i 1
.
10
knn (k) 与条件概率和联合概率之间具有如下关系:
knn
kmax
(k)
k 'Pc (k ' | k)
k' kmin
1 qk
kmax
k
'
e k
k
'
k' kmin
如果 knn (k) 是k的增函数,那么就意味着平均而言,度大的 节点倾向于与度大的节点连接,从而表明网络是同配的;反之,
任一条边与某个节点相连的概率与该节点的度成正比,度不相关网
络的条件概率为
Pn
(k
'
|
k
)
Pn
(k)
k 'P(k ' ) k
.
.
9
判断度相关性的更为简洁的方法:计算度为k的节点的邻居节 点的平均度,也称度为k的节点的余平均度,记为 knn (k).
假设节点i的 ki 个邻居节点的度为 kij , j 1,2,...,ki. 我们可以计算节
点i 的余平均度,即节点i的 ki 个邻居节点的平均度 knn i 如下:
1
knn i ki
ki
ki j .
j 1
(egP124图4-4)
假设网络中度为k的节点为 v1, v2,..., vik , 那么度为k的节点的余平 均度可计算如下:
1 ik
knn (k ) ik
k nn vi
显然度分布中已经包含了平均度的信息 k kP(k). k 0 具有相同度分布的两个网络可能具有非常不同的其他性质或行为。eg:P121 为进一步刻画网络的拓扑结构,考虑包含更多结构信息的高阶拓扑特性。
.