当前位置:文档之家› 汽车转向系设计说明书

汽车转向系设计说明书

汽车转向系设计说明书
汽车转向系设计说明书

汽车设计课程设计说明书

题目:重型载货汽车转向器设计

姓名:席昌钱

学号:5

同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班

指导教师:王丰元、邹旭东

设计任务书

目录

1.转向系分析 (4)

2.机械式转向器方案分析 (8)

3.转向系主要性能参数 (9)

4.转向器设计计算 (14)

5.动力转向机构设计 (16)

6.转向梯形优化设计 (22)

7.结论 (24)

8.参考文献 (25)

1转向系设计

基本要求

1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。

2.操纵轻便,作用于转向盘上的转向力小于200N。

3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。

4.转向灵敏。

5.转向器和转向传动机构中应有间隙调整机构。

6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

基本参数

1.整车尺寸: 11976mm*2395mm*3750mm。

2.轴数/轴距 4/(1950+4550+1350)mm

3.整备质量 12000kg

4.轮胎气压

2.转向系分析

对转向系的要求[3]

(1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便;

(2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑;

(3) 传给转向盘的反冲要尽可能的小;

(4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态;

(5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员.

转向操纵机构

转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

图2-1转向操纵机构

the control mechanism of steering

1-转向万向节;2-转向传动轴;3-转向管柱;4-转向轴;5-转向盘

1-steering universal shaft; 2-steering propeller ; 3-steering column ; 4-steering axis;

5-steering wheel

转向传动机构[4]

转向传动机构包括转向臂、转向纵拉杆、转向节臂、转向梯形臂以及转向横拉杆等。(见图2-2)

转向传动机构用于把转向器输出的力和运动传给左、右转向节并使左、右转向轮按一定关系进行偏转。

图2-2 转向传动机构

1-转向摇臂;2-转向纵拉杆;3-转向节臂;4-转向梯形臂;5-转向横拉杆

转向器[5]

机械转向器是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角转动比和力转动比进行传递的机构。

机械转向器与动力系统相结合,构成动力转向系统。高级轿车和重型载货汽车为了使转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。

为了避免汽车在撞车时司机受到的转向盘的伤害,除了在转向盘中间可安装安全气囊外,还可在转向系中设置防伤装置。为了缓和来自路面的冲击、衰减转向轮的摆振和转向机构的震动,有的还装有转向减振器。

多数两轴及三轴汽车仅用前轮转向;为了提高操纵稳定性和机动性,某些现代轿车采用全四轮转向;多轴汽车根据对机动性的要求,有时要增加转向轮的数目,本设计按设计要求采用单轴前轴转向。

转角及最小转弯半径

汽车的机动性,常用最小转弯半径来衡量,但汽车的高机动性则应由两个条件保证。即首先应使左、右转向轮处于最大转角时前外轮的转弯值在汽车轴距的2~倍范围内;其次,应这样选择转向系的角传动比,即由转向盘处于中间的位置向左或右旋转至极限位置的总旋转全书,对轿车应不超过圈,对货车不应超过圈。

两轴汽车在转向时,若不考虑轮胎的侧向偏离,则为了满足上述对转向系的第(2)条要求,其内、外转向轮理想的转角关系如图2-3所示,由下式决定:

L

K

BD CO DO i o =-=

-θθcot cot (2-1) 式中:θo —外转向轮转角; θi —内转向轮转角;

K —两转向主销中心线与地面交点间的距离; L —轴距

内、外转向轮转角的合理匹配是由转向梯形来保证。

图2-3 理想的内、外转向轮转角间的关系

Fig 2-3 Relations between ideal inside and outside steering wheel corner

汽车的最小转弯半径R min 与其内、外转向轮在最大转角θmax i 与θmax o 、轴距L 、主销距K 及转向轮的转臂a 等尺寸有关。在转向过程中除内、外转向轮的转角外,其他参数是不变的。最小转弯半径是指汽车在转向轮处于最大转角的条件下以低速转弯时前外轮与地面接触点的轨迹构成圆周的半径。最小转弯半径能达到汽车轴距的2~倍,取R min =2L ;

操纵轻便型的要求是通过合理地选择转向系的角传动比、力传动比和传动效率来达到。

对转向后转向盘或转向轮能自动回正的要求和对汽车直线行驶稳动性的要求则主要是通过合理的选择主销后倾角和内倾角,消除转向器传动间隙以及选用可逆式转向器来达到。但要使传递到转向盘上的反向冲击小,则转向器的逆效率有不宜太高。至于对转向系的最后两条要求则主要是通过合理地选择结构以及结构布置来解决。

转向器及其纵拉杆与紧固件的称重,约为中级以及上轿车、载货汽车底盘干重的%~%;小排量以及下轿车干重的%~%。转向器的结构型式队汽车的自身质量影响较小。

3. 机械式转向器方案分析

循环球式转向器

循环球式转向器有螺杆和螺母共同形成的落选槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副组成,如图3-1所示。

图3-1 循环球式转向器示意图

Fig 3-1Circulation-ball steering

循环球式转向器的优点是:在螺杆和螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可以达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度和螺杆、螺母上的螺旋槽经淬火和磨削加工,使之有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行,(图3-2);适合用来做整体式动力转向器。

图3-2 循环球式转向器的间隙调整机构

Fig 3-2 The gap adjusts the organizational structure of Recirculation-ball gears

循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。循环球式转向器主要用于商用车上。

4.转向系的主要性能参数

转向系的效率

功率p

1从转向轴输入,经转向摇臂轴输出所求

得的效率称为转向器的正效率,用符号η+表示,反之称为逆效率,用符号η

-

表示。

正效率η

+

计算公式:

p p

p

12

1-

=

+

η(4-1)

逆效率η

-

计算公式:

p p

p

32

3-

=

-

η(4-2)

式中,p

1为作用在转向轴上的功率;p2为转向器中的磨擦功率;p3为作用在转向摇

臂轴上的功率。

正效率高,转向轻便;转向器应具有一定逆效率,以保证转向轮和转向盘的自动返回能力。但为了减小传至转向盘上的路面冲击力,防止打手,又要求此逆效率尽可能低。

影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 4.1.1转向器的正效率η+

影响转向器正效率的因素有转向器的类型、结构特点、结构参数和制造质量等。 (1)转向器类型、结构特点与效率

在四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。

同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承。选用滚针轴承时,除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种轴向器的效率η+仅有54%。另外两种结构的转向器效率分别为70%和75%。

转向摇臂轴的轴承采用滚针轴承比采用滑动轴承可使正或逆效率提高约10%。 (2)转向器的结构参数与效率

如果忽略轴承和其经地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆类转向器,其效率可用下式计算

)

tan(tan 00

ρη+=

+a a =75% (4-3)

式中,a 0为蜗杆(或螺杆)的螺线导程角,a 0取8°,ρ为摩擦角,ρ=arctanf ;f 为磨擦因数。取f=. 4.1.2转向器的逆效率η-

根据逆效率不同,转向器有可逆式、极限可逆式和不可逆式之分。

路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向轮和转向盘自动回正,既可以减轻驾驶员的疲劳,又可以提高行驶安全性。但是,在不平路面上行驶时,传至转向盘上的车轮冲击力,易使驾驶员疲劳,影响安全行驾驶。

属于可逆式的转向器有齿轮齿条式和循环球式转向器。 不可逆式和极限可逆式转向器

不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力转向传

动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉,因此,现代汽车不采用这种转向器。

极限可逆式转向器介于可逆式与不可逆式转向器两者之间。在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。

如果忽略轴承和其它地方的磨擦损失,只考虑啮合副的磨擦损失,则逆效率可用下式计算

0tan )

tan(a a ρη-=

-=64% (4-4)

式(4-3)和式(4-4)表明:增加导程角a 0,正、逆效率均增大。受η-

增大的影响,

a

不宜取得过大。当导程角小于或等于磨擦角时,逆效率为负值或者为零,此时表明该转

向器是不可逆式转向器。为此,导程角必须大于磨擦角。

传动比变化特性

4.2.1转向系传动比

转向系的角传动比0ωi 由转向器角传动比ωi 和转向传动机构角传动比ωi '组成,即

ω

ωωi i i '=0 (4-5) 转向器的角传动比: P

r

i πω2=

26≈ (4-6)

齿扇啮合半径75.482

14

5.62

r =?=

=

mz

mm 螺距P=

转向传动机构的角传动比: k

p

k p k p d d dt d dt d i ββββωωω

==='//1≈ (4-7)

转向系的传动比包括转向系的角传动比0ωi 和转向系的力传动比p i 。 转向系的力传动比: 11750

2450

26a 2i 0=??==

SW p D i ω(4-8)

转向器角传动比的选择

转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的主要因素是转向轴负荷大小和对汽车机动能力的要求。

若转向轴负荷小或采用动力转向的汽车,不存在转向沉重问题,应取较小的转向器角传动比,以提高汽车的机动能力。若转向轴负荷大,汽车低速急转弯时的操纵轻便性问题突出,应选用大些的转向器角传动比。

汽车以较高车速转向行驶时,要求转向轮反应灵敏 ·,转向器角传动比应当小些。汽车高速直线行驶时,转向盘在中间位置的转向器角传动比不宜过小。否则转向过分敏感,使驾驶员精确控制转向轮的运动有困难。

转向器角传动比变化曲线应选用大致呈中间小两端大些的 下凹形曲线,如图4-1所示。

图4-1转向器角传动比变化特性曲线

Fig 4-1 Change characteristic property curve of Steering angle transmission ratio

转向器传动副的传动间隙△t

传动间隙是指各种转向器中传动副之间的间隙。该间隙随转向盘转角的大小不同而改变,并把这种变化关系称为转向器传动副传动间隙特性(图4-2)。

研究该特性的意义在于它与直线行驶的稳定性和转向器的使用寿命有关。

传动副的传动间隙在转向盘处于中间及其附近位置时要极小,最好无间隙。若转向器传动副存在传动间隙,一旦转向轮受到侧向力作用,车轮将偏离原行驶位置,使汽车失去稳定。

传动副在中间及其附近位置因使用频繁,磨损速度要比两端快。在中间附近位置因磨损造成的间隙过大时,必须经调整消除该处间隙。

为此,传动副传动间隙特性应当设计成图4-2所示的逐渐加大的形状。

图4-2 转向器传动副传动间隙特性

Fig 4-2 Drive gap characteristic property of steering

转向器传动副传动间隙特性 图中曲线1表明转向器在磨损前的间隙变化特性;曲线2表明使用并磨损后的间隙变化特性,并且在中间位置处已出现较大间隙;曲线3表明调整后并消除中间位置处间隙的转向器传动间隙变化特性。

转向盘的总转动圈数

转向盘从一个极端位置转到另一个极端位置时所转过的圈数称为转向盘的总转动圈数。它与转向轮的最大转角及转向系的角传动比有关,并影响转向的操纵轻便性和灵敏性。轿车转向盘的总转动阁数较少,一般约在圈以内;货车一般不宜超过6圈。为了增加转向的轻便性,取6圈。

5.转向器设计计算

转向系计算载荷的确定[8]

为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷,地面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。

精确地计算这些力是困难的,为此推荐用足够精确的半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力距M r (N?mm),即

P

f

G M r 1

3

3

=1008504 N?mm (5-1)

式中,f 为轮胎和路面见的摩擦因素,一般取;G 1

为转向轴负荷24000(N );p=为轮胎

气压(MPa ) 转向系主要参数

说明:转向摇臂的长度与转向传动机构有关,一般初选时,大货车可取300~400mm ,本设计取340mm ,转向器角传动比在23~32内选取,本设计取26

作用在转向盘上的手力为

N

D L M L F SW h 207i 22r

1==+

ηω (5-2)

式中, L 1为转向摇臂长;L 2为转向节臂长;D SW 为转向盘直径;i ω为转向器角传动比;

η+

为转向器正效率。

转向器设计

5.2.1参数的选取[9]

摇臂轴直径/mm 42 钢球中心距D /mm 40 螺杆外径D 1/mm 38 钢球直径d /mm 螺距P /mm 工作圈数W 螺母长度L /mm 80 导管壁厚 /mm

钢球直径与导管内径间隙e/mm

螺线导程角0a /o 7ο

30’ 齿扇压力角

a /o

27ο

30‘ 接触角θ/o

45ο

环流行数 2

5.2.2计算参数

1.螺母内径D 2应大于D 1,一般要求

D D

D %)10~%5(1

2

=- (5-3)

D 2

=D

1

+(5%~10%)D=38+8%?40=

2. 钢球数量n =

d

DW

π≈39个 (5-4) 3. 滚道截面半径R 2=(~)d=? mm (5-5)

循环球式转向器零件强度计算

[10]

5.3.1钢球与滚道之间的接触应力σ

σ=k 32

22

223)

()(r R r R E F - =1217 MP (5-6) 式中,k 为系数,根据A/B 值查表,A=[(1/r )-(1/2R )]/2, B=[(1/r)+(1/1R )]/2; 2R 为滚道截面半径,k 取;r 为钢球半径;1R 为螺杆外径;E 为材料弹性模量,等于?5a

3

F 为

钢球与螺杆之间的正压力,即3F =o

a n F θcos cos 02

=737N (5-7)

式中,

a 为螺杆螺线的导程角;o θ为接触角;n 为参与工作的钢球数;F 2

为作用在螺杆上

的轴向力,

o

SW h b D R F F 2/2/cot 20

-=

α=19904N

当接触表面硬度为58~64HRC ;拍-时,许用接触应力[σ]=2500 MP a 由于σ=1217 MP <[σ],因此满足强度。

5.3.2转向摇臂直径的确定

转向摇臂直径d 为

2.0τR

KM d =

式中,K为安全系数,根据汽车使用条件不同可取~;M

R 为转向阻力矩;0

为扭转强度极

限。

摇臂轴用20CrMnTi钢制造,表面渗碳,渗碳层深度在~1.2mm。对于前轴负荷大的汽车,渗碳层深度为~1.45mm。表面硬度为58~63HRC

6.动力转向机构设计

对动力转向机构的要求及选取

对动力转向机构的要求

1.运动学上应保持转向轮转角和驾驶员转动转向盘的转角之间保持一定的比例关系。

2.随着转向轮阻力的增大(或减小),作用在转向盘上的手力必须增大(或减小),称之为“路感”。

3.当作用在转向盘上的切向力

F h≥~时,动力转向器就应开始工作。

4.转向后,转向盘应自动回正,并使汽车保持在稳定的直线行驶状态。

5.工作灵敏,即转向盘转动后,系统内压力能很快增长到最大值。

6.动力转向失灵时,仍能用机械系统操纵车轮转向。

7.密封性能好,内、外泄漏少。

对动力转向机构的选取

整体式动力转向器多用在轿车和前桥载重在15t以下的货车上,本设计的货车的前桥的载重为,所以采用整体式动力转向器.

液压式动力转向机构的计算

6.2.1动力缸尺寸计算

动力缸的主要尺寸有动力缸内径、活塞行程、活塞杆直径和动力缸体壁厚。

动力缸产生的推力F为

L

F L

F 1

1

=

式中,L 1为转向摇臂长度;L 为转向摇臂轴到动力缸活塞之间的距离。

F

1

为直拉杆上的力,

F

1

=

a

M

r

=20170N

推力F 与工作油液压力p 和动力缸截面面积S 之间有如下关系

pL

S L

F 1

1

=

(6-1)

因为动力缸活塞两侧的工作面积不同,应按较小一侧的工作面积来计算,即

)(4

2

2d D p S -=

π

(6-2)

式中,D 为动力缸内径;d p 为活塞杆直径,初选d p =,压力p =8Mpa 。 联立式(6-1)和式(6-2)后得到

d L F p pL

D 2

1

14+=

π=68 mm (6-3)

所以 d p = = 取8.01=L

L

活塞行程是车轮转制最大转角时,由直拉杆的的移动量换算到活塞杆处的移动量得到的。活塞厚度可取为B=。

动力缸的最大长度s 为 ?

s D D s 13.0)6.0~5.0(10+++= =200mm (6-4)

动力缸壳体壁厚t, 根据计算轴向平面拉应力

σ

z

来确定,即

n Dt p s z t D

σσ≤+=])

(4[

2

2

(6-5) 式中,p 为油液压力;D 为动力缸内径;t 为动力缸壳体壁厚;n 为安全系数,n=~ 取4;

σ

s

为壳体材料的屈服点。壳体材料用球墨铸铁采用QT500-05,抗拉强度为500MPa,

屈服点为350MPa 。

t=3mm

活塞杆用45刚制造,为提高可靠性和寿命,要求表面镀铬并磨光。

动力转向的评价指标

1.动力转向器的作用效能 用效能指标'=F

F h

h

s 来评价动力转向器的作用效能。现有动力转向器的效能指标

s=1~15。

2.路感

驾驶员的路感来自于转动转向盘时,所要克服的液压阻力。液压阻力等于反作用阀面积与工作液压压强的乘积。在最大工作压力时,轿车:换算以转向盘上的力增加约30~50N 。

3.转向灵敏度

转向灵敏度可以用转向盘行程与滑阀行程的比值i 来评价

δ

?

2D

sw

i = (6-14)

比值i 越小,则动力转向作用的灵敏度越高。。 4.动力转向器的静特性

动力转向器的静特性是指输入转矩与输出转矩之间的变化关系曲线,是用来评价动力转向器的主要特性指标。因输出转矩等于油压压力乘以动力缸工作面积和作用力臂,对于已确定的结构,后两项是常量,所以可以用输入转矩M φ与输出油压p 之间的变化关系曲线来表示动力转向的静特性,如图6-1示。 常将静特性曲线划分为四个区段。在输入转矩不大的时候,相当于图中A 段;汽车原地转向或调头时,输入转矩进入最大区段(图中C 段);B 区段属常用快速转向行驶区段;D 区段曲线就表明是一个较宽的平滑过渡区间。

要求动力转向器向右转和向左转的静特性曲线应对称。对称性可以评价滑阀的加工和装配质量。要求对称性大于。

7.转向梯形的优化设计

转向梯形机构用来保证汽车转弯行驶时所有车轮能绕一个瞬时转向中心,在不同

的圆周上做无滑动的纯滚动。设计转向梯形的主要任务之一是确定转向梯型的最佳参数和进行强度计算。转向梯形有整体式和断开式两种。一般转向梯形机构布置在前轴之后,但当发动机位置很低或前轴驱动时,也有位于前轴之前的。

两轴汽车转向时,若忽略轮胎侧偏影响,两转向前轴的延长线应交于后轴延长线。设

0θ,i θ分别是外内转向车轮转角,k 为两主销中心线延长线到地面交点之间的距离,则

梯形机构应保证内外转向车轮的转角有如下关系:

cot L

K cog i

=

-θθ0,若自变角为0θ则因变角i θ的期望值为:

)(cot ot )(010L

K c f i -

==-θθθ,现有转向梯形机构仅能满足上式要求。如下图所示,在图上作辅助虚线,利用余弦定理可推得转向梯形所绘出的实际因变角

'

i θ为:

)cos(21]

2cos )cos(cos 2[arccos

)cos(21)()sin(arcsin 02

0020')(θγγθγγθγθγγθ+-+-+--+-++-=m K m K m K

m K M K i 其中

m —梯形臂长 γ—梯形底角

图7-1 汽车瞬时转向图

应使设计的转向梯形所绘出的实际因变角

'

i θ尽可能接近理论上的期望值

i

θ。其偏差最

常使用的中间位置附近小转角范围应尽可能小,以减小高速行驶时轮胎的磨损。而在不经常使用且车速较慢的最大转角时可适当放宽要求,因此在加入加权因子)(00θω构成评价优

略的目标函数f(x)为:

f (x )=max

1

''

0001

0()()

()[

]100()i i i i i

i i θ

θθθθωθθθθ=-?%∑ 将上式代得: f(x)=

∑=-

-+-++-θ

θ

θθγθγγθ

ωmax

1

1

0020'0)

cot(cot )cos(21)(

)

sin(arcsin

)

(οοL K

arc m K

M K i i i i

0[2cos cos()cos 2]

1100cot(cot )

i i K

arc L

γγγθθ-+-?%

-

其中 x —设计变量 x=][

21X X =????

??m γ

max 0θ—外转向轮最大转角, 由上图可得:

max 0θ=a

R L -min arcsin

=?30

其中 min R —汽车最小转弯半径为,

a —主销偏移距为50mm ,轴距L=7850mm K=2020mm 梯形臂长度m==283mm 考虑到多数使用工况下转角小于?20,且?10以内的小转角使用的更加频繁,因此取: 当

?

5.1)(0=θω

?

)(0=θω

max

0020θθ≤

5.0)(0=θω

建立约束条件时应考虑到:设计变量m 及 γ 过小时,会使横拉杆上的转向力过大;当m 过大时,将使梯形布置困难,故对m 的上、下限及对γ的下限应设置约束条件。因γ越大,梯形越接近矩形.f(x)值就越大,而优化过程是求f(x)的极小值,故可不必对γ的上限加以限制。综上所述,各设计变量的取值范围构成的约束条件为:

m-0min ≥m 0max ≥-m m 0

min ≥-γγ

梯形臂长度m 设计时常取在min m =,m ax

m =,取m==283mm.

梯形底角min γ=?70,?=40min δ

此外,由机械原理得知,四连杆机构的传动角δ不宜过小,通常取?=≥40min δδ。如上图所示,转向梯形机构在汽车向右转弯至极限位置时达到最小值,故只考虑右转弯时

min δδ≥即可。利用该图所作的辅助虚线及余弦定理,可推出最小传动角约束条件为

2cos )cos (cos )cos(cos 2cos min max 0min ≥--++-K

m

γγδθγγδ ,式中,min δ为最小传动角。

由上述数学模型可知,转向梯形机构的优化设计问题是一个小型的约束非线性规划问题,可用复合形法来求解。

根据上述思路,可用C 语言编程进行优化设计(原程序见附录)。优化的结果如下: 转向梯形底角 γ=?78

8. 结 论

通过本次汽车设计实践课程使我对汽车设计有更加深刻理解,不仅锻炼了自己动手设计的能力,而且培养了创新理念。在这里要非常感谢老师和学校提供的这次机会,这也是我们迈向社会,从事职业工作前一个必不少的过程。

9. 参考文献

[1] 刘惟信.汽车设计.北京:清华大学出版社,2000

[2] 王望予.汽车设计(第三版). 北京:机械工业出版社,2000

[3] 陈家瑞.汽车构造(下册). 北京:机械工业出版社,2005

[4] 余志生.汽车理论(第三版) 北京:机械工业出版社,2000

[5] 张洪欣.汽车设计(第二版). 北京:机械工业出版社,1996

[6] 吴宗泽.机械设计实用手册. 北京:化学工业出版社,1999

[7] 刘鸿文.材料力学. 北京:高等教育出版社,1991

[8] 祖业发.工程制图.重庆:重庆大学出版社,2001

[9] 浙江交通学校.汽车构造教学图册.人民交通出版社,1986

[10] 徐灏.机械设计手册(3、4卷)北京:机械工业出版社,1991

[11] 张武农.我国汽车工业创新的策略研究,2001年,第6期,

[12] 钱振为.汽车工业研究,2001年,第4期,

[13] 阎荫棠.几何量精度设计与检测.北京:机械工业出版社,1996

汽车转向系统设计计算匹配方式方法

1 汽车转向系统的功能 1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。 对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘 转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。这时, 基本上是角输入。而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有 一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。 1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。这种反馈,通常称为路感。 驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、 身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车 的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路 感是优良的操稳性中不可缺少的部分。 反馈分为力反馈和角反馈 从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。 2 转向系统设计的基本要求 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。转向系的基本要求如下: 2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。 不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。实际上,没有哪 一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向 角(轮15°~25°围)使转向外轮运动关系逼近上述要求。 2.2 良好的回正性能 汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。转向轮的回正力矩的大小主要由悬架系统所决定的前 轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销倾角、 主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的 逆效率等。 2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。 2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。 汽车转弯行驶时,作用在汽车质心处的离心力的作用,轮载荷减小,外轮载荷

汽车总体设计说明书

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机械工程系 专业:车辆工程 题目:一汽大众宝来乘用车总体设计及各总成选型综合成绩: 指导教师:职称: 教授 2013年 12 月 30 日

中北大学 课程设计任务书 2013/2014 学年第 1 学期 学院(系):机械工程 专业:车辆工程 学生姓名:学号: 课程设计题目:一汽大众宝来乘用车整体设计及各总成选型起迄日期:12 月20 日~ 1 月 3 日 课程设计地点: 指导教师 系主任: 下达任务书日期: 2013 年12月20日

课程设计任务书 1.课程设计教学目的: (1)培养学生专业思想。使学生了解以前所学理论知识和参加过得金工实习、工艺实习及专业生产实习等环节,都是为今后的专业设计、生产做准备,每一个环节都是为了培养一名合格的车辆工程专业人才而设置,车辆工程专业需要有扎实的专业基础知识和实践能力。 (2)提高结构设计能力。通过课程设计,使学生学习和掌握汽车驱动桥的主减速器设计的程序和方法,树立正确的工程设计思想,培养独立的、全面的、科学的工程设计的能力。 (3)在课程设计实践中学会查找、翻阅和使用标准、规范、手册、图册和相关技术资料等。 2.课程设计的内容和要求: 1、内容:一汽大众宝来乘用车整体设计及各总成选型 2、具体参数: 车型7 长宽高 /mm 前悬/后悬 /mm 前轮距/后轮 距 / mm 轴距 /mm 总质 量/kg 整备质 量/kg 一汽大众宝来4376 1735 1446 873/990 1513/1494 2513 1830 1280 额定 承 载人数发动机 型号 排量 /mL 发动机功率 /kW 轴数 最高车速 /(km/h) 轮胎规格 5 BJH 1595 74 2 182 195/65R15 3、要求: 为给定基本设计参数的汽车进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数,详细计算指定总成的设计参数,绘出指定总布置草图和乘员舱布置草图。(1)驱动形式及主要参数的选择:驱动形式,布置形式,汽车主要参数的选择(2)发动机的选择 (3)外形设计及总体布置:整车布置的基准线(面)—零线的确定,各部件的布置3.课程设计成果形式及要求: 完成内容: (1)总布置草图1张(1号图) (2)驾驶舱布置草图1张(3号图) (3)零件图1张(3号图) (4)设计计算说明书1份

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

汽车理论课程设计汇本说明书

海南大学 《汽车理论》 课程设计说明书 题目:汽车动力性计算 学号:20140507310069 姓名:郭东东 年级:2014级 学院:机电工程学院 系别:汽车系 专业:车辆工程 指导教师:张建珍 完成日期:2017年6月1日

目录 1. 题目要求 (1) 1.1. 题目要求 (3) 1.2. 车型参数 (4) 2. 计算步骤 (5) 2.1. 绘制功率外特性和转矩外特性曲线 (5) 2.2. 绘制驱动力——行驶阻力平衡图 (7) 2.3. 绘制动力特性图 (11) 2.4. 绘制加速度曲线和加速度倒数曲线 (14) 2.5. 绘制加速时间曲线 (21) 2.5.1. 二挡原地起步连续换挡加速时间曲线 (22) 2.5.2. 最高档和次高档超车加速时间 (26) 3. 结论分析 (32) 3.1. 汽车的最高车速u amax (32) 3.2. 汽车的加速时间t (32) 3.3. 汽车能爬上的最大坡度i max (33) 4. 心得体会 (33) 参考资料34

1.题目要求 1.1.题目要求 (1)根据书上所给的发动机使用外特性曲线拟合公式,绘制功率外特性和转矩外特性曲线; (2)绘制驱动力---行驶阻力平衡图; (3)绘制动力特性图; (4)绘制加速度时间曲线和加速度倒数曲线; (5)绘制加速时间曲线,包括原地起步连续换挡加速时间和最高档和次高档加速时间、加速区间(初速度和末速度)按照国家标准 GB/T12543-2009规定选取,并在说明书中具体说明选取; (6)对动力性进行总体评价。

1.2.车型参数 汽车发动机使用外特性-n曲线的拟合公式为 式中,T q为发动机转矩(N·m);n为发动机转速(r/min)。 发动机的最低转速n min=600r/min,最高转速n max=4000r/min 装载质量2000kg 整车装备质量1800kg 总质量3880kg 车轮半径0.367m 传动系机械效率ηT=0.84 滚动阻力系数f=0.016 空气阻力系数×迎风面积C D A=2.77m2 主减速器传动比i0=5.97 飞轮转动惯量I f=0.218kg·m2 二前轮转动惯量I W1=1.798kg·m2

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

汽车制造工艺学课程设计活塞设计说明书(精)

山东农业大学 机械与电子工程学院 汽车制造工艺学课程设计 课程名称:汽车制造工艺学设计课题:活塞零件的机械加工工艺规程的编制 指导老师:吕钊钦 专业:车辆工程班级: 3班姓名:高超学号: 20120667 2014年 12月 11日 序言 本次设计内容涉及了机械制造工艺及机床夹具设计、金属切削机床、公差配合与测量等多方面的知识。 活塞加工工艺规程及其夹具设计是包括零件加工的工艺设计、工序设计以及专用夹具的设计三部分。在工艺设计中要首先对零件进行分析,了解零件的工艺再设计出毛坯的结构,并选择好零件的加工基准,设计出零件的工艺路线;接着对零件各个工步的工序进行尺寸计算,关键是决定出各个工序的工艺装备及切削用量;然后进行专用夹具的设计,选择设计出夹具的各个组成部件,如定位元件、夹紧元件、引导元件、夹具体与机床的连接部件以及其它部件;计算出夹具定位时产生的定位误差,分析夹具结构的合理性与不足之处,并在以后设计中注意改进。 关键词:工艺、工序、切削用量、夹紧、定位、误差。 目录 序言 (3) 一. 零件分析 (4)

1.1 零件作用 (4) 1.2零件的工艺分析 (5) 二. 工艺规程设计 (6) 2.1确定毛坯的制造形式 (6) 2.2基面的选择 (7) 2.3制定工艺路线 (10) 2.4机械加工余量、工序尺寸及毛坯尺寸的确定 (11) 2.5确定切削用量及基本工时 (13) 三夹具设计 (16) 3.1问题的提出 (16) 3.2定位基准的选择 (17) 3.3定位误差分析 (19) 3.4夹具设计及操作简要说明....................................20 总结 (21) 参考文献…………………………………………………………22 (附)机械加工工艺过程卡片 *1套 机械加工工序卡片 *1套 绪论 我国的汽车行业正在飞速发展,汽车的动力部分也在不断改进,内燃机作为一种可移动的动力源已广泛应用于生产和生活的各个领域。活塞是内燃机的关键零

汽车转向机构设计

目录 中文摘要、关键词 (1) 英文摘要、关键词 (2) 引言 (3) 第1章轿车转向系统总述 (4) 1.1轿车转向系统概述 (4) 1.1.1转向系统的结构简介 (4) 1.1.2轿车转向系统的发展概况 (4) 1.2轿车转向系统的要求 (5) 第2章转向系的主要性能参数 (7) 2.1转向系的效率 (7) 2.1.1转向器的正效率 (7) 2.1.2转向器的逆效率 (8) 2.2 传动比变化特性 (9) 2.2.1 转向系传动比 (9) 2.2.2 力传动比与转向系角传动比的关系 (9) 2.2.3 转向器角传动比的选择 (10) 2.3 转向器传动副的传动间隙 (10) 2.4 转向盘的总转动圈数 (11) 第3章轿车转向器设计 (12) 3.1 转向器的方案分析 (12) 3.1.1 机械转向器 (12) 3.1.2 转向控制阀 (12)

3.1.3 转向系压力流量类型选择 (13) 3.1.4 液压泵的选择 (14) 3.2 齿轮齿条式液压动力转向机构设计 (14) 3.2.1 齿轮齿条式转向器结构分析 (14) 3.2.3 参考数据的确定 (20) 3.2.4 转向轮侧偏角计算 (21) 3.2.5 转向器参数选取 (21) 3.2.6 选择齿轮齿条材料 (22) 3.2.7 强度校核 (22) 3.2.8 齿轮齿条的基本参数如下表所示 (23) 3.3 齿轮轴的结构设计 (23) 3.4 轴承的选择 (23) 3.5 转向器的润滑方式和密封类型的选择 (24) 3.6 动力转向机构布置方案分析 (24) 第4章转向传动机构设计 (26) 4.1 转向传动机构原理 (26) 4.2 转向传送机构的臂、杆与球销 (27) 4.3 转向横拉杆及其端部 (28) 第5章转向梯形机构优化 (30) 5.1 转向梯形机构概述 (30) 5.2整体式转向梯形结构方案分析 (30) 5.3 整体式转向梯形机构优化分析 (31) 5.4整体式转向梯形机构优化设计 (34) 5.4.1 优化方法介绍 (34) 5.4.2 优化设计计算 (35)

汽车总布置设计说明书

目录 目录 ................................................................ I 摘要 .............................................................. I II 第1章、汽车形式的选择 . (1) 1.1汽车质量参数的确定 (1) 1.1.1汽车载客量和装载质量 ................................... 1 1.1.2质量系数ηmo ............................................ 1 1.1.3整车整备质量m o ......................................... 1 1.1.4汽车总质量m a ........................................... 1 1.2汽车轮胎的选择 ............................................... 2 1.3驱动形式的选择 ............................................... 2 1.4轴数的选择 ................................................... 3 1.5货车布置形式 ................................................. 3 第2章.汽车发动机的选择 (4) 2.1发动机最大功率 max e P (4) 2.2选择发动机 ................................................... 4 第3章、汽车主要参数选择 .. (7) 3.1汽车主要尺寸的确定 (7) 3.1.1外廓尺寸 ............................................... 7 3.1.2轴距L .................................................. 7 3.1.3前轮距B 1和后轮距B 2 ..................................... 7 3.1.4前悬L F 和后悬L R ......................................... 8 3.1.5货车车头长度 ........................................... 8 3.1.6货车车箱尺寸 ........................................... 8 3.2轴荷分配及质心位置的计算 ..................................... 8 第4章.传动比的计算和选 .. (13) 4.1驱动桥主减速器传动比0i 的选择 (13) 4.2变速器传动比 g i 的选择 (14) 4.2.1变速器头档传动比 1 g i 的选择 (14) 4.2.2变速器的选择 .......................................... 14 第5章.动力性能计算 (15) 5.1驱动平衡计算 (15) 5.1.1驱动力计算 ............................................ 15 5.1.2行驶阻力计算 .......................................... 15 5.1.3力的平衡方程 .......................................... 17 5.2动力特性计算 (17) 5.2.1动力因数D 的计算 (17)

汽车转向桥桥设计说明书

汽车转向桥设计说明书 任务书要求: (1)了解汽车转向桥的结构,功能 (2)进行汽车转向桥的受力分析 (3)总体方案设计 (4)画出转向节的零件图 (5)画出转向桥的总装图 一、概述 转向桥是利用转向节使车轮偏转一定的角度以实现汽车的转向,同时还承受和传递汽车与车架及车架之间的垂直载荷、纵向力和侧向力以及这些力形成的力矩。转向桥通常位于汽车的前部,因此也常称为前桥。 各类汽车的转向桥结构基本相同,主要有前轴(梁)、转向节、主销和轮毂 (1)前轴:由中碳钢锻造,采用抗弯性较好的工字形断面。为了提高抗扭强度,接近两端略呈方形。前轴中部下凹使发动机的位置得以降低,进而降低汽车质心,扩展驾驶员视野,减小传动轴与变速器输出轴之间的夹角。下凹部分的两端制有带通孔的加宽平面,用以安装钢板弹簧。前轴两端向上翘起,各有一个呈拳形的加粗部分,并制有通孔。 (2)主销:即插入前轴的主销孔内。为防止主销在孔内转动,用带有螺纹的楔形销将其固定。 (3)转向节:转向节上的两耳制有销孔,销孔套装在主销伸出的两端头,使转向节连同前轮可以绕主销偏转,实现汽车转向。为了限制前轮最大偏转角,在前轴两端还制有最大转向角限位凸块(或安装限位螺钉)。 转向节的两个销孔,要求有较高的同心度,以保证主销的安装精度和转向灵活。为了减少磨损,在销孔内压入青铜或尼龙衬套。衬套上开有润滑油槽,由安装在转向节上的油嘴注入润滑脂润滑。为使转向灵活轻便,还在转向节下耳的上方与前轴之间装有推力轴承11;在转向节上耳与前轴之间,装有调整垫片8,用以调整轴向间隙。

左转向节的上耳装有与转向节臂9制成一体的凸缘,在下耳上装有与转向节下臂制成一体的凸缘。两凸缘上均制有一矩形键与左转向节上、下耳处的键槽相配合,转向节即通过矩形键及带有键形套的双头螺栓与转向节上下臂连接。 (4)轮毂:轮毂通过内外两个滚锥轴承套装在转向节轴颈上。轴承的松紧度可以由调整螺母调整,调好后的轮毂应能正、反方向自由转动而无明显的摆动。然后用锁紧垫圈锁紧。在锁紧垫圈外端还装有止推垫圈和锁紧螺母,拧紧后应把止推垫圈弯曲包住锁紧螺母或用开口销锁住,以防自行松动。 轮毂外端装有冲压的金属端盖,防止泥水或尘土浸入。轮毂内侧装有油封(有的油封装在转向节轴颈的根部),有的还装有挡油盘。一旦油封失效,则外面的挡油盘仍可防止润滑脂进入制动器内。 本文设计的是JY1061A型采用前置后轮驱动的载货汽车转向桥,因此该转向桥为从动桥。从动桥的功用:从动桥也称非驱动桥,又称从动车轴。它通过悬架与车架(或承载式车身)相联,两端安装从动车轮,用以承受和传递车轮与车架之间的力(垂直力、纵向力、横向力)和力矩。并保证转向轮作正确的转向运动 1、设计要求: (1)保证有足够的强度:以保证可靠的承受车轮与车架之间的作用力。 (2)保证有足够的刚度:以使车轮定位参数不变。 (3)保证转向轮有正确的定位角度:以使转向轮运动稳定,操纵轻便并减轻轮胎的磨损。 (4)转向桥的质量应尽可能小:以减少非簧上质量,提高汽车行驶平顺性。 通过对CJ1061A型前桥的设计,可以加深我们的设计思想,即: (1)处理好设计的先进性和生产的可能性之间的关系; (2)协调好产品的继承性和产品的“三化”之间的关系。 2、结构参数选择 JY1061A型汽车总布置整车参数见表1:

汽车转向系统EPS设计毕业论文

汽车转向系统EPS设计毕业论文 目录 1 引言 (1) 1.1汽车转向系统简介 (1) 1.2汽车转向系统的设计思路 (3) 1.3 EPS的研究意义 (4) 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 3 电助力转向系统的设计 (11) 3.1 动力转向机构的性能要求 (11) 3.2 齿轮齿条转向器的设计计算 (11) 3.3 转向横拉杆的运动分析[9] (21) 3.4 转向器传动受力分析 (22) 4 转向传动机构优化设计 (24) 4.1传动机构的结构与装配 (24) 4.2 利用解析法求解出外轮转角的关系 (25) 4.3 建立目标函数 (27) 5 控制系统设计 (29) 5.1 电助力转向系统的助力特性 (29) 5.2 EPS电助力电动机的选择 (30)

本科毕业设计(论文) 5.3 控制系统框图设计 (31) 结论 (32) 致谢 (34) 参考文献 (35)

1 引言 1.1汽车转向系统简介 汽车转向系统,顾名思义是为了能够使车辆按照驾驶员的意愿向左或者向右转弯或者直线行驶。转向装置有很多种,也一直在经历一个循序渐进不断更新不断创新的过程。从发明家本茨发明汽车的初期,转向系统知识最简单的形式来转向,其机构为单纯的扶把式,没有助力,所以笨重,费力,以及行驶状态不稳定。从在原始的雏形开始,各国人士不断创新改革,到现在为止,汽车转向系统的应用按先后顺序可以分为:机械转向装置、液压助力转向装置、电子控液压助力转向系统、电助力转向系统、四轮转向系统、主动前轮转向系统和线控转向系统[1]目前市场大部分中低档轿车采用的液压式转向器,当然电控的也很常见,所以在该种系统的转向器技术的发展如今已经遇到了瓶颈。随着人们对乘车舒适,节能,安全,稳定的期望,电控液压式转向系统逐渐取代了先前的版本,但随着科技的进步,越来越多的科学家期待有路感的转向系统问世,所以流量阀式液压助力转向器出现了,在不同车速下,驾驶员手握方向盘,感觉到了路感的存在,助力特性曲线描述的就是“路感”,但是美中不足的是这种液压式转向器依然存在很多缺陷,电机,液压泵,转向器,流量阀等等转向器在发动机旁的布置问题又出现了,还有就是液压油的泄漏问题越来越的突出尖锐。电助力EPS (Electronic Power steering system)是在纯机械转向机构的前提下,设计加装了扭矩和车速等信号传感器、电子控制单元和转向助力装置等[2]。所以电助力式转向器弥补了上述的不足,而且节能环保,易于线性控制,所以现在很多研究人员把目光转向了电助力式转向机,瞬时其成为了国际汽车工业转向系统新的研究主题,且这种系统也正在慢慢实现整车量产状态。

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 部 件 名 称 传动效率(%) 4-6档变速器 95 辅助变速器(副变速器或分动器) 95 单级减速主减速器 96 传动轴万向节 98 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 轮胎种类 滚动阻力系数 中重型载货车用子午线轮胎 0.007-0.008 中重型载货车用斜交轮胎 0.010-0.012 轻型载货车用子午线轮胎 0.008-0.009 轻型载货车用斜交轮胎 0.010-0.012 轿车用子午线轮胎 0.012-0.017 轿车用斜交轮胎 0.015-0.025 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

汽车转向器毕业设计

汽车转向器毕业设计 【篇一:毕业设计汽车转向系统】 摘要 本设计课题为汽车前轮转向系统的设计,课题以机械式转向系统的齿轮齿条式转向器设计及校核、整体式转向梯形机构的设计及验算 为中心。首先对汽车转向系进行概述,二是作设计前期数据准备, 三是转向器形式的选择以及初定各个参数,四是对齿轮齿条式转向 器的主要部件进行受力分析与数据校核,五是对整体式转向梯形机 构的设计以及验算,并根据梯形数据对转向传动机构作尺寸设计。在转向梯形机构设计方面。运用了优化计算工具matlab进行设计 及验算。matlab强大的计算功能以及简单的程序语法,使设计在参数变更时得到快捷而可靠的数据分析和直观的二维曲线图。最后设 计中运用autocad和catia作出齿轮齿条式转向器的零件图以及装配图。 关键词:转向机构,齿轮齿条,整体式转向梯形,matlab梯形abstract the title of this topic is the design of steering system. rack and pinion steering of mechanical steering system and integrated steering trapezoid mechanism gear to the design as the center. firstly make an overview of the steering system. secondly take a preparation of the data of the design. thirdly, make a choice of the steering form and determine the primary parameters and design the structure of rack and pinion steering. fourthly, stress analysis and data checking of the rack and pinion steering. fifthly, design of steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of steering linkage. in the design of integrated steering trapezoid mechanism the computational tools matlab had been used to design and checking of the data. the powerful computing and intuitive charts of the matlab can give us accurate and quickly data. in the end autocad and catia were used to make a rack and pinion steering parts diagrams and assembly drawings keywords: steering system,mechanical type steering gear and gear rack, integrated steering trapezoid,matlab trapezoid

汽车设计说明书_-)K

目录 目录 (1) 摘要 (3) 1 汽车的总体设计 (1) 1.1汽车总体设计的一般顺序 (1) 1.2布置形式 (4) 1.3轴数选择 (4) 1.4驱动形式的选择 (4) 2 载货汽车主要技术参数的确定 (5) 2.1 汽车质量参数的确定 (5) 2.1.1汽车载荷质量的确定 (5) 2.1.2 整车整备质量的预估 (5) 2.1.3 汽车总质量的确定 (5) 2.1.4 汽车的轴荷分配 (5) 2.2汽车主要尺寸的确定 (5) 2.2.1汽车的主要尺寸 (5) 2.2.2 汽车的外廓尺寸 (6) 2.3汽车主要性能参数的确定 (6) 2.3.1 汽车动力性参数的确定 (6) 2.3.2 汽车燃油经济性参数的确定 (6) 2.3.3 汽车通过性性参数的确定 (6) 3 货汽车主要部件的选择及布置 (7) 3.1 发动机的选择与布置 (7) 3.1.1 发动机型式的选择 (7) 3.1.2 发动机主要性能指标的选择 (7) 3.2轮胎的选择 (10) 3.3离合器的选择 (10) 3.4万向传动轴的选择 (10) 3.5主减速器的选择 (10) 4 总体布置的计算 (11) 4.1 轴荷分配及质心位置计算 (11) 4.1.1平静时的轴荷分配及质心位置 (11) 4.1.2 水平路面上汽车满载行驶时各轴的最大负荷计算 (13) 4.1.3 制动时各轴的最大负荷计算 (14) 4.2 驱动桥主减速器传动比的选择 (15) 4.3 变速器传动比的选择 (15) 4.3.1 变速器一档传动比的选择 (15) 4.3.2 变速器档数和各档传动比的选择 (15) 5 汽车动力性及燃油经济性计算 (17) 5.1 汽车动力性能的计算 (17) 5.1.1驱动平衡的计算 (17) 5.1.2动力特性的计算 (19) 5.2功率平衡计算 (22)

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

汽车主动转向系统设计及控制特性研究

汽车主动转向系统设计及控制特性研究 摘要:随着汽车性能的逐渐提升,人们对汽车驾驶过程中的稳定性、安全性和 操作灵活性提出了更高的要求,因此,在汽车研究的过程中,必须要保证汽车的 相关性能满足人们对汽车越来越高的要求,而汽车主动转向系统的应用不仅能够 保证汽车具备一定的操作灵活性,还能够保证汽车在驾驶的过程中具备良好的稳 定性和安全性,所以探究汽车主动转向系统的设计流程,如何能够更好的对汽车 主动转向系统进行控制,是当前汽车转向系统设计相关负责人员的主要责任和义务。基于此,本文通过分析汽车主动转向系统的相关概念,探究如何进行更好的 设计和控制,从而提高人们驾车过程中的安全性和稳定性。 关键词:汽车;主动;转向系统;设计;控制特性 引言:汽车主动转向系统的设计是基于智能化技术和机械技术应用下发展出来 的汽车智能化系统,通过这一系统的设置,可以保证驾车的舒适性,在一定程度 上提升了车辆的整体实用性能。由于传统的转向系统不具备主动性,汽车在速度 较低进行转向的过程中,需要驾驶人员转向的幅度相对较大,而在高速进行转向 的过程中,由于转向的灵敏度增加,所以导致驾驶员给予很小的转动动作,就可 以保证转动的角度相对较大,从而使整个汽车的安全性得不到良好的保障,因此 传统的汽车转向系统使汽车的使用性能大大降低,并且也不能够保证驾驶人员和 车内其他乘客的安全,所以,在汽车中设置主动转向系统是当前改善汽车性能的 重要措施。 一、主动转向系统与传统转向系统相比具备的优点 与传统的转向系统相比,智能主动转向系统具备的优点主要体现在以下几个 方面,第1个方面是由于传统的转向系统必须驾驶人员实施一定的操作,但是可 能会由于驾驶人员出现疲劳驾驶或者分神的现象,在应该转向时没有进行转向操作,从而引起交通事故以及危害人身安全。而主动转向系统可以根据驾驶的实际 情况保证转向系统在应该转向时进行转向操作,从而在一定程度上增加了驾车的 安全性。同时两种转向系统在转动角度方面的对比也体现出了主动转向系统的优势,例如在低速行驶的过程中,传统转向系统的转动方向与方向盘的转动方向不 一致会增大转动的角度,而主动传动系统中方向盘的转动方向和转动电机的转动 方向基本一致,所以,可以在一定程度上减小转动的角度。在高速行驶时,由于 传统转动电机的方向和方向盘的方向一致,所以方向盘转动的幅度较小时,汽车 转动的角度也相对较大,因此增加了危险性,而主动转动系统中,转动电机的方 向在高速行驶时会和方向盘的转动方向不一致,从而在一定程度上增加了操作人员,转动方向盘的转动角度,因此也间接的提升了汽车的行驶安全性。第2个方 面是主动式转向系统和传统的转向系统相比在纠正转动方向时也有一定的优势, 例如主动式转向系统,能够保证汽车在直线行驶的过程中可以更加稳定,并且通 过计算的方式计算出相应的车速,以及通过车轮上的传感器可以监测到车辆上的 转向轮是否具备一定的稳定性,而传统的转向系统必须人为设置相应的传动方向,并且还需要根据行车经验判断车辆的转动角度,从而在一定程度上降低了车辆行 驶的安全性。总而言之,主动转向系统与传统转向系统相比,不仅能够保证汽车 具备一定的安全性和稳定性,还能够帮助驾驶人员进行危险的判定,从而保证驾 驶人员的安全。 二、汽车主动转向系统的设计 要想明确汽车主动转向系统的实际设计方案,必须要了解汽车主动转向系统

汽车电气系统设计说明书

电气系统设计说明书 一、设计依据 根据奇瑞MMPV运动型多功能轿车开发目标的要求及其系列配置的要求,参考国内同类型的车型,结合奇瑞公司的生产制造能力进行开发设计。 二、达到目标 该车型的电气设计从按整车的最高配置进行设计,设计过程中把所有的电气选装件都纳入设计范围内,从而满足该车型的从经济型到豪华型的系列配置。 三、设计方案 根据设计任务书的要求,结合电气系统的分类,就整车的电气系统进行以下方案的确定。首先把电气系统按基本配置和选装配置进行分类确定。 (一)、基本配置: 1、电源启动系 电源起动系主要是确定起动机、蓄电池、发电机、电压调节器等电器件的类型和型号型号和规格大小。 (1)起动机的确定 a、起动机类型的确定 首先根据选定的发动机确定启动机(如果发动机未带启动机),起动机按控制装置一般分为: ①接操纵式起动机发动机 ②电磁操纵式起动机 我们选用流行的电磁操纵式起动机。 b、起动机功率的确定 选定后我们可以根据以下的计算公式确定启动机的大小: P=Mn/716.2(马力) (1马力=735W) 起动机的输出功率P可以通过测量电枢轴上的输出转矩M和电枢的转速n来确定。 M是发动机的起动阻力矩,单位Kg.m(1Kg.m=9.8N.m),也可以通过发动机的工作容积V求出,其经验公式为: 汽油发动机:M=(3.5~4)V 但目前的发动机大多直接配带起动机,因此需要选型的较少。

(2)蓄电池的确定 a、蓄电池类型的确定 蓄电池的主要作用是向起动机提供大的起动电流、整车用电器供电和在发电机发电时蓄能。蓄电池分为普通蓄电池和改进型铅(酸)蓄电池。我们根据该车型的特点选用免维护铅蓄电池。 b、蓄电池容量的确定: 现起动机的额定功率为P S k W,根据经验公式 Q20=(500-600)P S/U得知, Q20MAX=500×P S /12×735= (A.h) Q20MIN=600×P S /12×735= (A.h) 根据初步选用的DA465 16M/C1发动机我们可以却动确定起动机功率为0.8k W。蓄电池容量为45A.h (3)发电机的确定 a、发电机类型的确定 发电机是汽车的主要电源,其功用是:在发动机正常工作转速范围内,向汽车的用电设备(起动机除外)供电,当蓄电池的电量不足时向蓄电池供电。目前汽车上的发电机大都采用交流发电机,交流发电机可分为普通型和改进型两大类。改进型的如内装调节器(整体式)、带泵型、永磁型等。根据该类型车的特点及整车电器件的情况我们选用整体式交流发电机(JFZ型)。 b、发电机功率大小的确定 根据整车用电设备功率的大小,为了保证整车的电量平衡,我们需要确定发电的功率大小,此外还要考虑发电机的大小,使发电机能得到合理的利用。 发电机的功率确定主要按以下方式进行: 1)、首先测定所有持久耗电和长期耗电电器在14V时的功率需用量。根

相关主题
文本预览
相关文档 最新文档