机械原理大作业——凸轮机构运动分析
- 格式:doc
- 大小:1.06 MB
- 文档页数:11
机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
大作业(二)凸轮机构设计题号:6班级:姓名:学号:同组者:成绩:完成时间:目录一凸轮机构题目要求 (1)二摆杆的运动规律及凸轮轮廓线方程 (2)三计算程序 (3)四运算结果及凸轮机构图 (9)4.1 第一组(A组)机构图及计算结果 (9)4.2 第二组(B组)机构图及计算结果 (14)4.3 第三组(C组)机构图及计算结果 (19)五心得体会 (24)第一组(A组) (24)第二组(B组) (24)第三组(C组) (24)六参考资料 (25)附录程序框图 (26)一凸轮机构题目要求(摆动滚子推杆盘形凸轮机构)题目要求:试用计算机辅助设计完成下列偏置直动滚子推杆盘形凸轮机构或摆动滚子推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一摆动滚子推杆盘形凸轮机构的已知参数题号初选的基圆半径R0/mm机架长度Loa/mm摆杆长度Lab/mm滚子半径Rr/mm推杆摆角φ许用压力角许用最小曲率半径[ρamin][α1] [α2]A 15 60 55 10 24°35°70°0.3RrB 20 70 65 14 26°40°70°0.3RrC 22 72 68 18 28°45°65°0.35Rr 要求:1)凸轮理论轮廓和实际轮廓的坐标值2)推程和回程的最大压力角,及凸轮对应的转角3)凸轮实际轮廓曲线的最小曲率4)半径及相应凸轮转角5)基圆半径6)绘制凸轮理论廓线和实际廓线7)计算点数:N:72~120推杆运动规律:1)推程运动规律:等加速等减速运动2)回程运动规律:余弦加速度运动二摆杆的运动规律及凸轮轮廓线方程1)推程:1,运动规律:等加速等减速运动;2,轮廓线方程:A:等加速推程段设定推程加速段边界条件为:在始点处δ=0,s=0,v=0。
在终点处。
整理得:(注意:δ的变化范围为0~δ0/2。
凸轮机构运动原理解析凸轮机构是一种机械传动装置,广泛应用于各种机械系统中,例如汽车发动机、工业机械和机床等。
本文将对凸轮机构的运动原理进行解析,以帮助读者更好地理解其工作原理。
一、凸轮机构的定义和构成凸轮机构是由凸轮和从动件(如滑块、摇臂等)组成的传动装置。
凸轮是一种特殊形状的轮轴,其外形常为椭圆或心形,具有多个凸起部分。
从动件则通过与凸轮接触,实现凸轮机构的运动传动。
二、凸轮机构的工作原理凸轮机构的工作原理基于凸轮的运动和从动件的运动响应之间的关系。
一般来说,凸轮的运动可以是旋转、往复或其他特殊的轨迹形式,这取决于具体的应用场景。
旋转运动的凸轮机构:当凸轮进行旋转运动时,从动件跟随凸轮的轨迹做往复运动。
这种机构常用于各类发动机的气门传动系统中。
例如,汽车发动机中的凸轮轴通过凸轮的旋转来驱动气门的开闭。
往复运动的凸轮机构:当凸轮进行往复运动时,从动件以一定的轨迹做复杂运动。
这种机构常用于机床和工业机械中。
例如,磨床的主轴就是通过往复运动的凸轮来驱动的。
其他特殊形式的凸轮机构:除了旋转和往复运动,凸轮还可以设计成其他特殊的轨迹形式,以满足特定的运动需求。
例如,摇杆机构中的摇杆就是一种特殊的凸轮,它通过摇杆的旋转运动来驱动从动件。
三、凸轮机构的优缺点凸轮机构具有以下几点优点:1. 可实现复杂的运动传动:由于凸轮可以设计成各种复杂的轨迹形式,因此凸轮机构可以实现各种复杂的运动传动需求。
2. 传动精度高:凸轮机构的传动精度高,能够满足精密机械装置的要求。
3. 结构简单可靠:凸轮机构的结构相对简单,不容易出现故障,具有较高的可靠性。
然而,凸轮机构也存在一些缺点:1. 摩擦和磨损问题:由于凸轮和从动件之间的接触,会产生摩擦和磨损,这可能会限制凸轮机构的使用寿命。
2. 噪音和振动:凸轮机构在工作时可能会产生噪音和振动,这对于要求低噪音和低振动的装置来说可能是一个问题。
四、凸轮机构的应用领域凸轮机构广泛应用于各种机械系统中,包括但不限于以下几个领域:1. 汽车工业:凸轮机构被广泛应用于汽车发动机的气门传动系统,实现气门的开闭控制。
机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=sω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为:}{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
机械原理大作业凸轮
机械原理大作业,凸轮。
凸轮是机械传动中常用的一种机构,它通过不规则形状的轮廓
来实现对运动部件的控制。
在机械原理中,凸轮通常被用于将旋转
运动转化为直线运动,或者实现复杂的运动轨迹控制。
本文将对凸
轮的结构、工作原理以及应用进行介绍。
首先,凸轮的结构可以分为凸轮轴、凸轮轮廓和凸轮座三个部分。
凸轮轴是凸轮的主体,它通常由钢材或铸铁制成,具有一定的
硬度和强度。
凸轮轮廓是凸轮的关键部分,它的形状决定了凸轮的
运动规律。
凸轮座则是凸轮的支撑部分,用于将凸轮固定在机器上。
这三个部分共同构成了凸轮的基本结构。
其次,凸轮的工作原理是利用凸轮轮廓的不规则形状来控制运
动部件的运动。
当凸轮轴旋转时,凸轮轮廓会推动凸轮座上的运动
部件,使其产生直线运动或者复杂的运动轨迹。
通过合理设计凸轮
轮廓的形状,可以实现各种不同的运动控制效果。
最后,凸轮在机械传动中有着广泛的应用。
它常常被用于发动
机的气门控制系统中,通过凸轮的旋转来控制气门的开闭,从而实现发动机的正常工作。
此外,凸轮还被应用于纺织机械、冲压机械等领域,用于控制各种不同的运动部件。
综上所述,凸轮作为机械传动中常用的机构,具有结构简单、工作可靠、应用广泛的特点。
通过合理设计凸轮的结构和轮廓,可以实现对运动部件的精确控制,从而实现各种不同的机械运动。
在未来的机械设计中,凸轮仍然会发挥重要的作用,为各种机械设备的运动控制提供可靠的解决方案。
Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:连杆机构运动分析院系:机械设计制造及其自动化班级:设计者:学号:指导教师:设计时间:一.设计题目设计直动从动件盘形凸轮机构,凸轮机构原始参数 序号 升程(mm) 升程运动角(º) 升程运 动规律升程许用压力角(º) 回程运动角(º)回程运 动规律回程许用压力角(º)远休止角 (º)近休止角 (º) 22 120 90等加等减速 4080等减等加速 70 70120二. 凸轮推杆运动规律1.运动规律(等加速等减速运动) 推程 0450≤≤ϕ2229602ϕπϕ=⎪⎪⎭⎫ ⎝⎛Φ=h s ϕπωϕω2219204=Φ=h v2220219204πωω=Φ=h a 推程 009045≤≤ϕ()222020)2(9601202ϕππϕ--=-ΦΦ-=hh s())2(1920422ϕπωπϕω-=-ΦΦ=h v222219204ωπω-=Φ-=h a2.运动规律(等加速等减速运动) 回程 00200160≤≤ϕ ()[]2222)98(9601202πϕπϕ--=Φ+Φ-Φ-=S h h s ()[])98(1920-4-22πϕωπϕω-=Φ+Φ-Φ=S h v 222219204ωπω-=Φ-=h a回程 00240200≤≤ϕ ()[]222'002)34(9602ϕππϕ-=-Φ+Φ+ΦΦ=S h s ()[])34(1920-4-2'002ϕπωπϕω-=-Φ+Φ+ΦΦ=S h v222219204ωπω=Φ=h a三.推杆位移、速度、加速度线图及凸轮s d ds-φ线图采用VB 编程,其源程序及图像如下: 1.位移:Private Sub Command1_Click()Timer1.Enabled = True '开启计时器 End SubPrivate Sub Timer1_Timer() Static i As SingleDim s As Single, q As Single 'i 作为静态变量,控制流程;s 代表位移;q 代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = is = 240 * (q / 90) ^ 2Picture1.PSet Step(q, -s), vbRedElseIf i >= 45 And i <= 90 Thenq = is = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2)Picture1.PSet Step(q, -s), vbGreenElseIf i >= 90 And i <= 150 Thenq = is = 120Picture1.PSet Step(q, -s), vbBlackElseIf i >= 150 And i <= 190 Thenq = is = 120 - 240 * (q - 150) ^ 2 / 6400Picture1.PSet Step(q, -s), vbBlueElseIf i >= 190 And i <= 230 Thenq = is = 240 * (230 - q) ^ 2 / 6400Picture1.PSet Step(q, -s), vbRedElseIf i >= 230 And i <= 360 Thenq = is = 0Picture1.PSet Step(q, -s), vbBlackElseEnd IfEnd Sub2.速度Private Sub Command2_Click()Timer2.Enabled = True '开启计时器End SubPrivate Sub Timer2_Timer()Static i As SingleDim v As Single, q As Single, w As Single 'i为静态变量,控制流程;q代表角度;w代表角速度,此处被赋予50Picture1.CurrentX = 0Picture1.CurrentY = 0w = 50i = i + 0.1If i <= 45 Thenq = iv = 480 * w * q / 8100Picture1.PSet Step(q, -v), vbRedElseIf i >= 45 And i <= 90 Thenq = iv = 480 * w * (90 - q) / 8100Picture1.PSet Step(q, -v), vbBlack ElseIf i >= 90 And i <= 150 Thenq = iv = 0Picture1.PSet Step(q, -v), vbGreen ElseIf i >= 150 And i <= 190 Then q = iv = -480 * w * (q - 150) / 6400Picture1.PSet Step(q, -v), vbBlue ElseIf i >= 190 And i <= 230 Thenq = iv = -480 * w * (230 - q) / 6400Picture1.PSet Step(q, -v), vbRedElseIf i >= 230 And i <= 360 Then q = iv = 0Picture1.PSet Step(q, -v), vbBlack ElseEnd IfEnd Sub3.加速度Private Sub Command3_Click()Timer3.Enabled = True '开启计时器End SubPrivate Sub Timer3_Timer()Static i As SingleDim a As Single, w As Single, q As Single 'i为静态变量,控制流程;a代表加速度;q代表角度;w代表角速度w = 50Picture1.CurrentX = 0Picture1.CurrentY = 0i = i + 0.1If i <= 45 Thenq = ia = 480 * w ^ 2 / 8100Picture1.PSet Step(q, -a), vbRedElseIf i >= 45 And i <= 90 Thenq = ia = -480 * w ^ 2 / 8100Picture1.PSet Step(q, -a), vbBlackElseIf i >= 90 And i <= 150 Thenq = ia = 0Picture1.PSet Step(q, -a), vbGreenElseIf i >= 150 And i <= 190 Thenq = ia = -480 * w ^ 2 / 6400Picture1.PSet Step(q, -a), vbBlueElseIf i >= 190 And i <= 230 Thenq = ia = 480 * w ^ 2 / 6400Picture1.PSet Step(q, -a), vbRedElseIf i >= 230 And i <= 360 Thenq = ia = 0Picture1.PSet Step(q, -a), vbBlackElseEnd IfEnd Sub4.ds/dq---dsPrivate Sub Command4_Click()Timer4.Enabled = True '开启计时器;建立坐标系Picture1.Scale (-400, -400)-(400, 400)End SubPrivate Sub Timer4_Timer()Static i As SingleDim x As Single, s As Single, q As Single, scaley As Single, t As Single 'i为静态变量,控制流程;x代表位移;s代表纵坐标ds/dq;q代表角度Picture1.CurrentX = 0Picture1.CurrentY = 0scaley = 1t = 3.14 / 180i = i + 0.1If i <= 45 Thenq = i * tx = 194.734 * qs = 240 * (2 * q / 3.14) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 45 And i <= 90 Thenq = i * tx = 194.734 * (3.14 / 2 - q)s = 120 - 97.367 * (3.14 / 2 - q) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 90 And i <= 150 Thenq = i * tx = 0s = 120 * scaleyPicture1.PSet Step(x, -s), vbRedElseIf i >= 150 And i <= 190 Thenq = i * tx = -246.46 * (q - 5 * 3.14 / 6)s = 120 - 123.23 * (q - 5 * 3.14 / 6) ^ 2 Picture1.PSet Step(x, -s), vbRedElseIf i >= 190 And i <= 230 Thenq = i * tx = -246.46 * (23 * 3.14 / 18 - q)s = 123.23 * (23 * 3.14 / 18 - q) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 230 And i <= 360 Thenq = i * tx = 0s = 0Picture1.PSet Step(x, -s), vbRedElseEnd IfEnd Sub四.确定凸轮基圆半径和偏距1. 求切点转角在图中,右侧曲线为升程阶段的类速度-位移图,作直线Dt dt与其相切,且位移轴正方向呈夹角[ 1]=300,则切点处的斜率与直线D t d t的斜率相等,因为kDtdt=tan600,右侧曲线斜率可以表示为:q;q=tan600继而求出切点坐标(337.272,292.084)。
机械原理大作业凸轮机构有关公式凸轮机构是机械传动中常见的一种机构,具有转动曲线的特点,可以将驱动轴的转动运动通过凸轮的滚动轮廓来实现对从动件的相应动作控制。
在凸轮机构的设计和分析中,有一些与凸轮曲线有关的公式是十分重要的。
一、凸轮曲线方程凸轮曲线是指凸轮的滚动轮廓,可以通过数学方法来表示。
常见的凸轮曲线方程有圆弧、椭圆、正弦曲线等。
其中,最常用的是圆弧和直线的组合,这种凸轮曲线被称为简谐凸轮曲线。
简谐凸轮曲线方程可以表示为:y = r (1 - cos(θ - θ0))其中,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮在其中一角度θ的位置的坐标可以通过此公式计算得出。
二、凸轮曲线的导数和导数变化率在凸轮机构的设计和分析中,对凸轮曲线的导数和导数变化率也有相当重要的影响。
凸轮的导数表示了凸轮曲线的斜率,而导数的变化率表示了凸轮曲线的曲率。
凸轮曲线的导数可以表示为:dy/dθ = r sin(θ - θ0)凸轮曲线的导数变化率可以表示为:d²y/dθ² = r cos(θ - θ0)通过对凸轮的导数和导数变化率的计算和分析,可以确定从动件的运动状态和速度变化情况,进而进行凸轮机构的设计和优化。
三、凸轮压力和压力角在凸轮机构中,凸轮和从动件之间存在着压力作用。
对于凸轮的任何一个位置,凸轮所施加的压力可以通过力的分解计算得出,并且可以利用凸轮的转角来表示。
凸轮的压力可以表示为:F = P * r * cos(θ - θ0)其中,P为压力系数,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮的压力角可以表示为:φ = atan(dy/dθ)其中,dy/dθ为凸轮曲线的导数。
凸轮的压力角可以用来描述凸轮的主动件施加力的方向和作用范围,对凸轮机构的设计和分析具有指导意义。
以上是凸轮机构常见的几个重要的公式,通过这些公式可以计算和分析凸轮机构的运动学和动力学性能,为凸轮机构的设计和优化提供指导。
机械原理大作业凸轮设计1. 引言凸轮是一种通过凸起部分的形状变化驱动其他机械部件的旋转元件。
在机械系统中,凸轮被广泛应用于各种传动装置和运动控制系统。
本文档将讨论凸轮的设计原理和方法,并以一个具体的案例进行说明。
2. 凸轮设计原理2.1 凸轮的基本概念凸轮由凸起部分和基座两部分组成。
其中,凸起部分通常称为凸轮型面,它的形状决定了凸轮所能产生的运动规律。
基座是凸轮的固定部分,通常与主轴连接,使凸轮能够旋转。
2.2 凸轮设计的基本要求凸轮设计的目标是实现所需的运动规律。
在设计一个凸轮时,需要考虑以下几个方面:•运动规律:根据具体需求确定凸轮的运动规律,如线性运动、往复运动、旋转运动等。
•周期性:确定凸轮的运动周期,即凸轮的一次完整运动所需的时间。
•加减速:确定凸轮的运动加速和减速过程,以实现平滑的运动过渡。
•载荷和寿命:考虑凸轮所承受的载荷和使用寿命要求,选择适当的材料和结构。
2.3 凸轮设计的方法凸轮设计可以采用基于经验的方法或基于计算机辅助设计(CAD)的方法。
基于经验的方法通常适用于简单的凸轮系统,而复杂的凸轮系统通常需要借助CAD 软件进行设计和分析。
凸轮设计的关键步骤包括:•确定凸轮的运动规律和周期。
•根据凸轮的运动规律计算凸轮型面的形状。
•通过CAD软件创建凸轮的三维模型。
•进行凸轮的运动仿真和动态分析。
•对凸轮进行优化设计,以满足运动要求和结构要求。
3. 案例分析:凸轮驱动往复运动机构3.1 问题描述设计一个凸轮驱动的往复运动机构,要求满足以下条件:•机构的往复运动幅度为20mm。
•机构的往复运动频率为10Hz。
•机构的驱动电机转速为1000rpm。
•机构的凸轮型面应满足正弦形状。
3.2 设计步骤1.确定凸轮的运动规律和周期。
根据往复运动要求,选择正弦运动作为凸轮的运动规律,运动周期为0.1s。
2.计算凸轮型面的形状。
根据凸轮的运动规律和运动周期,计算凸轮型面的形状参数。
3.创建凸轮的三维模型。
二、凸轮机构一、运动分析凸轮的运动分为4个阶段:推程运动、远休程、回程运动、近休程。
该凸轮机构4个阶段的运动角分别为推程运动角90˚、远休止角100 ˚、回程运动角50 ˚、近休止角120 ˚。
推程运动阶段的运动规律为正弦加速度运动,回程运动的运动规律为4-5-6-7多项式运动。
凸轮的简图如图1所示。
图1对该机构进行简单的运动分析:1.升程阶段采用正弦加速度的运动规律,从动件的位移、速度、加速度、压力角的计算公式如下:计算时将相应的量带入公式即可得到。
类速度可以直接将位移方程对凸轮转角ϕ求导得到。
2.远休程阶段的位移不变,与凸轮升程阶段最后的位移相等,速度、加速度则变为0。
3.回程阶段位移、速度、加速度可通过代入4-5-6-7多项式的方程求得。
4.近休程阶段的位移与回程阶段最后的位移相等,且为0,速度、加速度均变为0.二、流程框图图2三、运用VC编程#include<stdio.h>#include<math.h>#define pi 3.141592654 //定义全局变量int main() //主函数{int i,j,k,l;double s; //定义位移量double v; //定义速度量double a; //定义加速度量double r; //定义弧度制角度量double d,o,m,t=40,x1,x2,y1,y2,d1,d2; //定义中间变量double p; //定义角度制角度量double w=1; //定义并角速度量赋值double R=50; //定义基圆半径double e=30; //定义偏距double n; //定义压力角double u; //定义曲率半径double Rr=17; //定义滚子半径并赋值double x,y,X,Y; //定义实际与理论廓线上点的坐标r=0;for(i=0;i<20;i++){s=20/pi*(4*r-sin(4*r));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=80/pi*(1-cos(4*r));v=80/pi*(1-cos(4*r));a=320/pi*sin(4*r);m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/40;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=pi/2;for(j=0;j<5;j++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/9;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(19*pi)/18;for(k=0;k<20;k++){o=(18*r-19*pi)/(5*pi);s=40*(1-35*pow(o,4)+84*pow(o,5)-70*pow(o,6)+20*pow(o,7));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=18*40/5/pi*(-35*4*pow(o,3)+84*5*pow(o,4)-70*6*pow(o,5)+20*7*pow(o,6));v=-80/pi*(140*pow(o,3)-420*pow(o,4)+420*pow(o,5)-140*pow(o,6));a=-160/pi*(420*pow(o,2)-1680*pow(o,3)+2100*pow(o,4)-840*pow(o,5));m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/72;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(4*pi)/3;for(l=0;l<5;l++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+2*pi/15;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}return 0;}四、计算结果处理1.输出数据位移s、速度v、加速度a、类速度ds/dϕ、压力角α、曲率半径ρ(其中曲率半径缺失的数据为太大而不合题意的数据,已将其舍去):表1凸轮轮廓:理论廓线坐标、实际廓线坐标:表22.根据输出数据做出图像:图2图3图4图5图6图7图8。
机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。
表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。
机械原理大作业凸轮凸轮是一种常见的机械传动装置,通过其特殊的轮廓形状和旋转运动,可以实现对连杆机构的运动控制。
在机械原理的学习中,凸轮是一个重要的研究对象,其设计和运用涉及到机械工程、动力学、运动学等多个学科领域。
本文将从凸轮的基本原理、结构特点、工作原理和应用范围等方面进行介绍和分析。
首先,凸轮的基本原理是利用凸轮轮廓的不规则形状,在旋转运动中对连杆机构施加不同的力和运动规律,从而实现对机械装置的运动控制。
凸轮的轮廓可以是圆形、椭圆形、心形等多种形状,根据具体的运动要求和传动方式来设计选择。
凸轮的轮廓形状决定了其在运动中对连杆机构的推动和拉动效果,是凸轮传动的关键。
其次,凸轮的结构特点主要包括凸轮轴、凸轮轮廓和凸轮支撑等部分。
凸轮轴是凸轮的轴心部分,通过轴承和传动装置与动力源相连,实现旋转运动。
凸轮轮廓是凸轮的轮廓外形,根据具体的运动要求和传动方式进行设计和加工。
凸轮支撑是凸轮的固定支撑装置,通常由轴承、轴套和固定座等部分组成,用于支撑和固定凸轮的运动。
凸轮的工作原理是利用凸轮轮廓的不规则形状,在旋转运动中对连杆机构施加不同的力和运动规律,从而实现对机械装置的运动控制。
当凸轮轴转动时,凸轮轮廓与连杆机构发生接触和相互作用,通过凸轮的推动和拉动作用,实现对连杆机构的运动控制。
凸轮的工作原理是基于凸轮轮廓的不规则形状和旋转运动,通过对连杆机构施加不同的力和运动规律,实现对机械装置的运动控制。
最后,凸轮在机械工程中有着广泛的应用范围,常见的应用包括发动机气门控制、机床加工控制、自动化生产线等领域。
在发动机气门控制中,凸轮通过其特殊的轮廓形状和旋转运动,实现对气门的开启和关闭,从而控制气缸内气体的进出。
在机床加工控制中,凸轮通过其特殊的轮廓形状和旋转运动,实现对工件的加工和定位,从而实现精密加工和高效生产。
在自动化生产线中,凸轮通过其特殊的轮廓形状和旋转运动,实现对工件的输送和定位,从而实现自动化生产和装配。
凸轮机构机械原理凸轮机构是一种重要的动力机构,常被用于驱动各种机械传动机构,如进气门、凸轮磨床等。
它是由凸轮、滑块、连杆等零件组成的,通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。
凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在许多机械装置中得到了广泛应用。
凸轮机构的工作原理是凸轮的凸顶腔和滑块之间的相互作用。
常见的凸轮形状主要有圆形、椭圆形和正弦形等,在机械传动中起到不同形式的转动和直线动作。
在凸轮机构中,凸轮通过旋转或者平行移动来改变滑块的运动状态,使其在各个工作阶段完成不同的工作。
凸轮机构的运动是由凸轮的运动形状和滑块的连接方式共同决定的。
滑块的运动有直线运动和曲线运动两种形式。
当凸轮为圆形或椭圆形时,滑块呈现直线运动,这种凸轮机构被称为滚子机构;当凸轮为正弦形时,滑块呈现曲线运动,这种凸轮机构被称为滑块机构。
凸轮机构的滑块运动可分为快速行程和慢速行程两个阶段,通过凸轮的不同形状设计,可以实现不同的行程和速度要求。
凸轮机构的传动效果可靠并且具有一定的精度,这主要是由于滑块的运动轨迹是凸轮形状决定的。
滑块与凸轮之间的配合要求较高,一般要求其紧密配合,并采用润滑措施以减少磨损和噪声。
为了保证凸轮机构的正常运行,一般还需要加装一些辅助装置,如导向装置、回程装置等。
凸轮机构在应用中有很多种工作形式,如单凸轮、双凸轮、三凸轮等。
在设计凸轮机构时,需要考虑到工作的特点和要求,选择合适的凸轮形状和运动轨迹,以及相应的滑块、连杆等零件的结构参数。
凸轮机构的设计和制造需要考虑到许多因素,如传动比、工作精度、传动效率等。
为了使传动效果更好,一般会采用润滑措施,并且对关键部位进行加工和装配精度控制。
总之,凸轮机构是一种重要的动力机构,其工作原理是通过凸轮的回转运动,使滑块做直线或曲线运动,从而驱动其他机械零件进行工作。
凸轮机构具有结构简单、运动规律稳定、传动效果可靠等优点,因此在各种机械传动中得到了广泛的应用。
机械原理大作业
凸轮机构运动分析
学号
姓名
院系
专业
完成日期
设计题号
指导教师
一、设计如图1所示直动从动件盘形凸轮机构。
其原始参数见表1。
图1
行程(mm)升程运
动角
(°)
升程运
动规律
升程许
用压力
角(°)
回程运
动角
(°)
回程运
动规律
回程许用
压力角
(°)
远休止
角
(°)
近休止
角
(°)
35 80 余弦加
速度35 60 3-4-5
多项式
70 100 120
表1
二、计算流程图
凸轮机构分析
建立数学模型
位移方程速度方程
加速度方程
速度线图位移线图加速线图
ds/d Ψ-s 曲线升程压力角回程压力角
确定轴向及基圆半径
压力角图确定滚子半径实际轮廓理论轮廓
轮廓图
结束
三、建立数学模型
1. 位移、速度、加速度、ds/dψ-s 、压力角图 (1)运动方程:
A.升程运动方程(余弦加速度):
⎪
⎭⎫ ⎝
⎛
≤≤πϕ940 ⎥⎦⎤⎢⎣⎡-=
)cos(12h 01ϕφπs
)sin(20
011ϕφπφωπh v =
)cos(202
212
1
ϕφπφωπh a = B.远休止方程:
⎪⎭
⎫
⎝⎛≤≤πϕπ94 h s =2 02=v 02=a
C.回程运动方程(3-4-5多项式):
⎪⎭⎫
⎝
⎛≤≤πϕπ34 ])(*6)(*15)(
*101[5
0'
040'030'03φφφϕφφφϕφφφϕs s s h s -----+---= ])(*30)(*60)(
*30[4
'030'020'00'1
3φφφϕφφφϕφφφϕφωs s s h v --+------
=
])(*120)(*180)(
*60[3
'
020'00'02
0'2
1
3φφφϕφφφϕφφφϕφωs s s h a --+------
= D.近休止方程:
⎪⎭
⎫
⎝⎛≤≤πϕπ34 04=s 04=v 04=a
(2)源代码及作图(matlab )
syms a1 a2 a3 a4;
h=35;
yxj=100/180*pi();
jxj=120/180*pi();
scj=80/180*pi();
hcj=60/180*pi();
a1=0:0.001:scj;
s1=h./2*(1-cos(pi.*a1/scj));
a2=scj:0.001:(scj+yxj);
s2=h*ones(size(a2));
a3=(scj+yxj):0.001:(scj+yxj+hcj);
a=(a3-scj-yxj)/hcj;
s3=h.*(1-10.*a.^3+15.*a.^4-6.*a.^5);
a4=scj+yxj+hcj:0.001:scj+yxj+hcj+jxj;
s4=0;
plot(a1,s1,a2,s2,a3,s3,a4,s4);
grid on;
title('位移');xlabel('ψ/rad'),ylabel('s/mm');%%画出位移的图像
w=1;
v1=pi*h*w/2/scj*sin(pi*a1/scj);
v2=zeros(size(a2));
v3=-h*w/hcj.*(30.*a.^2-60.*a.^3+30.*a.^4);
v4=zeros(size(a4));
plot(a1,v1,a2,v2,a3,v3,a4,v4);
grid on;
title('速度');
xlabel('ψ/rad'),ylabel('v/(mm/s)');%%画出速度的图像
b1=pi*pi*h*w*w/2/scj/scj*cos(pi*a1/scj);
b2=zeros(size(a2));
b3=-h*w/hcj/hcj.*(60.*a-180.*a.^2+120.*a.^3);
b4=zeros(size(a4));
plot(a1,b1,a2,b2,a3,b3,a4,b4);
grid on;
title('加速度');
xlabel('ψ/rad'),ylabel('a/(mm/s^2)');%%画出加速度的图像
n=-100:0.001:100;
m1=tan(pi/2-35*pi/180)*n-41.4;
m2=-tan(pi/2-70*pi/180)*n-10.7;
plot(v1,s1,v2,s2,v3,s3,v4,s4,n,m1,n,m2)
grid on;
title('凸轮机构ds/dψ-s线图');
xlabel('s'),ylabel('ds/dψ');%%画出ds/dψ-s图像
由图知:三条直线的下方最上面得点(8.082,-30.16)。
得最小基圆对应的坐标位置可取为(8,40)。
经计算取偏距e=10mm,r0=50mm,r r=10mm,s0=56mm。
T1=90-abs(atan((s1+100)./(v1-40))*180/pi);
T2=90-abs(atan((s2+100)./(v2-40))*180/pi);
T3=90-abs(atan((s3+100)./(v3-40))*180/pi);
T4=90-abs(atan((s4+100)./(v4-40))*180/pi);
plot(a1,T1,a2,T2,a3,T3,a4,T4);%%画出压力角及曲率半径
2.轮廓图
s0=56;
e=10;
Rr=10;
x1=(s0+s1).*cos(a1)-e*sin(a1);
y1=(s0+s1).*sin(a1)+e*cos(a1);
p1=(s0+s1).*cos(a1)+(v1-e).*sin(a1); q1=-(s0+s1).*sin(a1)+(v1-e).*cos(a1); A1=sqrt(p1.^2+q1.^2);
X1=x1+Rr.*p1./A1;
Y1=y1-Rr.*q1./A1;
x2=(s0+s2).*cos(a2)-e*sin(a2);
y2=(s0+s2).*sin(a2)+e*cos(a2);
p2=(s0+s2).*cos(a2)+(v2-e).*sin(a2); q2=-(s0+s2).*sin(a2)+(v2-e).*cos(a2);
A2=sqrt(p2.^2+q2.^2);
X2=x2+Rr.*p2./A2;
Y2=y2-Rr.*q2./A2;
x3=(s0+s3).*cos(a3)-e*sin(a3);
y3=(s0+s3).*sin(a3)+e*cos(a3);
p3=(s0+s3).*cos(a3)+(v3-e).*sin(a3);
q3=-(s0+s3).*sin(a3)+(v3-e).*cos(a3);
A3=sqrt(p3.^2+q3.^2);
X3=x3+Rr.*p3./A3;
Y3=y3-Rr.*q3./A3;
x4=(s0+s4).*cos(a4)-e*sin(a4);
y4=(s0+s4).*sin(a4)+e*cos(a4);
p4=(s0+s4).*cos(a4)+(v4-e).*sin(a4);
q4=-(s0+s4).*sin(a4)+(v4-e).*cos(a4);
A4=sqrt(p4.^2+q4.^2);
X4=x4+Rr.*p4./A4;
Y4=y4-Rr.*q4./A4;
plot(x1,y1,X1,Y1,x2,y2,X2,Y2,x3,y3,X3,Y3,x4,y4,X4,Y4); %%外圈为理论轮廓,内圈为实际轮廓
grid on;。