2014上半年电磁场
- 格式:docx
- 大小:173.22 KB
- 文档页数:8
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积内的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A 沿空间有向闭合曲线C 的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随A所代表的场而定,当A为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域V内的任一矢量场,由他的散度,旋度和边界条件(即限定区域V的闭合面S上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场对电荷的作用称为电场力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质内部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面内穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子内的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
2013-2014学年第一学期2012级电磁学期末考试题 2014年1月10日注:试题共6页,满分100分一、填空题(将正确答案填在空格内,共50分)1.(本题5分)两个平行的“无限大”均匀带电平面, 其电荷面密度分别为+σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =_______,E B =_______,E C =________(设方向向右为正).2.(本题5分)已知一平行板电容器,极板面积为S ,两板间隔为d ,其中充满空气.当两极板上加电压U 时,忽略边缘效应,两极板间的相互作用力F =____________.3.(本题5分)AC 为一根长为2l 的带电细棒,左半部均匀带有负电荷,右半部均匀带有正电荷.电荷线密度分别为-λ和+λ,如图所示.O 点在棒的延长线上,距A 端的距离为l .P 点在棒的垂直平分线上,到棒的垂直距离为l .以棒的中点B 为电势的零点.则O 点电势U =____________;P 点电势U p =__________.4.(本题5分)周长相等的平面圆线圈和正方形线圈,载有相同大小的电流.今把这两个线圈放入同一均匀磁场中,则圆线圈与正方形线圈所受最大磁力矩之比为_______.5.(本题5分)一平面线圈由半径为R 的1/4圆弧和相互垂直的二直线组成, 通以电流I ,把它放在磁感强度为B 的均匀磁场中,线圈平面与磁场垂直(如图),则圆弧AC 段所受的磁力大小为_________.+σ +2σ AB CB6.(本题3分)在霍耳效应的实验中,通过导电体的电流和B的方向垂直(如图).如果上表面的电势较高,则导体中的载流子带____________电荷,如果下表面的电势较高,则导体中的载流子带_________电荷。
7.(本题5分)一长直导线旁有一长为b ,宽为a 的矩形线圈, 线圈与导线共面,长度为b 的边与导线平行且与 直导线相距为d ,如图.设长直导线中电流为I ,则通过矩形线圈的磁通量为______________,线圈与导线的互感系数为______________________.8、(本题5分) 真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mp =__________________.9.(本题5分)如图所示,在半径为10cm 的圆柱形空间内充满 沿轴向的均匀磁场,其磁感应强度以3.0×10-3T ·s-1的恒定速率增加,有一长为20cm 的金属棒放在图示 位置,一半在磁场内部,另一半在磁场外部,棒两端的 电势差U ac =________________。
电磁场与微波技术z n j n Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】——电磁场与微波技术实验报告班级:06姓名:张妮竞男学号:84序号: 31#日期:2014年5月31日邮箱实验二:分支线匹配器一、实验目的1、掌握支节匹配器的工作原理2、掌握微带线的基本概念和元件模型3、掌握微带分支线匹配器的设计与仿真二、实验原理1、支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。
因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。
常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。
支节匹配器分单支节、双支节和三支节匹配。
这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
此电纳或电抗元件常用一终端短路或开路段构成。
2、微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。
微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。
W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。
L为微带线的长度。
微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。
微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。
微带线元件模型3、元器件库里包括有:MLIN:标准微带线MLEF:终端开路微带线MLSC:终端短路微带线MSUB:微带线衬底材料MSTEP:宽度阶梯变换MTEE:T型接头MBENDA:折弯微带线的不均匀性上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。
《电磁场与电磁波》2014年中期考试题一、 填空题(每空1分,共30分)1.( d d d x y z e x e y e z ++ ),其在球坐标系的表达式又是( d d sin d e r e r e r θθϕ++ );在不同坐标系下单位矢量有的为常矢量,有的为变矢量,在直角坐标系的单位矢量为( 常 )矢量,圆柱坐标的单位矢量ρϕ 变 )矢量,球坐标系的单位矢量均为( 变 )矢量。
2.标量场的梯度是一个( 矢 )量,矢量场的散度是一个( 标 )量,矢量场的旋度是一个( 矢 )量,空间某点标量场的梯度与该点方向导数的关系是(投影或l u e l=∇⋅∂)。
3.电磁场的边界条件是(),(),(),()。
4.麦克斯韦方程组是描述电磁场基本规律的高度总结与概括,写出麦克斯韦方程组的微分形式,并简述物理意义。
1) ( DH J ∂∇⨯=+),物理意义为( 传导电流和时变电场产生磁场 ) 2) ( BE t∂∇⨯=-∂ ),物理意义为( 时变磁场产生电场 ) 3) ( 0B ∇⋅= ),物理意义为( 磁通永远连续 ) 4) ( D ρ∇⋅=),物理意义为( 电荷是电场的源 )5.电场的能量密度表达式为( 2D E ⋅ ),磁场的能量密度表达式为( 2B H ⋅ );静电位的泊松方程是( 2ϕε∇=-),拉普拉斯方程是(0∇=),矢量磁位A 的三个直角坐标分量的泊松方程分别是(A J ∇=-)、( A J ∇=- )、(A J ∇=-)。
6. 沿ZE =( 2l re r πε );若取1r =为电位参考点,电位函数ϕ= ln 2l rπε )。
二、单项选择题(每小题2分,共20分)1.R =,则1=R ⎛⎫∇ ⎪( B )。
A. R R -B. 3R R -C. 2RR -2.麦克斯韦提出位移电流d DJ t∂=∂之后,安培环路定理修正为( C )。
A. B. D H t ∂∇⨯=∂ C.DH J t∂∇⨯=+∂3.同轴线内导体半径为a ,外导体内半径为b ,内外导体间介质的介电系数为ε,其单位长度的电容为( A )。
2014高考物理磁场专题名师精选题组大连市物理名师工作室 门贵宝一.单选题1..如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q 的带电粒子(重力不计)从AB 边的中点O 以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场的大小B 需满足 ( B )A .B <3mv 3aq B .B <3mv 3aqC .B >3mv aqD .B <3mv aq2..用两根细线把两个完全相同的圆形导线环悬挂起来,让二者等高平行放置,如图所示.当两导线环中通入方向相同的电流I 1、I 2时,则有( A )A .两导线环相互吸引B .两导线环相互排斥C .两导线环无相互作用力D .两导线环先吸引后排斥解析:通电的导线环周围能够产生磁场,磁场的基本性质是对放入其中的磁体或电流产生力的作用,由于导线环中通入的电流方向相同,二者同位置处的电流方向完全相同,相当于通入同向电流的直导线,据同向电流相互吸引的规律,判知两导线环应相互吸引,故A正确.另解,将环形电流等效成条形磁铁,异名磁极相吸,故A 正确(转换思维法).3.下列说法中正确的是( A )A .磁极之间的相互作用是通过磁场发生的B .磁感线就是细铁屑在磁铁周围排列出的曲线C .磁场的方向就是通电导体在磁场中某点受磁场作用力的方向D .因为IL F B,所以某处磁感强度的大小与放在该处的小段通电导线IL 乘积成反比4.粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电,让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动。
已知磁场方向垂直纸面向里,图4中四个选项,能正确表示两粒子运动轨迹的是( A )图4 5.如图所示,一段导线abcd 弯成半径为R 、圆心角为90°的部分扇形形状,置于磁感应强度大小为B 的匀强磁场中,且与磁场方向(垂直于A B C D纸面向里)垂直.线段ab 和cd 的长度均为R 2.流经导线的电流为I ,方向如图中箭头所示.则导线abcd 所受到的安培力为 ( A )A .方向沿纸面向上,大小为2BIR 2B .方向沿纸面向上,大小为π-2B IR 2C .方向沿纸面向下,大小为2BIR 2D .方向沿纸面向下,大小为π-2B IR 2解析:导线abcd 的等效长度为2R 2,电流方向等效为水平向右,由左手定则可知安培力方向沿纸面向上,大小为2BIR 2,A 正确(等效思维法). 6.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的动能逐渐减小,则下列说法中正确的是-( B )(A)带电粒子带正电,是从B 点射入的 (B)带电粒子带负电,是从B 点射入的(C)带电粒子带负电,是从A 点射入的 (D)带电粒子带正电,是从A 点射入的 如图所示,带正电的物块A 放在不带电的小车B 上,开始时都静止,处于垂直纸面向里的匀强磁场中。
32014年上半年智康初中物理教师功底测试。
一、单选题(每题3分,共30分)1. 把一个灯泡接到某电压不变的电源两端,灯泡的功率为100W 。
将一个电阻R 与这只灯泡串联后接到同一电源两端,灯泡的功率为64W ,设灯丝电阻不变。
则电阻R 消耗的功率是 ( ) A. 8W B. 10W C. 16W D. 36W 2. 如图1所示电路,电源两端电压一定。
开关S 闭合后,电压表V 1、V 2的示数之比为2∶1,电阻R 1消耗的功率为P 1;电阻R 2、R 3交换位置后,两块电压表的示数均不变;现用电流表A 1替换电压表V 1,用电流表A 2替换电压表V 2,电路消耗的总功率为P 。
则P 1∶P 为 ( ) A .25∶175 B .9∶175C .9∶25D .7 ∶25 3. 在图2所示的电路中,电源电压为6V 且保持不变。
只闭合开关S 1,电流表示数为0.4A ;再闭合开关S 2,电流表示数变化了0.2A ;设开关S 2闭合前后R 1消耗的电功率的变化量为ΔP ;则关于R 2的阻值及ΔP 的值分别为 ( )A .R 2=5Ω ΔP = 2 WB .R 2=10Ω ΔP = 2WC .R 2=5Ω ΔP = 5WD .R 2=15Ω ΔP = 5W4. 如图3所示,在盛有水的烧杯内放置一冰块,冰块的下表面与杯底接触,水面正好与杯口相齐;当冰融化时是否有水溢出?( )A .当冰块的下表面对杯底有压力时,冰融化后水一定会溢出B .当冰决的下表面对杯底有压力时,冰融化后水一定不会溢出C .无论冰块的下表面对杯底是否有压力,冰融化后水都会溢出D .无论冰块的下表面对杯底是否有压力,冰融化后水都不会溢出5. 如图4所示,一个圆台形筒子,下面用一重力忽略不计的薄片贴住,浸入水中后,薄片不会下落.如果筒中注入100g 水,恰能使它脱落.则下列哪种情况能使薄片下落?( ) A .在薄片中央轻放100g 砝码 B .慢慢注入100g 酒精C .慢慢注入100g 水银D .上述三种做法都不行6. 如图5所示,有一个截面为梯形的物体浸没在某种液体中(物体与容器底不紧密接触),液体的密度为ρ,深度为H ,物体高度为h ,体积为V ,较大的下底面面积为S ',较小的上底面面积为S '',容器的底面面积为S ,则该物体受到水向下的压力是F 是( )A .()g HS V ρ'-B .gV ghS ρρ'-C .ghS gV ρρ'-D .()g H h S ρ'-7. 如图6所示,向两个质量可以忽略不计且完全相同的塑料瓶中装入密度为ρA 和ρB 的液体后密闭,把它分别放在盛有密度为ρ甲、ρ乙两种液体的容器中,所受浮力分别为F 甲、F 乙,二者露出液面的高度相等,下列判断正确的是( )A .由图可知:ρA >ρ甲>ρ乙B .若ρA = ρB ,则ρ甲>ρ乙C .若ρ甲=ρ乙,则ρA >ρBD .若F 甲=F 乙,则ρ甲>ρ乙 8. 图7所示电路中,电源两端电压与灯丝电阻保持不变,灯泡L 1、L 2、L 3的规格分别是“4V 4W”、“6V 3W”和“ 6V 4W”,只闭合开关S 2时,L 1的电功率为P 。
专题九 磁场A 组 三年高考真题(2016~2014年)1.(2016·全国卷Ⅱ,18,6分)(难度★★★)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。
图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动。
在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角。
当筒转过90°时,该粒子恰好从小孔N 飞出圆筒。
不计重力。
若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A.ω3BB.ω2BC.ωBD.2ωB2.(2016·全国卷Ⅲ,18,6分)(难度★★★)平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O 的距离为( )A.mv 2qBB.3mv qBC.2mv qBD.4mv qB3.(2016·全国卷Ⅰ,15,6分)(难度★★★)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为( )A.11 B.12 C.121 D.1444.(2016·北京理综,17,6分)(难度★★)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
2014年高考《磁场》物理试题1.(2014·浙江卷·三选)如图1所示,两根光滑平行导轨水平放置,间距为L ,其间有竖直向下的匀强磁场,磁感应强度为B .垂直于导轨水平对称放置一根均匀金属棒.从t =0时刻起,棒上有如图2所示的持续交变电流I ,周期为T ,最大值为I m ,图1中I 所示方向为电流正方向.则金属棒( )A .一直向右移动B .速度随时间周期性变化C .受到的安培力随时间周期性变化D .受到的安培力在一个周期内做正功2.(2014年安徽卷·单选) “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞。
已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子的运动半径不变。
由此可判断所需的磁感应强度B 正比于( )AB .T CD .2T3.(2014·福建卷·单选)如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A .①表示γ射线,③表示α射线B .②表示β射线,表示α射线C .④表示α射线,⑤表示γ射线D .⑤表示β射线,⑥表示α射线4.(2014·海南卷·双选)如图,两根平行长直导线相距2L ,通有大小相等、方向相同的恒定电流,a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为2l、l 和3l .关于这三点处的磁感应强度,下列判断正确的是( )A .a 处的磁感应强度大小比c 处的大B .b 、c 两处的磁感应强度大小相等C .a 、c 两处的磁感应强度方向相同D .b 处的磁感应强度为零-5.(2014·全国卷1·单选)如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。
〔新课标Ⅰ版〕2014届高三物理试题解析分项汇编〔第01期〕专题09 磁场复合场〔含解析〕全国新课标Ⅰ卷有其特定的命题模板,无论是命题题型、考点分布、模型情景等,还是命题思路和开展趋向方面都不同于其他省市的地方卷。
为了给新课标全国卷考区广阔师生提供一套专属自己的复习备考资料,物理解析团队的名校名师们精心编写了本系列资料。
本资料以全国新课标Ⅰ卷考区的最新名校试题为主,借鉴并吸收了其他省市最新模拟题中对全国新课标Ⅰ卷考区具有借鉴价值的典型题,优化组合,合理编排,极限命制。
备注:新课标Ⅰ卷专版所选试题和新课标Ⅱ卷专版所选试题不重复,欢迎同时下载使用。
一、单项选择题1.【2013·湖北省华中师大附中高三五月模拟】如下说法正确的答案是A.库仑首先引入电场线描述电场B.法拉第首先总结出磁场对电流作用力的规律C.伽利略通过理想斜面实验得出物质的运动不需要力维持D.牛顿认为站在足够高的高山上无论以多大的水平速度抛出一物体,物体都会落在地球上2.【2013·湖北省咸宁市四校高三联考】如下说法中正确的答案是A.只要足够小的物体,都可以看成质点B.速度的变化方向与加速度的方向始终一致C.物理学中引入的“电场强度〞概念是采用的类比法D.磁感线起于N极,止于S极2.B 解析:物体能否被看作质点,不是根据物体自身体积的大小,而是根据所研究物体的具体情况而定,选项A错误;加速度表示速度变化的快慢,加速度的方向与速度变化方向始终一致,选项B正确;物理学中引入的“电场强度〞概念是采用的比值定义法,其定义式E=F/q,选项C错误;磁感线是闭合曲线,在磁体周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S 极到N 极,选项D 错误。
3.【2013·陕西五校高三第三次模拟考试】物理公式不仅反映了物理量之间的关系,也确定了单位间的关系。
现有物理量单位:M 〔米〕、s 〔秒〕、C 〔库〕、A 〔安〕、V 〔伏〕、F 〔法〕、T 〔特〕和WB 〔韦伯〕,由它们组合成的单位与力的单位N 〔牛〕等价的是A .V ·C/s B.C/F ·s C.T ·s·C/ M D .WB·A/M3.D 解析:I t q =,UI=P ,选项A 错误。
暨 南 大 学 考 试 试 卷一、基础知识题(共2小题,每小题10分,共20分)1. 计算)(nr ⋅⨯∇解:0)(21=⨯=⨯∇=⨯∇=⋅⨯∇--nr r mr r r n n n n2.求函数xyz =ϕ 在点(1,1,2)处, 沿点(5, 1, 2)到点(8, 4, 5)的方向的方向导数。
解:3/522)2,1,1(313131333)25()14()58(=⋅∇=∂∂++=++=∇++=++=-+-+-=l z y x z y x zy x l z y x z y x le e e e xy e xz e yz ϕϕϕ二、计算题(共2小题,每小题10分,共20分)1. 一个半径为a 的导体球表面套一层厚度为b-a 的电介质,电介质的介电常数为ε。
假设导体球带电Q ,求任意点的电场强度。
解:2024,4,,r Qb r r Qe E b r a E a r rrπεπε=>=<<=<2. 半径为a 高为L 的磁化介质柱, 磁化强度为 0M (常矢量,与圆柱的轴线平行), 求磁化电流和磁矩。
解:La M e e M e J r z ms m 200000πϕ⋅==⨯==⨯∇=三、判断题(10分)判断平面电磁波)33(0)23(z x jk y xe jE --++=的极化方式。
解:)35(0000)2032333z x jk y z y x z x ej E E k E jE E kk --+==⋅++=-=落后2y ,因此事右旋椭圆极化波。
1. 设t av rav i av ,,,,,分别表示入射波,反射波,透射波的平均能流密度,波自无损耗介质向另一种无损耗介质垂直入射,证明能流反射系数p =Γ与能流透射系数p T =满足:1=+Γp p T解:[][][]124,222,21212121212121212222212121222121222212212212211222022,221,201,=+Γ++⋅=++-+=Γ+⋅==+-=Γ=Γ=⨯=Γ=⨯==⨯=P P P P P P i ttti rrr i i i i T T T T E T Ee E H E Ee E Ee ηηηηηηηηηηηηηηηηηηηηηηηηηηηηη2.证明任意圆极化波的坡印廷矢量瞬时值是个常数。
2014年高考物理真题分类汇编:磁场 15.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( )安培力的方向可以不垂直于直导线安培力的方向总是垂直于磁场的方向安培力的大小与通电D.将直导线从中点折成直角,安培力的大小一定变为原来的一半 [解析] 本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,错误,正确;安培力F=BIL,其中θ是电流方向与磁场方向的夹角,错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的错误.[2014·新课标全国卷Ⅰ] 如图所示,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.( ) A.2 B. C.1 D. 16.D [解析] 本题考查了带电粒子在磁场中的运动.根据qvB=有= ,穿过铝板后粒子动能减半,则=,穿过铝板后粒子运动半径减半,则=,因此=,正确.[2014·山东卷] 如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v等于( ) A. B. C. D. 18.B [解析] 两个粒子都做两个粒子在竖直方向上都做加速度大小相等的匀加速直线运动,因为竖直位移大小相等,所以它们的运动时间相等.两个粒子在水平方向上都做速度大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等.综合判断,两个粒子运动到轨迹相切点的水平位移都为,竖直位移都为,由=,=v得v=B正确.[2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些( )电子与正电子的偏转方向一定不同电子与正电子在磁场中运动轨迹的半径一定相同仅依据粒子运动轨迹无法判断该粒子是质子还是正电子粒子的动能越大,它在磁场中运动轨迹的半径越小 [解析] 电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的A正确;由轨道公式R=知 ,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故错误.由R==知,错误.因质子和正电子均带正电,且半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,正确.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小B与I成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I,与其前后表面相连的电压表测出的霍尔电压U满足:U=,式中k为霍尔系数,d为霍尔元件两侧面间的距离.电阻R远大于R,霍尔元件的电阻可以忽略,则( ) A.霍尔元件前表面的电势低于后表面若电源的正负极对调,电压表将反偏与I成正比电压表的示数与R消耗的电功率成正比 [解析] 由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面A选项错误;若电源的正负极对调,则I与B都反向,由左手定则可判断电子运动的方向不变,选项错误;由于电阻R和R都是固定的,且R和R并联,故I=,则正确;因B与I成正比,I与I成正比,则U=k,R又是定值电阻,所以正确.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度正比于( ) B.T C. D.T2 18.A [解析] 本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力提供向心力有=m解得带电粒子在磁场中做圆周运动的半径=由动能的定义式=,可得=,结合题目信息可得,选项A正确。
33.(14分)(普陀)如图,A 为位于一定高度处的质量为m 、带电荷量为+q 的小球,B 为位于水平地面上的质量为M 的用特殊材料制成的长方形空心盒子,且M=2m ,盒子与地面间的动摩擦因数μn1=(n 取自然数),盒内存在着竖直向上的匀强电场,场强大小qm gE 2=,盒外没有电场。
盒子的上表面开有一系列略大于小球的小孔1、2、3……,孔间距满足一定的关系,使得小球进出盒子的过程中始终不与盒子接触。
当小球A 以v 0的速度从孔1进入盒子的瞬间,盒子B 恰以6v 0的速度向右滑行。
已知盒子通过电场对小球施加的作用力与小球通过电场对盒子施加的作用力大小相等方向相反。
设盒子足够长,小球恰能顺次从各个小孔进出盒子。
试求: (1)小球A 从第一次进入盒子到第二次进入盒子所经历的时间; (2)盒子上至少要开多少个小孔,才能保证小球始终不与盒子接触; (3)小球第一次进入盒子至盒子停止运动的过程中,盒子通过的总路程。
33.(15分)(徐汇)如图,两根相距d =1m 的平行金属导轨OC 、O ′C ′,水平放置于匀强磁场中,磁场方向水平向左,磁感应强度B 1=5/6T 。
导轨右端O 、O ′连接着与水平面成30°的光滑平行导轨OD 、O ′D ′,OC 与OD 、O ′C ′与O ′D ′分别位于同一竖直平面内,OO ′垂直于OC 、O ′C ′。
倾斜导轨间存在一匀强磁场,磁场方向垂直于导轨向上,磁感应强度B 2=1T 。
两根与倾斜导轨垂直的金属杆M 、N 被固定在导轨上,M 、N 的质量均为m =1kg ,电阻均为R =0.5Ω,杆与水平导轨间的动摩擦因数为μ=0.4。
现将M 杆从距OO ′边界x =10m 处静止释放,已知M 杆到达OO ′边界前已开始做匀速运动。
当M 杆一到达OO ′边界时,使N 杆在一平行导轨向下的外力F 作用下,开始做加速度为a =6m/s 2的匀加速运动。
导轨电阻不计,g 取10m/s 2。
[初] 2014年上半年教师资格《物理学科知识与教学能力(初级中学)》真题1、半径为R的均匀带电球面,若其电荷面密度为σ,则在距离球面R处的电场强度大小为( )。
A.B.C.D.{图4}【答案】C【解析】2、如图所示,一束可见光从半球形玻璃球面射向其球心O,经折射后分别为两束单色光a和b,以下说法正确的是( )。
A.玻璃对a光的折射率小于对b光的折射率B.a光的频率大于b光的频率C.在玻璃中.a光和b光传播的速度相同D.a光子能量小于b光子能量【答案】B【解析】因为a光的偏折角度大于b光,所以n光的折射率大于b光的折射率,a光的频率大于b光,所以a光的能量大于b光,由n=c知在玻璃中,a光的速度小于b 光。
所以答案为B选项。
3、如图所示,一小球分别以不同的初速度,从光滑斜面的底端A点沿斜面向上做直线运动,所能到达的最高点位置分别为a、b、c,它们距离斜面底端A点的距离分别为s1、s2、s3,对应到达最高点的时间分别为t1、t2、t3,以下说法正确的是( )。
A.B.C.D.【答案】C【解析】4、如图所示,有一固定且内壁光滑的半球面,球心为O,最低点为O/,在其内壁上有两个质量相同,可视为质点的小球甲和乙,分别在高度不同的水平面内做匀速圆周运动,若甲乙两球与O点的连线与竖直线00/’间的夹角分别为α=53。
和β=370,则( )。
(已知 sin370=3/5,cos370=4/5;sin530=4/5,cos530=3/5)A.甲、乙两球运动周期之比为3/4B.甲、乙两球所受支持力大小之比为3/4C.甲、乙两球运动周期之比为3/41/2D.甲、乙两球所受支持力大小之比为3/41/2【答案】C【解析】5、如图所示,在演示电磁感应现象的实验中,闭合开关,灵敏电流计指针迅速向右偏转后返向回到零刻线,闭合开关后,以下说法正确的是( )。
A.线圈M迅速插入线圈N时.电流计指针迅速向左偏转B.线圈M迅速插入线圈N后.电流计指针稳定指向零刻线右侧某一位置C.线圈M迅速插入线圈N时.电流计指针迅速向右偏转D.线圈M迅速插入线圈N后.电流计指针不动【答案】C【解析】闭合开关后,灵敏电流计的指针向右偏转一下,说明线圈磁通量增加导致指针向右偏转;当将线圈M迅速插入线圈Ⅳ时.则线圈的磁通量也是增加,则电流表指针向右偏转,C正确,A、D错误;当电流计指针稳定后磁通量不再改变。
2014年高考物理真题分类汇编:磁场15.[2014·新课标全国卷Ⅰ] 关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( )A .安培力的方向可以不垂直于直导线B .安培力的方向总是垂直于磁场的方向C .安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半15.B [解析] 本题考查安培力的大小和方向.安培力总是垂直于磁场与电流所决定的平面,因此,安培力总与磁场和电流垂直,A 错误,B 正确;安培力F =BIL sin θ,其中θ是电流方向与磁场方向的夹角,C 错误;将直导线从中点折成直角,导线受到安培力的情况与直角导线在磁场中的放置情况有关,并不一定变为原来的一半, D 错误.16.[2014·新课标全国卷Ⅰ] 如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未面出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变.不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2 B.2 C .1 D.2216.D [解析] 本题考查了带电粒子在磁场中的运动.根据q v B =m v 2r 有B 1B 2=r 2r 1·v 1v 2,穿过铝板后粒子动能减半,则v 1v 2=2,穿过铝板后粒子运动半径减半,则r 2r 1=12,因此B 1B 2=22,D 正确.18.[2014·山东卷] 如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab长为s,竖直边ad长为h.质量均为m、带电荷量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v0等于()A.s22qEmh B.s2qEmhC.s42qEmh D.s4qEmh18.B[解析] 两个粒子都做类平抛运动.两个粒子在竖直方向上都做加速度大小相等的匀加速直线运动,因为竖直位移大小相等,所以它们的运动时间相等.两个粒子在水平方向上都做速度大小相等的匀速直线运动,因为运动时间相等,所以水平位移大小相等.综合判断,两个粒子运动到轨迹相切点的水平位移都为s2,竖直位移都为h2,由h2=Eq2m t2,s2=v0t得v0=s2Eqmh,选项B正确.20.[2014·新课标Ⅱ卷] 图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中运动轨迹的半径越小20.AC[解析] 电子、正电子和质子垂直进入磁场时,所受的重力均可忽略,受到的洛伦兹力的方向与其电性有关,由左手定则可知A正确;由轨道公式R=m vBq知,若电子与正电子与进入磁场时的速度不同,则其运动的轨迹半径也不相同,故B 错误.由R =m v Bq=2mE k Bq知,D 错误.因质子和正电子均带正电,且半径大小无法计算出,故依据粒子运动轨迹无法判断该粒子是质子还是正电子,C 正确.9.[2014·江苏卷] 如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H B d,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比9.CD [解析] 由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面,A 选项错误;若电源的正负极对调,则I H 与B 都反向,由左手定则可判断电子运动的方向不变,B 选项错误;由于电阻R 和R L 都是固定的,且R 和R L 并联,故I H =R L R +R LI ,则C 正确;因B 与I 成正比,I H 与I 成正比,则U H =k I H B d∝I 2,R L 又是定值电阻,所以D 正确.、18.[2014·安徽卷] “人造小太阳”托卡马克装置使用强磁场约束高温等离子体,使其中的带电粒子被尽可能限制在装置内部,而不与装置器壁碰撞.已知等离子体中带电粒子的平均动能与等离子体的温度T 成正比,为约束更高温度的等离子体,则需要更强的磁场,以使带电粒子在磁场中的运动半径不变.由此可判断所需的磁感应强度B 正比于( ) A.T B .T C.T 3 D .T 218.A [解析] 本题是“信息题”:考查对题目新信息的理解能力和解决问题的能力.根据洛伦兹力提供向心力有q v B =m v 2r 解得带电粒子在磁场中做圆周运动的半径r =m v qB.由动能的定义式E k =12m v 2,可得r =2mE k qB,结合题目信息可得B ∝T ,选项A 正确。