点及与窑的产能关系,细度只能控制在 20-22%之间,即使控制较好的工厂细度也在 8 摆布。
但是 , 目前的细度控制指标,不表示细度粗对煅烧没有影响。
低碱熟料煅烧中产生黏散料的原因及措施
低碱熟料煅烧过程中,黏散料的产生是一个常见的问题。
黏散料的产
生会影响熟料的品质和生产效率,因此需要采取措施来解决这个问题。
产生黏散料的原因主要有以下几点:
1. 原料成分不均匀:熟料煅烧过程中,原料成分不均匀会导致烧结不良,从而产生黏散料。
2. 煅烧温度过高:煅烧温度过高会导致熟料烧结不良,从而产生黏散料。
3. 煅烧时间过长:煅烧时间过长会导致熟料烧结不良,从而产生黏散料。
4. 煅烧过程中的气氛不稳定:煅烧过程中的气氛不稳定会导致熟料烧
结不良,从而产生黏散料。
为了解决黏散料的产生问题,可以采取以下措施:
1. 原料配比均匀:在生产过程中,要确保原料配比均匀,避免原料成
分不均匀导致烧结不良。
2. 控制煅烧温度:在煅烧过程中,要控制煅烧温度,避免温度过高导
致熟料烧结不良。
3. 控制煅烧时间:在煅烧过程中,要控制煅烧时间,避免时间过长导
致熟料烧结不良。
4. 稳定煅烧气氛:在煅烧过程中,要稳定煅烧气氛,避免气氛不稳定
导致熟料烧结不良。
5. 采用合适的煅烧工艺:在生产过程中,要采用合适的煅烧工艺,避
免产生黏散料。
综上所述,低碱熟料煅烧中产生黏散料的原因主要是原料成分不均匀、煅烧温度过高、煅烧时间过长和煅烧过程中的气氛不稳定等因素。
为
了解决这个问题,可以采取措施如原料配比均匀、控制煅烧温度和时间、稳定煅烧气氛和采用合适的煅烧工艺等。
这些措施可以有效地解
决黏散料的产生问题,提高熟料的品质和生产效率。
2024年水泥熟料煅烧工(窑操)理论测试题附答案一.填空题(共10题,每题2分,共20分)1.(KH)是指熟料中全部氧化硅生成硅酸钙所需的氧化钙含量与全部氧化硅生成硅酸三钙所需氧化钙的比值。
2.预分解窑系统是由预热器、分解炉、回转窑、冷却机组成的系统,它主要承担水泥熟料形成过程中最主要的(预热、分解、烧成、冷却)等四个过程。
3.衡量燃烧器性能优劣的重要指标之一是(一次)空气量大小。
4.煤灰的掺入,一般会使熟料的饱和比(降低)、硅率(降低)。
5.原料主要有害成分包括碱、(氯)、(硫),应该限制其含量。
6.燃料燃烧时实际空气量与理论空气量之比值称为(过剩空气系数)。
7.回转窑内物料流量是通过改变回转窑(窑速)来控制的。
8.煤粉越细,燃烧速度越(快)。
9.旋风预热器截面风速范围(4.5~5.5)m/s。
10.旋风筒的主要作用是(气固分离),而不是传热。
二.判断题(共10题,每题2分,共20分,对的打√、错的打×) 1.生料中的液相量随温度升高而增加缓慢,其烧结范围就宽。
(√)2.入窑物料分解率不高,预烧不好,窑尾温度低,窑头煅烧困难,则需要加大头煤用量、提高煅烧能力。
(√)3.预分解窑投料愈少愈好控制。
(×)4.煤的工业分析组成有水分、挥发分、灰分、固定碳和硫五项,总量为100%。
(×)5.煤粉自喷嘴喷出至开始燃烧的这段距离称为黑火头。
黑火头拉长说明煤粉中的水分或灰分含量较低。
(×)6.回转窑运转一段时间后,其中心线不会有变动。
(×)7.分解炉内碳酸盐分解所需能量全部来自于喂入分解炉的燃料。
(×)8.预分解窑窑前温度低是因为窑头喂煤量少。
(×)9.挥发分高、灰分低的煤,其细度可以适当放粗。
(√)10.预分解窑的篦式冷却机工况的好坏对窑的煅烧影响不大。
(×)三.不定项选择题(共20题,每题2分,共40分)1.在采用五级预热器的预分解窑系统中,料粉流程是( C )。
煅烧高镁熟料的研究与探讨水泥企业熟料MgO含量受当地石灰石中MgO含量直接影响。
我公司石灰石MgO均值在3.5%以上,直接导致熟料及水泥中MgO含量偏高。
所以煅烧高品质的高MgO熟料是每一个采用高MgO石灰石进行配料的企业共有的问题。
下面我以我厂对煅烧高镁熟料中遇到的问题进行研究和探讨。
1 MgO对熟料煅烧的影响1.1 煅烧中液相对熟料结粒的影响(1)窑内熟料颗粒是在液相作用下形成的,液相在晶体外形成毛细管桥。
(2)液相毛细管桥起到两个作用:一是使颗粒结合在一起,另一作用是作为中间介质,使CaO和C2S在熔融态内扩散生成C3S,颗粒的强度取决于毛细管桥的强度,桥的强度即连接颗粒的力随液相表面张力和颗粒直径的降低而增加。
(3)毛细管桥的数量又和颗粒直径的平方根成反比。
要结好粒,必须有足够的液相,并要求颗粒在液相内分布均匀,形成较高的表面张力,较低的液相粘度,适宜的结粒时间和温度等。
1.2 MgO对液相性质的影响1.2.1 液相量由液相量计算公式可知,MgO对液相量有较大的影响,其计算公式为:1450℃时液相量:L=3.0Al2O3+2.25Fe2O3+K2O+Na2O+MgO,液相量在25%~28%时,对结粒最有利。
当MgO含量超过2%以上的值乘以系数1.5计。
1.2.2 液相表面张力液相表面张力是液相的重要性质,与熟料结粒有直接关系。
液相表面张力增大易结粒,熟料颗粒的大小与液相表面张力呈良好的线性关系。
液相的表面张力与元素外层电子的负电性有关,有些元素如K、Cl、S的表面张力值较低,不利于结粒;而Mg、Al等元素的表面张力值较高,有利于结粒。
1.2.3 液相粘度MgO仅对液相粘度有较小的降低作用。
熟料在1450℃含25%~35%液相时,粘度为0.16Pa·S,表面张力0.58N/m,含有MgO等化合物后的液相表面张力和液相粘度均发生变化,影响熟料的结粒。
2 MgO对熟料强度的影响MgO存在于熟料内,会影响CaO的数量,因而MgO在一定程度上影响熟料的强度。
水泥回转窑煅烧过程中常见故障的成因及处理(1)摘要:回转窑煅烧过程中出现的结圈,堆雪人等故障,其成因是非常复杂的,要针对性的实施处理方法。
关键词:回转窑煅烧故障处理我公司5000t/d熟料水泥生产线于2010年10月投产以来,由于矿山不能正常投用,原材料收购民采,入窑生料成分波动太大,给生产带来诸多麻烦。
煅烧过程中结圈,堆雪人等时有发生。
为了适用厂里现状,满足生产需要,我们精心组织,认真分析调整。
本文主要介绍一下,回转窑煅烧过程中出现的结圈,堆雪人等故障的成因和处理。
一、回转窑煅烧过程中的一般故障成因、分析和防范措施(一)原因:1.窑尾温度过高;2.熟料冷却过慢;3. 燃料在烧成带的不完全燃烧;4.火焰过长;5. 氯含量高;6. 硫含量高;7. 碱含量高;8. 设备的限制。
(二)分析:1. 取样;2. 关注样品的温度,风量,水分的一致性;3. 关注样品的代表性;4. 出现圈或雪人前后的操作记录对比(三)措施:1. 调整原料及燃料;2. 控制氯,碱,硫含量的内循环。
A,安装旁路放风系统。
B,减少窑灰的入窑量(比如窑灰可作为水泥的混合材)。
C,确定循环周期。
3. 调整喷煤管(保证熟料的冷却,缩短烧成带的长度,保证燃料的完全燃烧,喷煤管位于窑中心位置。
);4. 提高窑速;5. 保持稳定的二次风温二、二次风温与火焰以及窑圈的关系在窑系统的操作中,我们对系统拉风,分解炉出口温度,窑速,窑电流,喷煤管的调整等都比较重视,而对篦冷机的操作:稳定的厚料层,稳定的二次风温,稳定的窑头罩负压重视不够,对篦冷机一段篦速,窑头排风机阀门的调整比较随意,其实回转窑出现的很多问题都是因为二次风温波动引起的。
我们都知道气体体积随温度变化而变化,但我们在操作时却常常会忘记这种关系。
却说:“我并没有提高风量?”“火焰扫窑皮了,而昨天并不是这样,肯定有谁调喷煤管了?”。
其实这都是因为二次风温的变化引起了窑况变化的缘故。
当二次风温提高时,二次风量及风速也同时提高,高风速就可能把二次风和粉尘带到窑头罩的顶部,因此在窑头罩的底部才表现为负压。
浅谈水泥熟料煅烧工艺一、水泥熟料煅烧工艺概述水泥熟料煅烧工艺是将生料转化成熟料的过程,通过高温煅烧使生料中的矿物成分发生物理化学变化,从而达到所需要的水泥熟料质量要求。
水泥熟料煅烧是水泥制造过程中的核心环节,对于保证水泥产品质量和性能具有重要意义。
根据不同的产品类型和用途,水泥熟料具有不同的特点,如高强、快硬、低水化热等。
二、原料准备与处理水泥熟料生产所需的主要原材料包括石灰石、硅质校正原料、铁质校正原料、铝质校正原料等。
在原料准备过程中,首先要对原料进行质量检验,确保原料的成分和含量符合要求。
然后,对原料进行破碎和粉磨,将大块原料破碎成小块,并使原料达到一定的细度,以便于后续工序的进行。
三、配料与混合根据预处理后的原料性质和成分,进行配料,生料粉制备和生料粉均化。
配料主要是确定各种原料的比例,以满足熟料的质量要求。
混合则是将生料粉充分均匀的混合在一起,以保证生料的成分均匀,进而保证熟料成分稳定。
通过先进的配料和混合设备,可以使不同成分生料粉充分均匀的混合在一起,确保提高熟料的质量与产量。
四、熟料煅烧过程熟料煅烧是水泥熟料生产的核心环节。
在煅烧过程中,生料经过高温焙烧,发生一些列物理化学变化,形成水泥熟料。
熟料煅烧过程主要包括以下几个步骤:1、干燥:生料中的水分被高温气体蒸发,起到干燥作用。
2、预热和脱水:生料被预热到一定的温度,物料结晶水脱水,为下一步的分解反应提供能量。
3、分解:生料中的矿物成分在高温下发生分解反应,生成氧化钙、硅酸二钙等矿物。
4、固相反应:分解后的产物之间发生固相反应,生成新的矿物。
5、烧成:经过上述反应后,生料转化成熟料,此时需控制烧成温度和气氛,以保证熟料的质量和产量。
五、烧成温度与气氛控制在熟料煅烧过程中,烧成温度和气氛控制是关键因素。
烧成温度过高会导致熟料熔融、结圈、结皮等问题;过低则会导致生料未完全反应,熟料欠烧,影响熟料质量。
气氛控制则是控制窑、炉内的氧化还原气氛,以保证生料中的矿物成分能够发生充分的分解和固相反应。