遥感应用模型6植被3初级生产力
- 格式:ppt
- 大小:771.50 KB
- 文档页数:115
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010976999.9(22)申请日 2020.09.17(71)申请人 中国科学院空天信息创新研究院地址 100094 北京市海淀区邓庄南路9号(72)发明人 吴文瑾 李新武 (74)专利代理机构 北京得信知识产权代理有限公司 11511代理人 孟海娟 阿苏娜(51)Int.Cl.G06F 30/20(2020.01)(54)发明名称一种全球通用植被总初级生产力遥感指数估算方法(57)摘要本发明公开一种全球通用植被总初级生产力遥感指数估算方法。
该方法基于全球通用植被总初级生产力遥感指数模型,采用遥感数据对陆地植被GPP实现大范围的快速估算。
拟合效果显著优于目前的NIRv指数获取的结果,而且该指数模型表现在不同植被类型和纬度之间有较好的一致性,可以准确追踪不同植被类型的物候变化,同时不易受雪的影响。
权利要求书2页 说明书5页 附图4页CN 112149295 A 2020.12.29C N 112149295A1.一种全球通用植被总初级生产力遥感指数估算方法,其特征在于,包括以下步骤:提出全球通用植被总初级生产力遥感指数模型,模型的计算公式为:GPP=A×CC×PAR×Ev+B,其中,A=0.15,B=1.3,为回归模型的经验系数,该系数全球统一,不必随不同的植被类型和地理位置进行调整;CC代表植被覆盖度;PAR是总体下行短波辐射;Ev是植被对光合有效辐射的总体转化效率,为吸收效率和利用效率的乘积;将CC通过归一化植被指数NDVI进行近似;吸收效率通过近红外波段反射率-NIR进行表征,利用效率通过叶绿素含量占总色素含量的比例-Rchl进行表征,则该模型可以进一步推导为:GPP=A×NDVI×PAR×NIR×Rchl+B;利用MODIS反射率数据分别计算每日的NDVI,NIR和Rchl均值,并通过相应产品获取PAR;基于所述全球通用植被总初级生产力遥感指数模型求得最终的植被总初级生产力值。
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201610719136.7(22)申请日 2016.08.25(71)申请人 三亚中科遥感研究所地址 572029 海南省三亚市天涯镇黑土村6号(72)发明人 于博 陈方 (51)Int.Cl.G06N 99/00(2010.01)(54)发明名称利用机器学习的植被净初级生产力遥感估算方法(57)摘要本发明公开了一种基于多源遥感产品,通过机器学习构建植被净初级生产力(Net Primary Production,NPP)估算模型的方法,该方法针对海量数据产品的分析特点,提出采用机器学习的方法模拟和构建全球植被净初级生产力估算模型,同时基于该模型计算了各个相关特征产品在植被净初级生产力估算中的重要性。
主要分四步:(1)收集NPP空间观测产品和NPP相关变量的空间观测产品;(2)数据归一化处理;(3)训练NPP 估算模型;(4)评估各个因素在估算NPP模型中的重要性。
该方法为利用多空间观测数据开展植被净初级生产力的估算提供了一种新思路。
权利要求书1页 说明书6页 附图2页CN 106372730 A 2017.02.01C N 106372730A1.一种基于多源遥感产品,通过机器学习构建植被净初级生产力(Net Primary Production,NPP)估算模型的方法,其特征在于,利用机器学习模型客观的学习NPP相关变量与NPP空间观测值之间存在的关系,再根据各个变量对估算得到的NPP值与该变量被替换为0时得到的NPP值之差衡量其对NPP估算过程中产生的影响大小,具体实施方案如下:(1)收集NPP空间观测产品和NPP相关变量的空间观测产品N P P 空间观测产品主要采用M O D I S (M O d e r a t e -r e s o l u t i o n I m a g i n g Spectroradiometer)卫星产品作为NPP的实际值,NPP相关变量的空间观测产品主要包括OMI(Ozone Monitoring Instrument)传感器提供的气溶胶指数,大气二氧化氮浓度以及紫外线辐照度;MODIS传感器提供的火灾辐射强度(FRP,Fire Radiative Power)、地表温度、湿度、土壤湿度、光谱植被指数和土地利用类型;AIRS(Atmospheric Infrared sounder)传感器提供的大气二氧化碳浓度;GES DISC (Goddard Earth Sciences Data and Information Services Center)平台提供的植被高度,土壤温度和净全波辐射(Net all-wave radiation)产品以及BP(英国石油公司)2015全球能源统计报告全球能源市场统计数据中的人类主要能源与可再生能源消耗量与二氧化碳排放量数据;(2)数据归一化处理将每景相关遥感产品值都归一化到0-1,避免不同变量产品的值因单位不同,差异较大;(3)训练NPP估算模型采用随机森林方法训练NPP估算模型,其中选取80%的数据为训练数据,其他数据为测试数据;(4)评估各个特征变量在估算NPP模型中的重要性基于训练好的模型计算每个特征变量对估算NPP的重要性,通过计算在各个特征变量值为零时随机森林模型的估算结果与正常训练后的模型得到的估算结果之间的差而得到。
遥感定量反演算法研讨会128基于遥感资料估算全球植被总初级生产力袁文平1*,刘曙光2(1北京师范大学全球变化与地球系统科学研究院,北京,100875; 2美国地质勘探局地球资源观测与科学研究中心)摘要:植被初级生产力是生态系统碳循环的开始,对其的模拟直接关系到对生态系统碳收支评估的准确性,是全球碳循环研究的关键议题之一。
以全球涡度相关碳通量观测资料为基础,我们发展了一个简单的光能利用率模型(EC-LUE模型),用于估算陆地生态系统植被总初级生产力(GPP)。
该模型的驱动变量仅为:归一化植被指数、光合有效辐射、空气温度和波文比。
利用全球范围内近50个涡相关站点的验证表明,EC-LUE模型可以解释超过70%的GPP变化,能够很好的刻画GPP的季节和年际变化,其模拟能力超过了MODIS-GPP产品。
基于MODIS的植被指数产品和全球气象数据,我们应用EC-LUE模型估算了全球范围的GPP变化。
结果显示,全球年平均GPP为125Pg C,与其它同类研究结果极为接近。
全球GPP表现出了极强的空间和时间变异性。
Global estimate of vegetation gross primary production based on MODIS and global meteorology dataYUAN Wen-ping, LIU Shu-guang(College of Global Change and Earth System Science, Beijing Normal University, Beijing100875, China;2 United States Geological Survey)*通讯作者简介:袁文平联系方式:wyuan@。
8 卫星遥感在生态与农业气象中的应用8.1 目的与意义卫星遥感集中了空间、电子、光学、计算机、通讯和地球科学等学科的最新成就,在地球系统科学、资源与环境科学以及农业、林业、地质、水文、城市与区域开发、海洋、气象、测绘等科学和国民经济的重大领域发挥着越来越大的作用。
随着社会的开展,我国正面临着日益严重的环境与资源问题,这个问题将关系到国民经济的持续开展。
因此,遥感技术已被列为国家90年代国民经济开展的35项关键技术之一。
遥感技术在解决我国资源与环境问题、促进国民经济持续开展的作用是:(1) 为制定国民经济开展方案提供资源与环境动态根底数据;(2) 为国家重大的资源、环境突发性事件提供及时准确的监测评估数据,保证国家对这些重大问题作出正确、快速的反响;(3) 生物量估测〔包括农牧业产量、初级生产力估计〕;(4)为国家的重要经济领域提供信息效劳。
自1961年美国第1颗气象卫星问世以来,已有4800多颗各类卫星被送入轨道。
按运行轨道区分为低轨道卫星、中高轨道卫星、地球同步卫星、地球静止卫星、太阳同步卫星、大椭圆轨道卫星和极轨道卫星。
按用途一般分为科学卫星、应用卫星和技术试验卫星。
其中,应用卫星直接为国民经济和军事效劳的卫星,按用途可细分为通信卫星、气象卫星、侦察卫星、导航卫星、测地卫星、地球资源卫星、截击卫星和多用途卫星等。
在应用卫星中,对地观测卫星有气象卫星、地球资源卫星、侦察卫星。
这些卫星可以直接效劳于气象、农林、地质、水利、测绘、海洋、环境污染和军事侦察等方面。
它们许多采用太阳同步轨道〔如中巴一号资源卫星、风云1系列卫星〕,也有使用静止轨道〔如风云2系列卫星〕和其他轨道。
接收、处理卫星遥感信息,实时制作各类应用效劳产品,向政府和有关部门提供效劳。
学习国外卫星遥感应用的先进技术,研究解决监测应用中的有关技术问题,将卫星遥感技术应用在省自然资源监测和农业生产效劳中,对于研究生态和农业,扩展对它的认识,明确自然界与人类的相互影响,了解我们赖以生存的自然环境。
遥感模型在碳储量研究中发挥着重要的作用。
通过利用遥感技术获取的卫星数据,可以对地球表面的植被类型、覆盖面积以及生长状态进行监测和分析。
这些信息可以用来估计森林和植被的碳储量。
遥感模型通常基于光谱特征和植被指数来推断植被的生物物理参数,如叶面积指数(Leaf Area Index,LAI)、净初级生产力(Net Primary Productivity,NPP)等。
这些参数与植被的生长状况和碳储量密切相关。
例如,LAI反映了植被的叶片面积,而NPP表示单位面积内植被所固定的碳量。
遥感模型还可以利用雷达技术来获取地表高度信息,从而实现对森林垂直结构的观测。
森林的垂直结构包括树木高度、枝干密度等参数,这些参数与森林的碳储量紧密相关。
通过将雷达数据与其他遥感数据相结合,可以更准确地估计森林的碳储量。
此外,遥感模型还可以利用热红外遥感数据来推断土壤有机碳含量。
土壤中的有机碳是碳循环的重要组成部分,对于全球碳储量的估计至关重要。
通过分析热红外遥感数据中的土壤表面温度和辐射信息,可以推断土壤中有机碳的含量。
综上所述,遥感模型在碳储量研究中具有广泛应用。
通过利用遥感技术获取的地表信息,结合相应的模型和算法,可以实现对森林、植被和土壤的碳储量进行有效监测和估算,为碳循环和气候变化研究提供重要的科学依据。
1。
植物生态学报2007,31(3)413~424ΞJournalofPlantEcology(formerlyActaPhytoecologicaSinica)中国陆地植被净初级生产力遥感估算朱文泉潘耀忠张锦水3(北京师范大学资源学院,环境演变与自然灾害教育部重点实验室,北京100875) 摘要该文在综合分析已有光能利用率模型的基础上,构建了一个净初级生产力(NPP)遥感估算模型,该模型体现了3方面的特色:1)将植被覆盖分类引入模型,并考虑植被覆盖分类精度对NPP估算的影响,由它们共同决定不同植被覆盖类型的归一化植被指数(NDVI)最大值;2)根据误差最小的原则,利用中国的NPP实测数据,模拟出各植被类型的最大光能利用率,使之更符合中国的实际情况;3)根据区域蒸散模型来模拟水分胁迫因子,与土壤水分子模型相比,这在一定程度上对有关参数实行了简化,使其实际的可操作性得到加强。
模拟结果表明,1989~1993年中国陆地植被NPP平均值为3.12PgC(1Pg=1015g),NPP模拟值与观测值比较接近,690个实测点的平均相对误差为4.5%;进一步与其它模型模拟结果以及前人研究结果的比较表明,该文所构建的NPP遥感估算模型具有一定的可靠性,说明在区域及全球尺度上,利用地理信息系统技术将遥感数据和各种观测数据集成在一起,并对NPP模型进行参数校正,基本上可以实现全球范围不同生态系统NPP的动态监测。
关键词生物量遥感模拟NPP NDVI中国ESTIMATIONOFNETPRIMARYPROFVEGETATIONBASEDONREMOTEZHUWe n2Quan,PANYao2Zhong,andKeyLaboratoryofEnvironmentalChangeofof,CollegeofRes ourcesScienceandTechnology,BeijingNormalUniversity,Beijing100875Abstract (NPP)isakeycomponentoftheterrestrialcarboncycle.Modelsimulationistoestimateregional andglobalNPPgivendifficultiestodirectlymeasureNPPatsuchspatialscales.AnumberofNP Pmodelshavebeendevelopedinrecentyearsasresearchissuesrelatedtofoodsecurityandbioti cresponsetoclimaticwarminghavebecomemorecompelling.However,largeuncertain2tiess tillexistbecauseofthecomplexityofecosystemsanddifficultiesindeterminingsomekeymode lparame2ters.Methods WedevelopedanestimationmodelofNPPbasedongeographicinformationsystem(GIS)andr e2motesensing(RS)technology.Thevegetationtypesandtheirclassificationaccuracyaresim ultaneouslyintro2ducedtothecomputationofsomekeyvegetationparameters,suchasthemax imumvalueofnormalizeddiffer2encevegetationindex(NDVI)fordifferentvegetationtypes. Thiscanremovesomenoisefromtheremotesens2ingdataandthestatisticalerrorsofvegetation classification.ItalsoprovidesabasisforthesensitivityanalysisofNPPontheclassificationaccu racy.Themaximumlightuseefficiency(LUE)forsometypicalvegetationtypesinChinaissim ulatedusingamodifiedleastsquaresfunctionbasedonNOAA/AVHRRremotesensingdataan dfield2observedNPPdata.ThesimulatedvaluesofLUEaregreaterthanthevalueusedintheCA SAmodelandlessthanthevaluessimulatedwiththeBIOME2BGCmodel.Thecomputationoft hewaterrestrictionfactorisdrivenwithgroundmeteorologicaldataandremotesensingdata,an dcomplexsoilparametersareavoided.Resultsarecomparedwithotherstudiesandmodels. Importantfindings ThesimulatedmeanNPPinChineseterrestrialvegetationfrom1989-1993is3.12Pg15C(1Pg=10g).ThesimulatedNPPisclosetotheobservedNPP,andthetotalmeanrelativeerro ris4.5%for690NPPobservationstationsdistributedinthewholecountry.Thisillustratestheutilit yofthemodelfortheestimationofterrestrialprimaryproductionoverregionalscales. Keywords biomass,remotesensing,simulation,NPP,NDVI,China收稿日期:2006202215接受日期:2006206224基金项目:国家自然科学基金项目(40371001)和北京师范大学青年基金项目3通讯作者Authorforcorrespondence E2mail:zhangjsh@E2mailofthefirstauthor:zhuwq75@414植物生态学报31卷植被生产力是人类生活所需食物、原料及燃料的来源。
基于CASA模型的常州市森林植被净初级生产力及碳汇估算周崴;耿若楠
【期刊名称】《科技和产业》
【年(卷),期】2024(24)11
【摘要】森林植被在碳循环过程中发挥着关键作用,其碳汇分析对于城市生态系统管理有重要意义。
基于多种卫星遥感数据、林地分布以及气象资料,结合
CASA(Carnegie-Ames-Stanford Approach)模型,对2022年常州市森林碳汇进行模拟估算,综合分析其时空变化特征及驱动机制。
结果表明:2022年常州市森林年度碳汇量总体达29.94万t,4—8月碳汇量较高;不同类型林地碳汇能力不同,乔木林碳汇能力较强,7月碳汇量最高可达80 gC/m2;气象因素对于森林碳汇具有相关影响,其中温度的影响要高于降水量。
【总页数】9页(P202-210)
【作者】周崴;耿若楠
【作者单位】江苏省常州环境监测中心;江苏省环境保护水环境生物监测重点实验室;大地新亚(北京)技术有限公司
【正文语种】中文
【中图分类】S771.8
【相关文献】
1.应用CASA模型估算浙江省植被净初级生产力
2.基于CASA模型的瓦屋山林场植被净初级生产力估算
3.基于 CASA模型的云南省植被净初级生产力遥感估算
4.安徽省植被净初级生产力估算--基于改进的CASA模型
因版权原因,仅展示原文概要,查看原文内容请购买。