小学四年级数学三角形内角和
- 格式:docx
- 大小:12.41 KB
- 文档页数:2
《三角形内角和》说课稿《三角形内角和》说课稿(精选5篇)作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,说课稿有助于顺利而有效地开展教学活动。
如何把说课稿做到重点突出呢?以下是小编精心整理的《三角形内角和》说课稿(精选5篇),欢迎阅读,希望大家能够喜欢。
《三角形内角和》说课稿1一、说教材三角形的内角和是北师大版四年级下册第二单元的内容。
三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:教学目标:知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。
知道三角形两个角的度数,能求出第三个角的度数。
能应用三角形内角和的性质解决一些简单的问题。
过程与方法:发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法整个教学将体现以人为本,先放后扶的教学策略。
放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。
四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。
《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
数学日记四年级三角形的内角和
三角形的内角和是180度,平行四边形的内角和等于360度,梯形的内角和为180度。
这些知识在生活中都经常用到,所以我们必须要掌握牢固,不然就会很吃亏。
这个假期里,老师给了我们一本书《可爱的身体》,书中告诉我们身体由多少个器官组成?骨头、肌肉、皮肤各自起着什么作用呢?还教会了我们如何保护自己,预防疾病……当然,这些对我来说并没有太大难度,因为我每天都看电视,但今天上午老师又给我们讲了许多东西:人的耳朵能听见声音,鼻子能闻出气味,嘴巴能品尝食物;血液流遍全身的毛细血管,将营养带到身体的各部分去,输送氧气,排除二氧化碳;心脏是身体中最重要的器官之一,它通过跳动推动血液循环……那时候老师刚讲完我便迫不及待地想把这本书读懂、读透。
这次我终于领略到其中奥秘了!原来,我以前只是光顾着打游戏、睡懒觉了,却忽略了许多事情,比如保护好自己,因此受伤了也不知道,真是害惨我啦!相信同学们跟我也差不多吧!
我觉得数学非常有意思,老师让我们观察物体,从图形入手进而解决问题,提高了我们的思维能力,培养了我们的空间想象力,拓宽了我们的眼界。
更重要的是,使我明白做任何事情都需要认真仔细、坚持不懈,否则再简单的问题也会变复杂,也不可能取得好成绩。
当我阅读到“一块石头压在五根竹子下面,第二天仅仅压倒两根竹子”时,忍不住笑出声来。
哎呀,明明是六根啊,怎么会变成五根呢?看来我的思考方式还有待改善啊!俗话说得好:“小错不断,大错不犯。
”
现在我已深刻体会到这句话的含义了。
在平时学习生活中,犯了错误或者是走神了,回忆一下错误,反省一下失误。
四年级数学教案三角形的内角和一、教学目标1.让学生理解三角形内角和的概念。
2.使学生掌握三角形内角和为180度的性质。
3.培养学生运用三角形内角和的性质解决实际问题的能力。
二、教学重难点重点:理解三角形内角和为180度。
难点:运用三角形内角和的性质解决实际问题。
三、教学准备1.教具:三角形模型、直尺、圆规、三角板。
2.学具:三角形纸片、剪刀、胶水。
四、教学过程(一)导入新课1.教师出示一个三角形,提问:“同学们,你们知道三角形有什么特点吗?”(二)探究三角形内角和1.教师提问:“同学们,你们知道三角形的内角和是多少度吗?”2.学生猜测,教师给出提示:我们可以通过实验来验证。
3.学生分组实验,用三角板测量三角形的内角和。
(三)三角形内角和的性质1.教师提问:“同学们,你们知道三角形的内角和为什么是180度吗?”2.学生思考,教师给出提示:我们可以通过画图来理解。
3.学生画图,发现三角形的内角和可以拼成一个平角。
(四)巩固练习1.教师出示练习题,让学生运用三角形内角和的性质解决问题。
2.学生独立完成,教师点评。
(五)拓展延伸1.教师出示三角形模型,提问:“同学们,你们知道三角形的内角和与边长有什么关系吗?”2.学生思考,教师给出提示:我们可以通过观察三角形的形状来理解。
3.学生观察,发现三角形的内角和与边长有关。
(六)课堂小结1.教师提问:“同学们,本节课我们学习了什么内容?”五、作业布置1.完成课后练习题。
2.收集生活中的三角形,观察并记录三角形的内角和。
六、教学反思本节课通过实验、观察、讨论等方式,让学生理解三角形内角和的概念,掌握三角形内角和为180度的性质,并培养学生运用三角形内角和的性质解决实际问题的能力。
在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,使学生在轻松愉快的氛围中掌握知识。
同时,教师应关注学生的个体差异,因材施教,使每个学生都能在课堂上得到提升。
重难点补充:一、教学重点1.理解三角形内角和为180度的概念。
四年级下册数学三角形的内角和在四年级下册的数学中,你会学习关于三角形的知识。
对于一个三角形来说,它的内角和是固定的。
不论是什么样的三角形,其内角的和总是180度(°)。
当你遇到一个三角形,你可以通过将其三个内角的度数相加,来验证它们的和是否等于180度。
这是一个基本的三角形性质,被称为三角形的角和定理。
例如,如果一个三角形的三个内角分别是角A、角B和角C,那么它们的和应该是:角A + 角B + 角C = 180°无论这个三角形是等边三角形、等腰三角形还是一般的三角形,这个性质都是成立的。
让我们以一个一般的三角形为例来详细解释。
假设我们有一个三角形ABC,其中顶点A、B和C分别是三角形的三个角。
我们可以用角度符号表示它们,如∠A、∠B和∠C。
根据三角形的性质,我们知道三角形的内角和等于180度,表示为:∠A + ∠B + ∠C = 180°这意味着,无论∠A、∠B和∠C各自是多少度,它们的和总是等于180度。
例如,如果∠A是60度,∠B是70度,那么∠C就是180度减去∠A和∠B的度数之和,即:∠C = 180°- 60°- 70°= 50°验证一下:60°+ 70°+ 50°= 180°所以,这个三角形的内角和确实等于180度。
这个性质适用于所有三角形,不论其形状和大小。
无论是直角三角形、锐角三角形还是钝角三角形,它们的内角和始终等于180度。
以下是一些常见类型的三角形及其内角和的特点:1.等边三角形:●三边相等,三个角度也相等。
●每个内角都是60度。
●∠A + ∠B + ∠C = 60°+ 60°+ 60°= 180°。
2.等腰三角形:●至少两条边相等,至少两个角度相等。
●如果两个等角为x度,则第三个角度为y度。
●∠A + ∠B + ∠C = x°+ x°+ y°= 2x°+ y°= 180°。
方法4:转化法:
转化成两个直角三角形。
把三角形沿着高剪开,变成两个直角三角形,直角三角形中,第一个直角三角形的两个锐角的和是90°,第二个直角三角形的两个锐角的和也是90°,合起来就是180°,刚好是原来三角形的内角和。
所以三角形的内角和是180°。
三、求出下面∠1的度数。
①180°-105°-40°②∠2=180°-60°-50°=70°
=75°-40°因为对顶角相等
=35°所以∠1=70°
180°-35°=145°
③180°-(120°+25°)④180°-90°-30°
=180°-145°=90°-30°
=35°=60°
四、解答题
张叔叔不小心把家里的一块玻璃摔成3块(如下图),可他
只拿其中一块玻璃去玻璃店划了一块与原来一样大的玻璃,
你知道他拿的是哪一块玻璃吗?动脑想一想吧!
3号;这三块玻璃中,只有3号玻璃中有原来三角形的两个角,可以用这块玻璃得到与原来一样大的玻璃。
以下是4组小棒的长度,都能分别围成三角形吗?你从中发
现了什么?(单位:cm)
①1、2、3
②2、3、4
③7、8、9
④19、20、21
除第一组外,其它的三组都能围成三角形,我发现,三角形
的任意两边的长度之和大于第三边,任意两边的长度之差小
于第三边。
《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。
《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。
使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。
四年级下三角形内角和在我们四年级的数学学习中,三角形内角和可是一个非常重要的知识点。
它就像是一把神奇的钥匙,能帮助我们打开几何世界的大门,探索更多有趣的数学奥秘。
首先,让我们来认识一下什么是三角形。
三角形呀,就是由三条线段首尾相连围成的图形。
它有三个顶点、三条边和三个角。
这三个角就藏着内角和的秘密。
那什么是三角形的内角和呢?简单来说,就是三角形三个内角的度数之和。
那三角形的内角和到底是多少度呢?答案是 180 度。
也许你会好奇,为什么三角形的内角和一定是 180 度呢?接下来,让我们一起通过几个方法来验证一下。
方法一:测量法。
我们可以用量角器分别测量一个三角形的三个内角的度数,然后把它们相加。
不过呀,这种方法可能会有一些小误差,因为在测量的时候,可能会因为测量的不准确而导致结果有偏差。
方法二:剪拼法。
我们可以把三角形的三个角剪下来,然后拼在一起。
你会惊奇地发现,这三个角刚好能拼成一个平角,而平角的度数就是 180 度。
方法三:折叠法。
把三角形的三个角向内折叠,也能发现三个角会重合在一起,形成一个 180 度的角。
通过这些方法,我们都能得出三角形的内角和是 180 度这个结论。
知道了三角形内角和是 180 度,那它在我们的生活中有什么用呢?其实用处可大啦!比如,在建筑设计中,工程师们要确保房屋的结构稳定,就需要用到三角形内角和的知识。
因为三角形具有稳定性,它的内角和固定为 180 度,所以能够承受较大的压力和拉力。
再比如,在制作家具的时候,如果要设计一个三角形的支架,就必须知道三角形内角和是 180 度,这样才能保证支架的角度合适,使用起来更加牢固。
在数学题目中,三角形内角和的知识也经常出现。
比如,已知一个三角形的两个内角的度数,让我们求第三个内角的度数。
这时候,我们只需要用 180 度减去已知的两个角的度数,就能得出第三个角的度数啦。
又比如,在一个三角形中,如果一个角是直角,也就是 90 度,那么另外两个锐角的和一定是 90 度。
四年级《三角形内角和》教学设计8篇作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。
优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,希望能够帮助到大家。
四年级《三角形内角和》教学设计1教学目标:1、通过测量,撕拼,折叠等方法。
探索和发现三角形三个内角和的度数等于180°。
2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。
3、能运用三角形内角和知识解决一些简单的问题。
教学重点:探索和发现“三角形内角和是180°”。
教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。
”教具准备:三角形,多媒体课中。
教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。
你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。
回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。
三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。
②直角三角形的一个锐角是45°,另一个锐角是()度。
③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。
三角形内角和
四年级数学教案
课时:1
教学准备: 三角形、量角器
教学目标:1、通过测量撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
基本教学过程:
●一、一、创设问题情境
大三角形说:“我的个头大,所以我的内角和一定比你大。
”小三角形很不甘心地说:“是这样的吗?”我们来做一回裁判。
●二、自主探究,创建数学模型
1、分小组测量,比较。
寻找不同形状的三角形。
填在书上。
2、你发现了什么?
3、那如果把三个角撕下来,拼在一起,应该很接近平角了?
这是三角形的一个很隐秘的特征,你记得了吗?
●三、巩固与应用
1、那如果知道三角形三个角中的两个角,就应该可以知道另一个角的大小了。
第31页试一试。
2、第32页练一练1。
3、第2题。
4、实践活动。
四、总结与拓展。
这节课你了解到了什么?
等腰三角形是对称图形吗?如果知道一个三角形是等腰三角形,只知道其中一个底角是50°,你能知道其它两个角的大小吗?
教学反思:一开始上课创设问题情境,提出疑问,引导学生自主探究,分组测量三角形内角和的度数,在测量的过程中学生发现每个三角形的三个内角和接近180度。
提醒学生注意测量时有误差。
接下来通过撕拼、折叠等方法,验证三角形的内角和。
这样学生记忆深刻。