大物复习题1
- 格式:doc
- 大小:318.50 KB
- 文档页数:5
2021年高考生物大一轮复习 1.2.2-1.2.3细胞的基本结构真核细胞与原核细胞课时作业中图版必修1一、基础全面练(共8小题,每小题5分,共40分)1.关于细胞中细胞器的叙述,错误的是( )A.大肠杆菌无线粒体,有核糖体B.水稻叶肉细胞有叶绿体,也有液泡C.酵母菌有线粒体,也有叶绿体D.小鼠肝细胞有线粒体,也有内质网【解析】选C。
A正确,大肠杆菌是原核生物,只有核糖体这一种细胞器,没有线粒体;B正确,水稻叶肉细胞是成熟的植物细胞,含有叶绿体、液泡;C错误,酵母菌属于真菌,是真核生物,代谢类型为异养兼性厌氧,有线粒体但没有叶绿体;D正确,小鼠肝细胞为动物细胞,具有线粒体和内质网。
2.细胞是生物体结构和功能的基本单位。
a~d为四个细胞模式图,对下图有关叙述正确的是( )A.a、b的细胞中含有线粒体、高尔基体等细胞器,而c、d的细胞中只含有核糖体B.不遵循孟德尔遗传定律的基因只存在于c和d细胞中C.能进行光合作用的细胞只有a,c一定不能发生质壁分离D.作为合成蛋白质场所的结构只分布在a、b、d图代表的生物中【解析】选A。
a是高等植物细胞、b是动物细胞、c是细菌、d是蓝藻,A项正确。
B项中真核生物中细胞质基因也不遵循孟德尔遗传定律。
C项中能进行光合作用的细胞有a、d,同时细菌也会发生质壁分离。
D项中细菌中的核糖体也能合成蛋白质。
【方法技巧】辨别细胞结构时,常有原核细胞和真核细胞的判断、植物细胞和动物细胞的判断,归纳如下:(1)原核细胞与真核细胞图像的辨别方法。
有由核膜包围的细胞核的细胞是真核细胞,没有由核膜包围的细胞核的细胞是原核细胞。
(2)动植物细胞亚显微结构图像的识别:3.下列关于人体细胞代谢场所的叙述,正确的是( )A.乳酸产生的场所是线粒体B.雌(性)激素合成的场所是核糖体C.血红蛋白合成的场所是高尔基体D.胰岛素基因转录的场所是细胞核【解析】选D。
A项,乳酸为无氧呼吸产物,在细胞质基质中产生;B项,雌(性)激素的本质是脂质而不是蛋白质,不在核糖体上合成;C项,血红蛋白为蛋白质,在核糖体上合成;D项,转录主要发生在细胞核。
物理实验复习题1.误差是 与 的差值,偏差是 与 的差值,偏差是误差的 值。
2.有效数字是由 数字和一位 数字组成,有效数字的多少反映着测量 的高低。
3.写出下列几个符号的含义(文字叙述及公式表达)(1)σx (2)S x (3)S x4.在工科物理实验中,不确定度一般取 位有效数字,相对不确定度一般取 位有效数字。
5.写出以下几个简单函数不确定度的传递公式:N=x+y U N = ,E N =N=x.y U N = ,E N =N=x m /y n U N = ,E N =5.作图法有什么优点?作图时应注意什么?6.使用天平前要进行那些调节?称量时应注意什么?7.使用测量望远镜必须先调节,按顺序写出调节内容。
8.测量望远镜的视差是怎样形成的?如何消除视差?9.以下电表上所标符号的含义各是什么?V mA Ω ∩ —10.系统误差的特点是具有----------------性,它来自---------------- 。
------------------- 。
-------------------随机误差 的特点是具有----------------性,其误差的大小和符号的变化是----------------的。
但它服从-------------规律。
11.测量不确定度是表征被测量的---------------------在某个-------------------------的一个评定。
A 类不确定度分量由----------------方法求出、推出或评出。
B 类不确定度分量由不同于--------------------的其他方法求出的不确定度分量。
12.据误差限评定不确定度B 分量时,对于均匀分布u j =---------------,对于正态分布u j =---------------,13.物理实验仪器中误差限的确定或估计大体有三种情况,它们是什么?14.改正下列错误:(1) M=3169+200Kg(2) D=110.430+0.3cm(3) L=12Km+100m(4) Y=(1.96×105+5.79×103)N/㎜(5) T=18.5426+0.3241cm(6) h=26.7×104+200Km15.写出下列函数 不确定度的传递公式:(1)z y x N -= (2)33121y x N -= (3) ρπh m r =16.写出下列函数 不确定度的传递公式:(1)01ρρm m m -= (2)Dd D f 422-= 17.写出下列仪器的误差限:(1) 米尺类 (2)千分尺 (3)物理天平 (4)游标卡尺(50分度值)(5)电表 (6)电阻18.下列电器元件符号各表示什么?~19.某圆直径测量结果为 d=0.600+0.002cm,求圆的面积,并估算不确定度。
2017级大物期末复习题(I1)一、单项选择题1、质量为0.5m kg =的质点,在oxy 坐标平面内运动,其运动方程为25,0.5x t y t ==,从t=2s 到t=4s 这段时间内,外力对质点做的功为(B )A 、 1.5JB 、 3JC 、 4.5JD 、 -1.5J2、对功的概念有以下几种说法:①作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
②保守力作正功时,系统内相应的势能增加。
③质点运动经一闭合路径,保守力对质点作的功为零。
在上述说法中:(D )(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
3、如图3所示1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下,M 与m 间有摩擦,则 (D)A 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒。
B 、M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒。
C 、M 与m 组成的系统动量不守恒,水平方向动量不守恒,M 、m 与地组成的系统机械能守恒。
D 、M 与m 组成的系统动量不守恒,水平方向动量守恒,M 、m 与地组成的系统机械能不守恒。
4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场中,另一半位于磁场之外,如图所示。
磁场的方向垂直指向纸内。
预使圆环中产生逆时针方向的感应电流,应使(C )A 、线环向右平移B 、线环向上平移C 、线环向左平移D 、磁场强度 减弱5、若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率的磁通量,则在两环中( A )(A) 感应电动势相同,感应电流不同.(B) 感应电动势不同,感应电流也不同.(C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流也相同.6、线圈与一通有恒定电流的直导线在同一平面内,下列说法正确的是(A)A 、当线圈远离导线运动时,线圈中有感应电动势B 、当线圈上下平行运动时,线圈中有感应电流C 、直导线中电流强度越大,线圈中的感应电流也越大D 、以上说法都不对7. 真空带电导体球面与一均匀带电介质球体,它们的半径和所带的电量都相等,设带电球面的静电能为W1,球体的静电能为W2,则( B )A 、W1>W 2;B 、W 1<W 2;C 、 W 1=W2D 、无法比较8. 关于高斯定理的理解有下面几种说法,其中正确的是:(D )(A)如果高斯面上E 处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上E 处处为零(C)如果高斯面上E 处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零9.两个同心的均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r (r<R 1<R 2)处的P 点的场强大小E为:(D ) (A)20214r Q Q πε+ (B)2202210144R Q R Q πεπε+ (C)2014r Q πε (D)0 10.如图所示,螺绕环截面为矩形,通有电流I ,导线总匝数为N ,内外半径分别为R1和R2,则当 R2 >r >R1时,磁场的分布规律为(B )(A)0 (B) 02πNI r N S μ∙ (C) 0πNIr μ (D) 111. 4、一根很长的电缆线由两个同轴的圆柱面导体组成,若这两个圆柱面的半径分别为R 1和R 2(R 1<R 2),通有等值反向电流,那么下列哪幅图正确反映了电流产生的磁感应强度随径向距离的变化关系?( C )A12、一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( D )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π213. 带电导体达到静电平衡时,其正确结论是(D )A 、导体表面上曲率半径小处电荷密度小B 、表面曲率较小处电势较高C 、导体内部任一点电势都为零D 、导体内任一点与其表面上任一点的电势差等于零14. 在电场中的导体内部的 ( C )12R 112R 12R(A )电场和电势均为零; (B )电场不为零,电势均为零;(C )电势和表面电势相等; (D )电势低于表面电势。
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
二、氢原子光谱
1.光谱:
用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
2.光谱分类
3.氢原子光谱的实验规
律:巴耳末系是氢光谱在可见光区的谱线,其波长公式
1
λ
=R(
1
22
-1
n2
),(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1)。
4.光谱分
析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。
在发现和鉴别化学元素上有着重大的意义。
三、氢原子的能级、能级公式
1.玻尔理论。
高中生物必修一复习大题(考试总分:70 分考试时长: 120 分钟)一、填空题(本题共计 14 小题,共计 70 分)1、(5分)下图是细胞间的3种信息交流方式,请根据图回答问题(1)若图A表示通过细胞分泌的是胰岛素,则胰岛素在细胞内的合成场所是_______,胰岛素进入血液到达全身各处,与靶细胞表面的②_____结合,将信息传递给靶细胞。
②的化学本质是______________。
(2)图B表示通过相邻两细胞的________,使信息从一个细胞传递给另一个细胞,图中③表示___________________,请举一个图B的例子:________________。
(3)图C表示相邻两植物细胞之间形成___________,携带信息的物质从一个细胞传递给另一个细胞,图中结构④表示_________________。
(4)据最新研究发现,内皮素在皮肤中分布不均是形成色斑的主要原因。
内皮素拮抗剂进入皮肤后,可以与黑色素细胞膜的受体结合,使内皮素失去作用,这为美容研究机构带来了福音,这体现了细胞膜的______________功能。
(5)细胞膜的化学组成有___________、_________、____________三类物质2、(5分)下图是植物细胞亚显微结构模式图,请据图回答:(1)如果将该细胞放入30%的蔗糖溶液中,将会出现细胞壁与[ ]______________分离的现象,该现象称为_____________。
(2)图示细胞与植物根尖分生区细胞不相符的结构有[ ]_____________和[ ]________。
(3)细胞中,内连核膜外连细胞膜的膜结构是[ ]_____________。
(4)成熟的植物细胞可以通过_____________作用吸水或失水,因为其具备以下两个条件:①具有___________;②__________________________。
3、(5分)下图为某细胞局部亚显微结构示意图。
练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1×10-9C, Q 2×10-9C.忽略边缘效应,求:(1) 两板共四个外表的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q2σ 2 σ 4个外表的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S ⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S ⨯10-8C/m 2两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图所示,置于静电场中的一个导体,在静电平衡后,导体外表出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1.ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外外表的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)×10-8C/m 2E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外外表存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质外表法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质外表法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之到达等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr )=μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r ) =μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)aa-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B=μ0NI/(4R )xr练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比.解: 1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ),Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图I 1 I 2①②1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S mm 2, 铜的密度ρg/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = ⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少. (2) 假假设线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2 方向垂直线圈平面.线圈平面保持竖直,即P m 与B M m =P m ×BM m =P m B sin(π/2)=Ia 2B=×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )= θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习十 洛仑兹力I图13.5I1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 假设不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2i v•图2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外外表的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内外表的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外外表的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如下图. 求此线框中产生的感应电动势的大小和方向.解: 1.d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图图图εi =-d Φm /d t=()dtdIa b a ba b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场BB 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ωa ,电阻为R 总匝数为N ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感〔续〕互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如下图的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤RS=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)(1)。
大物一期末复习思考题一、问答题1、某人骑自行车以速率v 向正西方行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?2、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是什么?3、若在一个孤立导体球壳内偏离球心处放一个点电荷,则球壳内、外表面上将出现感应电荷,其分布情况是怎样的?4、如何求静电场力作功?5、静电场的高斯定理的内容是什么?你如何理解穿过整个高斯面的电通量、高斯面上的场强、高斯面所包围的体积内电量代数和间的关系?6、处于静电平衡的导体,内部的场强有何特点?导体表面处的场强大小与表面电荷面密度有怎样关系?方向与导体表面又有怎样的关系?7、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1) 和f (v p 2).若T 1<T 2,比较v p 1和v p 2;f (v p 1) 和f (v p 2)的大小关系.8、若质量一定,如何计算各种理想气体的内能?9、理想气体的状态方程?10、质点系动量守恒、机械能守恒条件是什么?刚体角动量守恒的条件是什么?11、变力做功的计算.12、电偶极子的定义及特点.13、麦克斯韦速率分布函数的物理意义是什么?一定量的气体处于平衡态时的最概然速率决定于哪些因素?计算其大小的公式?三种统计速率的物理意义?14、如何计算质点在某一物理过程中的动量增量?某个力的冲量?自己举例分析。
15、地球绕太阳转动角动量和动量都守恒吗?为什么?16、一根质量为m 与地面垂直的细杆受一扰动,绕接触点自由倒下过程中角速度、角加速度、杆上各点的线速度如何变化?17、静电场的电场强度与电势之间有怎样的关系?比如在空间的分布有何特点?18、为什么说静电场是保守力场?为什么说静电场是有源场?19、温度、压强相同的氦气、氮气和二氧化碳,它们分子的平均动能、平均平动动能、平均转动动能有怎样的特点?20、伽利略坐标变换的核心思想是什么?牛顿定律适用的条件是什么?21、“势能概念的引入是以保守力作功为前提的”这句话对吗?22、场强和电势的积分与微分关系式分别是什么?高斯定理说明静电场是有源场,对吗?23、在xoy 平面内的抛物运动,质点的x 分量运动方程为t v x 0=,y 分量的运动方程为23gt y =,写出用位矢来描述质点的运动方程?二、选择题1、质点作半径为R 的变速圆周运动时, 加速度大小为 (v 表示任一时刻质点的速率) [ ](A) d v/d t (B) v 2/R (C) d v/d t + v 2/R (D) [(d v/d t )2+(v 4/R 2)]1/22、某人骑自行车以速率v 向正西方行驶,遇到由北向南刮的风(设风速大小也为v ),则骑车人感觉风是来自于[ ](A)东北方向 (B)西北方向 (C)东南方向 (D)西南方向3、两个质量相等的小球A 和B 由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。
一.选择题
1. 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为[ ]
(A) 50 m ·s -1. . (B) 25 m ·s -1.
(C) 0.
(D) -50 m ·s -1.
答案:(C )
2. 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示。
设时刻t 1至t 2间外力作功为W 1,时刻t 2至t 3间外力作功为W 2,时刻t 3至t 4间外力作功为W 3 ,则[ ]
(A) W 1>0,W 2<0,W 3<0 (B) W 1>0,W 2<0,W 3>0 (C) W 1=0,W 2<0,W 3>0
(D) W 1=0,W 2<0,W 3<0 答案:(C )
3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?[ ]
(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.
(D) 角速度从大到小,角加速度从小到大. 答案:(A )
4. 关于高斯定理的理解有下面几种说法,其中正确的是:[ ]
()A 如果高斯面上E
处处为零,则该面内必无电荷;
()B 如果高斯面内无电荷,则高斯面上E
处处为零;
()C 如果高斯面上E
处处不为零,则高斯面内必有电荷;
()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。
答案:()D
5. 当一个带电导体达到静电平衡时:[ ]
()A 表面上电荷密度较大处电势较高;
()B 导体内任一点与其表面上任一点的电势差等于零; ()C 导体内部的电势比导体表面的电势高; ()D 表面曲率较大处电势较高。
答案: ()B
6. 正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为[ ]
()A Q =-; ()B Q =; ()C 4Q q =-; ()D 2Q q =- 。
答案:()A
7. 两条无限长载流导线,间距0.5厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为[ ]
(A )0 (B )πμ02000
T (C )πμ04000 T (D )π
μ0400T 答案:A
8. 一个带电粒子在下述何种场中运动时,有可能做匀速圆周运动的是[ ] (A )匀强电场 (B )匀强磁场; (C )面电荷附近的电场 (D )通电直导线的磁场。
答案:B
9.把轻的长方形线圈用细线挂在载流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动,当长方形线圈通以如图所示的电流时,线圈将[ ]
(A )不动 (B )靠近导线AB (C )离开导线AB
(D )绕对称轴转动,同时靠近导线AB 答案:B
10. 边长为0.3m 的正三角形 abc ,顶点a 处有一电量为8
10C -的正点电荷,顶点b 处有
一电量为8
10C -的负电荷,则顶点c 处的场强E 和电势U 的大小分别为
92-201910N m C 4πε⎡⎤=⨯⋅⋅⎢⎥⎣⎦
:[ ] ()A 0E =,0U =; ()B 1000(V/m)E =,600V U =; ()C 1000(V/m)E =,0V U =; ()D 2000(V/m)E =,600V U =。
答案:()C (本题仅需判断电场不为零,电势为零) 二.填空题
1. 图中载流导线在平面内分布,电流为I ,载流导线在O 点的磁感强度为。
【R
I
μR I μR I μR I μR I μB 4π24π4π4000000+=++=
】 2. 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,通过此半球面的电场强度通量为 。
【2
πR E 】
3. 质点p 在一直线上运动,其坐标x 与时间t 有如下关系:x =-A sin ω t ,(SI) (A 为常数) 任意时刻t,质点的加速度a =____________. 答:2
sin A t ωω
4.一物体质量为M ,置于光滑水平地板上.今用一水平力F
通
过一质量为m 的绳拉动物体前进,则物体的加速度a =________. 答:)/(m M F +
5. 质量为m 的小球在光滑平面上,沿水平方向以速率v 0撞击一垂直的墙面,被垂直弹回 的水平速率仍为v 0,则碰撞过程中,小球的受到墙壁的冲量大小为__________。
答案:2mv 0(动量定理)
6. 如图所示,一根轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N 的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________. 答案:0.52m kg ⋅
7. 一均匀电场E 中,沿电场线的方向平行放一长为l 的铜棒,则铜棒两端的电势差U =____。
答案:0
8. 真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量ϕ= 。
答案:0
9. 质量为m 1和m 2的两个物体,具有相同的动量.欲使它们停下来,外力对它们做的功之比W 1∶W 2 =__________. 答案:
1
2
m m 10. 质量为m 的质点以速度v
沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是__________. 答案:mvd 三.计算题
1. 质量为m 的质点开始时静止,在如图所示合力F 的作用下沿直线运动,已知)/2sin (0T t F F π=,方向与直线平行,求:
(1) 在0到T 2
1时间内,力F 的冲量大小;
(2) 在0到T 2
1
时间内,力F 所作的总功.
解: (1) ⎰=
2
/0
d )(T t t F I 2分
计算得 π
ππ02
/002cos 2TF T t
TF I T =-= 3分
(2) π0
TF m v I == 2分
m
TF v π0
= 1分
由于 v 0 = 0 ,
由动能定理 2
022
121v v m m W -= )2/(2202m F T π=
2分
2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为22
1
MR ,
滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.
解:根据牛顿运动定律和转动定律列方程
对物体: mg -T =ma ① 2分 对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 2分 将①、②、③式联立得
a =mg / (m +2
1
M ) 2分
∵ v 0=0,
∴ v =at =mgt / (m +
2
1
M ) 2分 3. 两个带等量异号电荷的均匀带电同心球面,半径分别为10.03m R =和20.10m R =。
已
知两者的电势差为450V ,求:内球面上所带的电荷。
[9220
1
910N m /C 4πε=⨯⋅]
答案:设内球上所带电荷为Q ,则两球间的电场强度的大小为
2
04r Q
E επ=
12()R r R << 1分
a
两球的电势差: 2
2111220d d 4R R R R Q r
U E r r ε==π⎰⎰⎪⎪⎭⎫ ⎝⎛-π=21
0114R R Q ε 2分 ∴ 901212
21
4 2.1410C R R U Q R R ε-π==⨯- 2分
另解:设1R 带Q ,则2R 带Q -,Q 在1R 、2R 上的电势:
101'4Q U R πε=
202
'4Q
U R πε= 1分 Q -在1R 、2R 上的电势:102"4Q U R πε-=
202
"4Q
U R πε-= 1分 由电势叠加原理,1R 的电势:1012
11
()4Q U R R πε=-
2R 的电势:20U = 1分
∴ 12U ⎪⎪⎭⎫ ⎝⎛-π=
21
114R R Q ε 1分 解得: 901212
21
4 2.1410C R R U Q R R ε-π==⨯- 1分
4. 已知10 mm 2
裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.
解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有
∑⎰=⋅=⋅I μB 0
πr 2d l B
在导线内r <R , 222
2
πππR
r r R I I ==∑,因而 2
02πR Ir
μB =
在导线外r >R ,
I I =∑,因而
r
I
μB 2π0=
磁感强度分布曲线如图所示.
(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==
s R ,得
T 106.52π30-⨯==
R
I
μB。