汽车转向系统各部分结构
- 格式:doc
- 大小:558.00 KB
- 文档页数:12
简述汽车转向系统的工作原理一、引言汽车转向系统是汽车的重要组成部分之一,它负责控制车辆的方向,使车辆能够按照驾驶员的意愿行驶。
本文将详细介绍汽车转向系统的工作原理。
二、汽车转向系统的组成部分汽车转向系统主要由以下几个部分组成:1. 转向盘:驾驶员通过转动转向盘来控制车辆的方向。
2. 转向柱:将转向盘上的旋转运动传递给转向齿轮。
3. 转向齿轮:将驾驶员通过转向柱传递过来的旋转运动,变为左右方向的运动。
4. 驱动轴:将左右方向的运动传递给前轮或后轮。
5. 车轮:根据驱动轴传递过来的力量,控制车辆行进方向。
三、液压式汽车转向系统工作原理液压式汽车转向系统是目前应用最广泛的一种。
它主要由以下几个部分组成:1. 动力源:通常是发动机带动液压泵工作,产生高压油液。
2. 油箱:存储液压油液。
3. 液压泵:将动力源产生的高压油液推送到转向器中。
4. 转向器:将高压油液转换为力矩,控制车辆的方向。
5. 液压缸:接收转向器传来的力矩,将其转化为车轮的左右方向运动。
6. 液压管路:连接以上各部分,传递高压油液。
具体工作原理如下:1. 驾驶员通过转动转向盘,让转向柱旋转。
2. 转向柱带动转向齿轮旋转,使得液压泵开始工作。
3. 液压泵产生高压油液,并将其推送到转向器中。
4. 转向器接收到高压油液后,将其转换为力矩,并传递给液压缸。
5. 液压缸接收到力矩后,将其转化为车轮的左右方向运动,从而改变车辆行进方向。
6. 当驾驶员停止操作时,液体回流至油箱中。
四、电动式汽车转向系统工作原理电动式汽车转向系统是近年来新兴的一种转向系统,它主要由以下几个部分组成:1. 电机:产生动力,控制车辆的方向。
2. 电池:为电机提供能量。
3. 控制器:控制电机的运转。
4. 方向盘角度传感器:检测驾驶员对方向盘的旋转角度。
5. 电动助力转向器:接收控制器的指令,将其转化为力矩,控制车辆的方向。
具体工作原理如下:1. 驾驶员通过转动转向盘,让方向盘角度传感器检测到旋转角度,并将其传递给控制器。
汽车转向系统的工作原理汽车转向系统是汽车底盘中至关重要的一个部分,它是确保驾驶员能够轻松、准确地控制车辆转向的关键。
本文将介绍汽车转向系统的工作原理及其组成部分,以帮助读者更好地理解和掌握该系统。
一、转向系统的组成部分1. 方向盘:方向盘是驾驶员控制车辆转向的手柄。
通过对方向盘的操控,驾驶员可以传达转向指令给转向系统。
2. 转向柱:转向柱将方向盘上的转向动作传递给转向系统的其他部件。
它通常由一系列的传动齿轮和连接杆组成。
3. 转向机构:转向机构是转向系统的核心部件,它将转向指令转换为车轮的实际转向。
常见的转向机构包括齿轮齿条转向机构和循环球螺杆转向机构。
4. 转向阻尼器:转向阻尼器用于减小驾驶员操纵方向盘时的震动和冲击力。
它通过液压或机械方式来减缓转向过程中的冲击力。
5. 轮毂总成:轮毂总成是连接车轮和转向机构的部件,它通过轮毂轴将转向动力传递给车轮。
轮毂总成需要具备足够的强度和刚性,以承受转向过程中的应力和扭矩。
二、转向系统的工作原理汽车转向系统的工作原理可以简单概括为:通过驾驶员对方向盘的操作,转向系统将指令传递给转向机构,进而使车轮产生相应的转向动作。
具体而言,当驾驶员扭动方向盘时,转向柱会将转向指令传递给转向机构。
对于齿轮齿条转向机构而言,转向柱将旋转运动转换为直线运动,通过齿条的工作将转向力传递给车轮。
对于循环球螺杆转向机构而言,转向柱的旋转运动使循环球螺杆转动,从而推动连杆转动,再由连杆将转向力传递给车轮。
在转向过程中,转向阻尼器起到了重要的作用。
它通过减缓方向盘的运动速度和减小冲击力,提供了更加平稳和舒适的转向体验。
转向阻尼器可以通过液压或机械方式工作,通常通过转向柱上的连接杆与转向机构相连。
最后,转向系统的转向动力需要经过轮毂总成传递给车轮。
轮毂总成起到了连接转向机构和车轮的桥梁作用,它需要具备足够的强度和刚性,以承受转向过程中产生的应力和扭矩。
三、转向系统的稳定性和安全性转向系统的稳定性和安全性对驾驶过程至关重要。
汽车动力转向系统结构组成汽车动力转向系统是汽车的重要组成部分,它负责将驾驶员的转向指令转化为车辆的转向动作。
动力转向系统的结构组成主要包括转向装置、转向机构和转向控制系统。
一、转向装置转向装置是动力转向系统的核心部分,它位于汽车前轴的中央位置,连接着转向机构和转向控制系统。
转向装置主要由转向齿轮、转向柱、转向轴和转向齿圈等组成。
1.转向齿轮:转向齿轮是转向装置的主要传动部分,它与转向柱相连,通过转向轴传递转向力。
转向齿轮的设计和精度直接影响着转向系统的灵敏度和稳定性。
2.转向柱:转向柱是连接驾驶员和转向齿轮的部件,它负责将驾驶员的转向指令传递给转向齿轮。
转向柱通常由钢材制成,具有足够的强度和刚度。
3.转向轴:转向轴是转向装置的支撑部分,它负责将转向力传递给转向齿轮。
转向轴通常由合金钢制成,具有足够的强度和耐磨性。
4.转向齿圈:转向齿圈是转向装置的定位部分,它固定在转向齿轮上,用于传递转向力并实现转向动作。
转向齿圈通常由高强度的合金钢制成。
二、转向机构转向机构是汽车动力转向系统中的重要组成部分,它负责将转向装置传递过来的转向动力转化为车轮的转向动作。
转向机构主要由转向节、转向杆和转向臂等组成。
1.转向节:转向节是转向机构的核心部分,它位于汽车前轮的轮毂处,通过转向杆连接转向臂和车轮。
转向节的设计和精度直接影响着转向系统的灵敏度和稳定性。
2.转向杆:转向杆是连接转向节和转向臂的部件,它负责将转向动力传递给车轮。
转向杆通常由高强度的合金钢制成,具有足够的强度和耐磨性。
3.转向臂:转向臂是转向机构的支撑部分,它固定在转向节上,用于传递转向动力并实现车轮的转向动作。
转向臂通常由高强度的铸铁制成。
三、转向控制系统转向控制系统是汽车动力转向系统中的关键部分,它负责控制转向装置和转向机构的工作。
转向控制系统主要由转向传感器、转向助力装置和转向控制单元等组成。
1.转向传感器:转向传感器是转向控制系统的感知部分,它通过感知驾驶员的转向动作和车辆的转向状态,将信号传递给转向控制单元。
汽车转向系的结构组成
汽车转向系统是车辆安全行驶的重要部分,它由多个组件构成,确保驾驶员能够控制车辆的方向。
以下是汽车转向系的主要组成部分:
1. 转向器:转向器是转向系统的核心部件,它连接转向轴和转
向轮,负责将驾驶员的转向动作转化为车轮的转向动作。
转向器通常由方向盘、转向柱、转向器本体和操纵机构等组成。
2. 转向轴:转向轴是连接转向器和转向轮的轴,它将驾驶员的
转向动作传递给转向器。
转向轴通常由轴管、轴承和轴头等组成。
3. 转向操纵机构:转向操纵机构是连接方向盘和转向器的部件,它包括转向柱、转向器操纵装置和转向盘等。
4. 转向传动机构:转向传动机构是将转向器的动作传递给车轮
的部件,它包括转向节臂、横拉杆和前束控制装置等。
5. 转向助力系统:转向助力系统是帮助驾驶员更轻松地操作转
向系统的部件,它通常由助力泵、助力油管和助力活塞等组成。
6. 悬挂系统:悬挂系统是连接车轮和车身的部件,它包括弹簧、减震器和稳定杆等。
悬挂系统不仅影响车辆的操控性能,还对转向系统的性能产生影响。
7. 稳定控制系统:稳定控制系统是帮助控制车辆行驶稳定的系统,它包括制动器、传感器和控制单元等。
稳定控制系统能够感知车辆的动态变化,并通过调整车轮的制动力来控制车辆的行驶轨迹。
这些组件共同构成了汽车转向系统,确保驾驶员能够安全、准确地控制车辆的方向。
了解这些组件的结构和工作原理对于理解汽车转向系统的性能和设计至关重要。
转向系统的组成及其分类转向系统是指用于控制车辆运动方向的一组装置和方法。
它通过操纵车辆的前轮或后轮,使车辆能够改变行驶方向。
转向系统的主要组成包括转向装置、转向机构和转向控制系统。
转向装置是指由转向手柄(方向盘)、转向柱、转向齿轮等组成的部件,用于传递驾驶员的操纵力到转向机构。
转向机构是指将驾驶员的操纵力转化为车辆前轮或后轮的转动力矩的装置。
常见的转向机构有齿轮齿条机构、齿轮摆线机构和滚珠丝杠机构等。
转向控制系统是指用于感知和控制车辆行驶方向的一组传感器、执行器和控制器。
其中,传感器负责感知车辆的姿态、速度和转向角度等参数,执行器负责控制转向机构的运动,控制器负责处理传感器的信号并发出相应的控制指令。
根据转向机构的位置和控制方式的不同,转向系统可以分为前轮转向系统和后轮转向系统。
前轮转向系统是指通过控制前轮的转动来改变车辆行驶方向的系统。
它是最常见的转向系统类型,广泛应用于各类乘用车和商用车中。
前轮转向系统可以进一步分为机械式转向系统和电动助力转向系统。
机械式转向系统是一种传统的转向系统,它通过机械装置传递驾驶员的操纵力到车辆的前轮,实现转向控制。
机械式转向系统结构简单、可靠性高,但操纵力较大,操作相对较为费力。
现代的机械式转向系统通常采用齿轮齿条机构,通过转向柱和方向盘上的手柄传递操纵力到齿轮,再通过齿轮带动齿条,使车辆的前轮转动。
电动助力转向系统是一种利用电动机辅助转向的系统。
它通过电动助力转向器来感知驾驶员的操纵力,并通过电动机产生适当的辅助力矩,减小驾驶员操纵的力量。
电动助力转向系统具有操纵力较小、操作轻便的特点,提高了驾驶的舒适性和操控性能。
此外,电动助力转向系统还可以通过控制电动机的工作参数来实现不同的转向感觉,如舒适、标准和运动等模式。
后轮转向系统是指通过控制后轮的转动来改变车辆行驶方向的系统。
与前轮转向系统相比,后轮转向系统在车辆转弯时能够提供更好的操控性能和稳定性。
后轮转向系统可以分为机械式后轮转向系统和电动式后轮转向系统。
汽车转向系统各部分结构作用图解
[04-11-8 17:37 ] 太平洋汽车网来源: 清华大学CAR责任编辑: shenyunfeng
一.机械转向系统
l.转向盘 2.安全转向轴3.转向节 4.转向轮5.转向节臂6.转向横拉杆
7.转向减振器8.机械转向器ﻫ
ﻫ上图是一种机械式转向系统。
驾驶员对转向盘1施加的转向力矩通过转向轴2输入转向器8。
从转向盘到转向传动轴这一系列零件即属于转向操纵机构。
作为减速传动装置的转向器中有1、2级减速传动副(右图所示转向系统中的转向器为单级减速传动副)。
经转向器放大后的力矩和减速后的运动传到转向横拉杆6,再传给固定于转向节3上的转向节臂5,使转向节和它所支承的转向轮偏转,从而改变了汽车的行驶方向。
这里,转向横拉杆和转向节臂属于转向传动机构。
二.转向操纵机构
转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将驾驶员转动转向盘的操纵力传给转向器。
三.机械转向器
齿轮齿条式转向器齿轮齿条式转向器分两端输出式和中间(或单端)输出式两种。
1.转向横拉杆 2.防尘套 3.球头座4.转向齿条5.转向器壳体 6.调整螺塞7.压紧弹
簧8.锁紧螺母9.压块10.万向节11.转向齿轮轴12.向心球轴承13.滚针轴承ﻫ
两端输出的齿轮齿条式转向器如图d-zx-5所示,作为传动副主动件的转向齿轮轴11通过轴承12和13安装在转向器壳体5中,其上端通过花键与万向节叉10和转向轴连接。
与转向齿轮啮合的转向齿条4水平布置,两端通过球头座3与转向横拉杆1相连。
弹簧7通过压块9将齿条压靠在齿轮上,保证无间隙啮合。
弹簧的预紧力可用调整螺塞6调整。
当转动转向盘时,转向器齿轮11转动,使与之啮合的齿条4沿轴向移动,从而使左右横拉杆带动转向节左右转动,使转向车轮偏转,从而实现汽车转向。
ﻫ中间输出的齿轮齿条式转向器如图d-zx-6所示,其结构及工作原理与两端输出的齿轮齿条式转向器基本相同,不同之处在于它在转向齿条的中部用螺栓6与左右转向横拉杆7相连。
在单端输出的齿轮齿条式转向器上,齿条的一端通过内外托架与转向横拉杆相连。
(d-zx-6)
1.万向节叉
2.转向齿轮轴
3.调整螺母
4.向心球轴承
5.滚针轴承
6.固定螺栓7.转向横
拉杆8.转向器壳体9.防尘套10.转向齿条11.调整螺塞12.锁紧螺母13.压
紧弹簧14.压块ﻫ
循环球式转向器循环球式转向器是目前国内外应用最广泛的结构型式之一, 一般有两级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副。
ﻫ
为了减少转向螺杆转向螺母之间的摩擦,二者的螺纹并不直接接触,其间装有多个钢球,以实现滚动摩擦。
转向螺杆和螺母上都加工出断面轮廓为两段或三段不同心圆弧组成的近似半圆的螺旋槽。
二者的螺旋槽能配合形成近似圆形断面的螺旋管状通道。
ﻫ螺母侧面有两对通孔,可将钢球从此孔塞入螺旋形通道内。
转向螺母外有两根钢球导管,每根导管的两端分别插入螺母侧面的一对通孔中。
导管内也装满了钢球。
这样,两根导管和螺母内的螺旋管状通道组合成两条各自独立的封闭的钢球"流道"。
ﻫ
转向螺杆转动时,通过钢球将力传给转向螺母,螺母即沿轴向移动。
同时,在螺杆及螺母与钢球间的摩擦力偶作用下,所有钢球便在螺旋管状通道内滚动,形成"球流"。
在转向器工作时,两列钢球只是在各自的封闭流道内循环,不会脱出。
ﻫ
蜗杆曲柄指销式转向器蜗杆曲柄指销式转向器的传动副(以转向蜗杆为主动件,其从动件是装在摇臂轴曲柄端部的指销。
转向蜗杆转动时,与之啮合的指销即绕摇臂轴轴线沿圆弧运动,并带动摇臂轴转动。
[上一页][1][2]
四.转向传动机构ﻫﻫ汽车转向时,要使各车轮都只滚动不滑动,各车轮必须围绕一个中心点O转动,如图d-zx-07所示。
显然这个中心要落在后轴中心线的延长线上,并且左、右前轮也必须以这个中心点O为圆心而转动。
为了满足上述要求,左、右前轮的偏转角应满足如下关系:
与非独立悬架配用的转向传动机构主要包括转向摇臂2、转向直拉杆3转向节臂4和转向梯形。
在前桥仅为转向桥的情况下,由转向横拉杆6和左、右梯形臂5组成的转向梯形一般布置在前桥之后,如图d-zx-08a所示。
当转向轮处于与汽车直线行驶相应的中立位置时,梯形臂5与横拉杆6在与道路平行的平面(水平面)内的交角>90。
ﻫﻫ在发动机位置较低或转向桥兼充驱动桥的情况下,为避免运动干涉,往往将转向梯形布置在前桥之前,此时上述交角<90,如图d-zx-08b所示。
若转向摇臂不是在汽车纵向平面内前后摆动,而是在与道路平行的平面向左右摇动,则可将转向直拉杆3横置,并借球头销直接带动转向横拉杆6,从而推使两侧梯形臂转动,
1.转向器
2.转向摇臂3.转向直拉杆4.转向节臂5.梯形臂6.转向横拉杆ﻫ
ﻫ当转向轮独立悬挂时,每个转向轮都需要相对于车架作独立运动,因而转向桥必须是断开式的。
与此相应,转向传动机构中的转向梯形也必须是断开式的。
1.转向摇臂
2.转向直拉杆
3.左转向横拉杆4.右转向横拉杆5.左梯形臂6.右梯形臂7.摇杆
8.悬架左摆臂9.悬架右摆臂10.齿轮齿条式转向器ﻫ
ﻫ
转向直拉杆的作用是将转向摇臂传来的力和运动传给转向梯形臂(或转向节臂)。
它所受的力既有拉力、也有压力,因此直拉杆都是采用优质特种钢材制造的,以保证工作可靠。
直拉杆的典型结构如图十所示。
在转向轮偏转或因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,上述三者间
的连接都采用球销。
1.螺母
2.球头销
3.橡胶防尘垫4.螺塞5.球头座6.压缩弹簧7.弹簧座8.油嘴9.直
拉杆体10.转向摇臂球头销ﻫ
ﻫ
随着车速的提高,现代汽车的转向轮有时会产生摆振(转向轮绕主销轴线往复摆动,甚至引起整车车身的振动),这不仅影响汽车的稳定性,而且还影响汽车的舒适性、加剧前轮轮胎的磨损。
在转向传动机构中设置转向减振器是克服转向轮摆振的有效措施。
转向减振器的一端与车身(或前桥)铰接,另一端与转向直拉杆(或转向器)铰接。
1.连接环衬套 2.连接环橡胶套3.油缸4.压缩阀总成5.活塞及活塞杆总成 6.导向座7.油
封8.挡圈9.轴套及连接环总成10.橡胶储液缸
五.液压助力转向系统
ﻫ动力转向系统兼用驾驶员体力和发动机(或电机)的动力为转向能源的转向系统,它是在机械转向系统的基础上加设一套转向加力装置而形成的。
其中属于转向加力装置的部件是: ﻫ转向油泵5、转向油管4、转向油罐6以及位于整体式转向器10内部的转向控制阀及转
向动力缸等。
当驾驶员转动转向盘1时,转向摇臂9摆动,通过转向直拉杆11、横拉杆8、转向节臂7,使转向轮偏转,从而改变汽车的行驶方向。
1.方向盘2.转向轴3.转向中间轴4.转向油管5.转向油泵6.转向油罐7.转向节
臂8.转向横拉杆9.转向摇臂10.整体式转向器11.转向直拉杆12.转向减振器ﻫ
ﻫﻫ与此同时,转向器输入轴还带动转向器内部的转向控制阀转动,使转向动力缸产生液压作用力,帮助驾驶员转向操纵。
这样,为了克服地面作用于转向轮上的转向阻力矩,驾驶员需要加于转向盘上的转向力矩,比用机械转向系统时所需的转向力矩小得多。
ﻫ当转子顺时针方向旋转时,叶片在离心力及高压油的作用下紧贴在定子的内表面上。
其工作容积开始由小变大,从吸油口吸进油液;而后工作容积由大变小,压缩油液,经压油口向外供油。
由于转子每旋转一周,每个工作腔都各自吸、压油两次,故将这种型式的叶片泵称为双作用式叶片泵。
双作用叶片泵有两个吸油区和两个压油区,并且各自的中心角是对称的,所以作用在转子上的油压作用力互相平衡。
因此,这种油泵也称为卸荷式叶片泵。
1.进油口2.叶片 3.定子4.出油口5.转子ﻫ
汽车直线行驶时,阀芯与阀套的位置关系如图中所示。
自泵来的液压油经阀芯与阀套间的间隙,流向动力缸两端,动力缸两端油压相等。
驾驶员转动方向盘时,阀芯与阀套的相对位置发生改变,使得大部分或全部来自泵的液压油流入动力缸某一端,而另一端与回油管路接通,动力缸促进汽车左传或右转。
ﻫﻫ转向油泵是助力转向系统的动力源。
转向油泵经转向控制阀向转向助力缸提供一定压力和流量的工作油液。
目前,转向油泵大多采用双作用式叶片泵。
这种油泵有两种结构型式,一种是潜没式转向油泵,另一种为非潜没式转向油泵。
本图所示为潜没式油泵,它与贮液罐是一体的,即油泵潜没在贮液罐的油液中;非潜没式转向油泵的贮液罐与转向油泵分开安装,用油管与转向油泵相连接。
l.驱动轴2.壳体 3.前配油盘 4. 叶片5.储油罐6.定子7.后配油盘8.后盖
9.弹簧10.管接头11.柱塞12.阀杆13.钢球14.转子A.出油口 B.出油腔
C.进油腔
D.油道H.主量孔。