2020-2021学年新教材物理人教版选择性必修三 阶段复习课4 原子结构和波粒二象性
- 格式:doc
- 大小:847.59 KB
- 文档页数:12
第四章原子结构和波粒二象性1. 普朗克黑体辐射理论................................................................................................. - 1 -2. 光电效应 .................................................................................................................... - 1 -3.原子的核式结构模型.............................................................................................. - 15 -4. 氢原子光谱和玻尔的原子模型............................................................................... - 26 -5. 粒子的波动性和量子力学的建立........................................................................... - 39 -章末复习提高................................................................................................................ - 47 -1. 普朗克黑体辐射理论2. 光电效应一、能量量子化1.黑体辐射(1)随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
(2)维恩和瑞利的理论解释①建立理论的基础:依据热力学和电磁学的知识寻求黑体辐射的理论解释。
第四章测评(时间:60分钟满分:100分)一、单项选择题(本题共8小题,每小题3分,共24分.每小题只有一个选项符合题目要求)1.白天的天空各处都是亮的,是大气分子对太阳光散射的结果。
美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖。
假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比()A。
频率变大B。
动量变大C.光子能量变大D.波长变长,遵守动量守恒定律和能量守恒定律,自由电子被碰前静止,被碰后动量、能量增加,所以光子的动量、能量减小。
故选项D正确。
2.电子显微镜的最高分辨率高达0。
2 nm,如果有人制造出质子显微镜,在加速到相同的速度情况下,质子显微镜的最高分辨率将()A。
小于0.2 nm B.大于0。
2 nmC。
等于0。
2 nm D.以上说法均不正确由λ=ℎ知,如果把质子加速到与电子相同的速度,因质子的质量更ℎ大,则质子的波长更短,分辨能力更高。
3.下列对于氢原子光谱实验规律的认识中,正确的是()A.因为氢原子核外只有一个电子,所以氢原子只能产生一种波长的光B。
氢原子产生的光谱是一系列波长不连续的谱线C。
氢原子产生的光谱是一系列亮度不连续的谱线D.氢原子产生的光的波长大小与氢气放电管放电强弱有关的谱线,即产生一些特殊波长的光,A选项错误;氢原子产生的光谱是一系列波长不连续的谱线,B选项正确;氢原子光谱是氢原子发射光子时形成的发射光谱,光谱都不是连续的,与亮度无关,C选项错误;氢原子产生的光的波长大小与氢气放电管放电强弱无关,D选项错误。
4。
(2020上海黄浦区二模)不带电的锌板和验电器用导线相连。
若用甲灯照射锌板,验电器的金属箔片不张开;若用乙灯照射锌板,验电器的金属箔片张开,如图所示。
则与甲灯相比,乙灯发出的光()A.频率更高B。
波长更大C。
光强更强 D.速率更大限频率才能产生光电效应;由题干知甲灯照射不能发生光电效应,乙灯照射可以发生光电效应,则乙灯发出的光频率比甲发出的高,故A正确,B、C、D错误。
第四章原子结构和波粒二象性1. 普朗克黑体辐射理论................................................................................................. - 1 -2. 光电效应 .................................................................................................................... - 1 -3.原子的核式结构模型.............................................................................................. - 10 -4. 氢原子光谱和玻尔的原子模型............................................................................... - 17 -5. 粒子的波动性和量子力学的建立........................................................................... - 25 -章末复习提高................................................................................................................ - 30 -1. 普朗克黑体辐射理论2. 光电效应一、能量量子化1.黑体辐射(1)随着温度的升高,一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
(2)维恩和瑞利的理论解释①建立理论的基础:依据热力学和电磁学的知识寻求黑体辐射的理论解释。
阶段复习课核心整合·思维导图必备考点·素养评价素养一物理观念考点1波粒二象性1.光的波动性与粒子性的统一:(1)大量光子产生的效果显示出波动性,如在光的干涉、衍射现象中,如果用强光照射,在光屏上立刻出现了干涉、衍射条纹,波动性体现了出来。
(2)个别光子产生的效果显示出粒子性,如果用微弱的光照射,在光屏上就只能观察到一些分布毫无规律的点,充分体现了粒子性。
(3)如果用微弱的光照射足够长的时间,在光屏上光点的分布又会出现一定的规律性,呈现出干涉、衍射的分布规律。
这些实验为人们认识光的波粒二象性提供了依据。
(4)对不同频率的光,频率低、波长长的光,波动性显著;频率高、波长短的光,粒子性显著。
(5)光在传播时体现波动性,在与其他物质相互作用时体现粒子性。
2.粒子的波动性:(1)德布罗意波是光的波粒二象性的一种推广,包括了所有物体,小到电子、质子,大到行星、太阳,都存在波动性,对应的波叫物质波。
(2)我们观察不到宏观物体的波动性,是因为宏观物体对应的波长太小。
3.波粒二象性的关键词转化:【素养评价】1.实验表明电子也有波粒二象性,由于电子的粒子性比光强,故电子的波长比光的波长更短,电子和光相比,我们( ) A.更容易观察到明显的衍射现象和干涉现象B.不容易观察到明显的衍射现象和干涉现象C.不容易观察到明显的衍射现象,但容易观察到干涉现象D.更容易观察到明显的衍射现象,但不容易观察到干涉现象【解析】选B。
波动性越强越容易观察到明显的衍射和干涉,电子的波长比光的波长更短,则不容易观察到明显的衍射现象和干涉现象,B正确。
2.如果下列四种粒子具有相同的速率,则德布罗意波长最小的是( )A.α粒子B.β粒子C.中子D.质子【解析】选A。
德布罗意波长为λ=,又p=mv得λ=,速率相等,即速度大小相同,α粒子的质量m最大,则α粒子的德布罗意波长最小,故A正确,B、C、D错误。
故选A。
考点2原子的核式结构1.电子的发现:(1)说明了原子是可分的,是有结构的。
(2)典型的两种原子模型:①枣糕模型,②核式结构模型。
2.原子的核式结构:物理情境实验或模型意义观念电子电子的说明原子是可分的发现绕原子核旋转玻尔的能级解释和跃迁理论能较好地解释氢原子光谱原子核α粒子散射实验能用原子的核式结构解释“α粒子散射实验”。
原子内部有一个很小的核,叫作原子核,原子的全部正电荷以及几乎全部的质量都集中在原子核内,带负电的电子绕核运动3.原子的核式结构的关键词的转化:【素养评价】1.(多选)如图所示为卢瑟福的α粒子散射实验的经典再现,用放射性元素发岀的α粒子轰击金箔,用显微镜观测在环形荧光屏上所产生的亮点,关于该实验,下列说法正确的是( ) A.在荧光屏上形成的亮点是由粒子在金箔上打出的电子产生的B.卢瑟福设计该实验是为了验证汤姆孙原子模型的正确性,进一步探究原子的结构与组成,试图有新的发现与突破C.整个装置封闭在玻璃罩内,且抽成真空,是为了避免粒子与气体分子碰撞而偏离了原来的运动方向D.之所以设计成环形荧光屏,是因为卢瑟福在实验前认为粒子可能能穿过金箔,也可能穿不过而反弹回来【解析】选B、D。
在荧光屏上形成的亮点是由α粒子打在荧光屏上产生的,故A错误;汤姆孙提出了枣糕式原子模型,卢瑟福为了验证汤姆孙原子模型的正确性,进一步探究原子的结构与组成,设计了该实验,故B正确;整个装置封闭在玻璃罩内,且抽成真空,是因为α粒子的电离能力较强,在空气中运动的距离短,故C错误;卢瑟福在实验前认为α粒子可能穿过金箔,也可能穿不过而反弹回来,所以将荧光屏设计成环形,故D正确。
故选B、D。
2.在卢瑟福的α粒子的散射实验中,金原子核可以看作静止不动,当α粒子靠近金核附近时,下列哪一个图能描述α粒子的散射轨迹( )【解析】选C。
根据做曲线运动的物体所受合外力指向曲线的内侧且α粒子受到原子核的斥力作用而发生散射,离原子核越近的粒子,受到的斥力越大,散射角度越大,故C正确,A、B、D错误。
故选C。
【补偿训练】不能由卢瑟福原子核式结构模型得出的结论是( )A.原子中心有一个很小的原子核B.原子核是由质子和中子组成的C.原子质量几乎全部集中在原子核内D.原子的正电荷全部集中在原子核内【解析】选B。
卢瑟福原子核式结构模型的结论是原子全部正电荷和几乎全部质量都集中在原子内部一个很小的核上,带负电的电子绕原子核高速旋转,质量几乎忽略不计,所以可以得出选项A、C、D,“原子核是由质子和中子组成的”结论是涉及原子核的结构,与核式结构无关,核式结构说的是原子结构,不是原子核结构,选项B错。
素养二科学思维考点1光电效应规律1.光电效应规律及光电效应方程的应用技巧:(1)任何金属都有自己的截止频率,入射光的频率必须大于金属的截止频率才能发生光电效应,且光电流与光照强度成正比。
(2)由方程E k=hν-W0可知,光电子的最大初动能与入射光的强度无关,随入射光频率的增大而增大。
(3)由方程hν-W0=mv2-0=eU c,遏止电压随着入射光的频率增大而增大。
2.光电效应规律的关键词转化:【素养评价】1.(多选)用如图甲所示的电路研究光电效应中光电流强度与照射光的强弱、频率等物理量的关系。
图中A、K两极间的电压大小可调,电源的正负极也可以对调。
分别用a、b、c三束单色光照射,调节A、K间的电压U,得到光电流I与电压U的关系如图乙所示。
由图可知( )A.单色光a和c的频率相同,但a更强些B.单色光a和c的频率相同,但a更弱些C.单色光b的频率大于a的频率D.改变电源的极性不可能有光电流产生【解析】选A、C。
光电流恰为零,此时光电管两端加的电压为截止电压,根据eU截=m=hν-W,入射光的频率越高,对应的截止电压U截越大。
从图中可知a、c光的截止电压相等,且小于b光的截止电压,所以a、c光的频率相等,小于b光的频率;光电流的大小与光强有关,当a、c光照射该光电管时,则a光对应的光电流大,因此a光子数多,那么a光的强度较强,A、C正确,B错误;若改变电源的极性,仍可能有光电流产生,但电流大小会发生变化,D错误。
2.如图所示,阴极K用极限波长是λ0=0.66 μm 的金属铯制成,用波长λ=0.50 μm的绿光照射阴极K,调整两个极板电压。
当A极电压比阴极高出2.5 V时,光电流达到饱和,电流表G的示数为0.64 μA。
求:(1)每秒钟内阴极发射的光电子数和光电子飞出阴极K时的最大初动能。
(2)若把入射到阴极的绿光的光强增大到原来的二倍,求每秒钟阴极发射的光电子数和光电子到达A极的最大动能。
(3)G中电流为零的条件即遏止电压U AK。
【解析】(1)光电流达到饱和时,阴极发射的光电子全部到达阳极A,所以阴极每秒钟发射的光电子的个数n==个=4.0×1012个。
根据光电效应方程:E k=hν-W0,W0=,代入可求得E k=9.6×10-20 J。
(2)若入射光的频率不变,光的强度加倍,则阴极每秒发射的光电子数也加倍,即n′=2n=8.0×1012个。
根据E k=hν-W0可知,光电子的最大初动能不变,由于A、K之间电势差是2.5 V,所以电子到达A极时的最大动能为:E k′=E k+eU=4.96×10-19 J(3)光电子的最大初动能E k=9.6×10-20 J=0.6 eV。
若使G中电流为零,光电子到达A极时克服电场力做功至少为W=eU=E k,解得U=0.6 V,即U AK=-0.6 V。
答案:(1)4.0×1012个9.6×10-20 J(2)8.0×1012个 4.96×10-19 J (3)-0.6 V【补偿训练】小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意如图甲所示。
已知普朗克常量h=6.63×10-34J·s。
(1)图甲中电极A为光电管的__________(选填“阴极”或“阳极”)。
(2)实验中测得铷的遏止电压U c与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=________ Hz,逸出功W0=__________ J。
(3)如果实验中入射光的频率ν=7.00×1014 Hz,则产生的光电子的最大初动能E k=__________ J。
【解析】(1)在光电效应中,电子向A极运动,故电极A为光电管的阳极。
(2)由题图可知,铷的截止频率νc为5.15×1014Hz,逸出功W0=hνc=6.63×10-34×5.15×1014 J≈3.41×10-19 J。
(3)当入射光的频率为ν=7.00×1014 Hz时,由E k=hν-hνc得,光电子的最大初动能为E k=6.63×10-34×(7.00-5.15)×1014 J≈1.23×10-19 J。
答案:(1)阳极(2)5.15×1014[(5.12~5.18)×1014均视为正确]3.41×10-19[(3.39~3.43)×10-19均视为正确](3)1.23×10-19[(1.21~1.25)×10-19均视为正确]考点2氢原子光谱和能级跃迁1.光谱、能级、能级跃迁的对比分析:角度情境模型构建分析方法光谱发射光谱吸收光谱光谱分析=R H(-)能级能级:基态、激发态r n=n2r1(n=1,2,3…), r1=0.53×10-10 m。
E n=(n=1,2,3…)E1=-13.6 eV能级跃迁定态假设跃迁假设hν=E n-E mN==2.能级跃迁中的关键词转化:【素养评价】1.(多选)如图所示为氢原子能级图,可见光的能量范围为1.62 ~3.11 eV,用可见光照射大量处于n=2能级的氢原子,可观察到多条谱线,若是用能量为E的实物粒子轰击大量处于n=2能级的氢原子,至少可观察到两条具有显著热效应的红外线,已知红外线的频率比可见光小,则实物粒子的能量E ( )A.一定有4.73 eV>E>1.62 eVB.E的值可能使处于基态的氢原子电离C.E一定大于2.86 eVD.E的值可能使基态氢原子产生可见光【解析】选B、D。
红外线光子的能量小于可见光光子的能量,用实物粒子轰击大量处于第2能级的氢原子,至少可观察到两种红外线光子,则说明处于第2能级的氢原子受激发后至少跃迁到第5能级。
所以实物粒子的最小能量为E=E5-E2 =-0.54 eV-(-3.4 eV)=2.86 eV,A、C错误;因为E可以取大于或等于2.86 eV的任意值,则B、D正确。
2.氢原子处于基态时,原子的能量为E1=-13.6 eV,当处于n=3的激发态时,能量为E3=-1.51 eV,则:(1)当氢原子从n=3的激发态跃迁到n=1的基态时,向外辐射的光子的波长是多少?(2)若要使处于基态的氢原子电离,至少要用多大频率的电磁波照射原子?(3)若有大量的氢原子处于n=3的激发态,则在跃迁过程中可能释放出几种不同频率的光子?【解析】(1)由跃迁公式得:hν=E3-E1①ν=②由①②代入数据得:λ=1.03×10-7 m。