《正数与负数》七年级数学教案五篇
- 格式:docx
- 大小:20.42 KB
- 文档页数:14
初一数学正负数教案5篇初一数学正负数教案1一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;假如一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(由于全部的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地说明相反数,援助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即假设a0,那么∣a∣=a. 假设a=0,那么∣a∣=0. 假设a0,那么∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算1. 有理数的加法知识点:有理数的加法法那么:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,假设有互为相反的数,可利用它们的和为0的特点。
正数和负数说课稿(优秀4篇)正数和负数说课稿篇一教学目标1、知识掌握目标:使学生了解和掌握正数、负数和零的意义。
2、技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。
培养创新意识和精神、培养学生合作意识。
3、德育目标:通过负数的。
引入,对学生进行爱国主义教育。
教材分析与处理、学情分析。
本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面等。
采用探索引导式的学习方式。
重点、难点:重点:正数、负数的意义及如何区别意义相反的量。
难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。
教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。
依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。
教学过程教学环节教学内容设计意图一、创设情境导入新课本节课中,首先呈现给学生的是两幅冬日雪景动画画面。
教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?学生:(天气比较冷20°C 零下10°C 不能)教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题。
这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间。
二、获得新知加深理解教师:像零下10°C我们可以记着“-10°C”读做“负的”。
正数和负数教案人教版优秀6篇作为一名教职工,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面这6篇正数和负数教案人教版是作者为您整理的正数和负数教案范文模板,欢迎查阅参考。
正数和负数教案篇一三维目标一、知识与技能进一步巩固正数、负数的概念;理解在同一个问题中,用正数与负数表示的量具有相同的意义。
二、过程与方法经历举一反三用正、负数表示身边具有相反意义的量,进而发现它们的共同特征。
三、情感态度与价值观鼓励学生积极思考,激发学生学习的兴趣。
教学重、难点与关键1.重点:正确理解正、负数的概念,能应用正数、 负数表示生活中具有相反意义的量。
2.难点:正数、负数概念的综合运用。
3.关键:通过对实例的进一步分析, 使学生认识到正负数可以用来表示现实生活中具有相反意义的量。
教具准备投影仪。
教学过程四、复习提问课堂引入1.什么叫正数?什么叫负数?举例说明, 有没有既不是正数也不是负数的数?2.如果用正数表示盈利5万元,那么-8千元表示什么?五、新授例1.一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。
2.2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2001年商品进出口总额的增长率。
分析:在一个数前面添上负号,它表示的是与原数具有意义相反的数。
负与正是相对的,增长-1,就是减少1;增长-6.4%就是减少6.4%,那么什么情况下增长率是0?当与上年持平,既不增又不减时增长率是0.解:1.这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.2.六个国家2001年商品进出口总额的增长率分别为:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义,如盈利- 2千元,就是亏本2千元;前进-3米,就是后退3米;浪费-14元,就是节约14元;向南走- 7米,就是向北走7米,因此盈利2千元与盈利-2千元具有相反的意义。
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
七年级数学《正数和负数》教案数学《正数和负数》教案一教学目标1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.三.正数与负数概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.四.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.5)到目前为止,所学过的数(除π外)都是有理数.数学《正数和负数》教案二教学目标1.使学生理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想.教学建议一.重点.难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数.难点是学习负数的必要性及有理数的分类.关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准.正.负数的引入,有各种不同的方法.教材是由学生熟知的两个实例:温度与海拔高度引入的.比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低_5米记作-_5米.由这两个实例很自然地,把大于0的数叫做正数,把加〝-〞号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的〝基准〞.这样引入正.负数,不仅有利于学生正确使用正.负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质.把负数理解为小于0的数.教材中,没有出现〝具有相反意义的量〞的概念.这是有意回避或淡化这个概念.目的是,从正.负数引入一开始就能较深刻的揭示正.负数和零的性质,帮助学生正确理解正.负数的概念.关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.二.知识结构1.正数.负数和零的概念正数负数零象1.2.5. .48等大于零的数叫正数象-1.-2.5, ,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数2.有理数的分类三.教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象.难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则.例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准.分类的结果,以及它们的相互联系.通过正数.负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中.四.概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带〝+〞号的数是正数,带〝-〞号的数是负数.例如:一定是负数吗?答案是不一定.因为字母可以表示任意的数,若表示正数时, 是负数;当表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究.2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数.正分数.0.负整数.负分数,但研究问题时,通常把有理数分为三类:正数.0.负数,进行讨论.4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数.五.有理数的分类整数和分数统称为有理数.1)正整数.零.负整数统称为整数;正分数.负分数统称为分数.这样有理数按整数.分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数.因此,有理数按正数.负数.0的关系还可分类为:3)注意概念中所用〝统称〞二字,它与说〝整数和分数是有理数〞的意思不大一样.前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说〝统称〞还是不错,而用后一种说法就欠妥了.4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的.如圆周率就不能表示成分数.5)到目前为止,所学过的数(除外)都是有理数.教学设计示例(一)一.素质教育目标(一)知识教学点1.了解:是实际需要的.2.掌握:会判断一个数是正数还是负数.3.应用:会初步应用正负数表示温度.海拔高度等互为相反数意义的量.(二)能力训练点通过正数.负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.(三)德育渗透点1.从实际问题引入正数.负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2.通过正负数的学习,渗透对立.统一的辩证思想.(四)美育渗透点通过引人负数,学生会感觉得小学里学的数是〝不全〞的,从而通过本节课的教学,给学生以完整美的享受.二.学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.2.学生学法:研究实际问题→认识负数→负数在实际中的应用三.重点.难点.疑点及解决办法1.重点:会判断正数.负数,运用正负数表示具有相反意义的量.2.难点:负数的引入.3.疑点:负数概念的建立.四.课时安排2课时五.教具学具准备投影仪(电脑).自制活动胶片.中国地图.六.师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.七.教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1.2.3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆.回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问.【教法说明】教师利用问题〝有没有比0小的数?〞制造悬念,并且这时学生有一种急需知道结果的要求.(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午_点,晚6点,夜间_点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃.[板书]10 5 -5 -10师:再看一个例子,中国地形图上,可以看到我国有一座世界峰—珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-_5米,这两个数表示的高度是相对海平面说的,你能说说8848米,-_5米各表示什么吗?(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-_5米表示吐鲁番盆地比海平面低_5米.【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察.动脉.讨论后得出答案,充分发挥了学生的主体地位.教师针对学生回答的情况给与指正.师:以上实例中出现了-5.-10.-_5这样的数,一般地温度比0℃高5℃.10℃.1.6℃.℃记作+5.+10.+1.6.+,大于0的数为正数;当温度比0℃低于5℃.10℃.2.2℃记作-5.-10.-2.2,像这样在正数前面加〝-〞号叫负数;0既不是正数也不是负数.师随着叙述给出板书[板书]正数:大于0的数负数:正数前面加〝-〞号(小于0的数)0:既不是正数也不是负数.【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数.负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的.(三)尝试反馈,巩固练习1.师板书后提问:第二个例子中的8848是什么数,-_5是什么数,海平面的高度是哪个数?2.出示1(投影显示)例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里〝-_,4.8,+7.3,0,-2.7,-,,,-8._,3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.数学《正数和负数》教案三正数集合负数集合4.(1)某地一月份某日的平均气温大约是零下3℃,可用_________数表示,记作__________.(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?学生活动:1.2题学生回答,3题同桌交换审阅,4题讨论后举手回答.【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.师:在0℃以上的温度用正数表示,0℃以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度.海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生回答.教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:(出示投影升)1.填空(1)-50表示支出50元,那么+100元表示_____________.(2)正常水位为0 ,水位高于正常水位0.2 记作______________,低于正常水位0.3记作______________.(3)乒乓球比标准重量重0._9记作_____________;比标准重量轻0._9记作_____________;标准重量记作______________.2.一个学生演示,教师提出要求规定向前走为正.(1)向前走2步记作_________________.(2)向后走5步记作_________________.(3)〝记作6步〞他应怎么走?〝记作-4步〞呢?(4)原地不动记作_________________.(出示投影5)3.例题一物体沿东西两个相反的方向运动时,可以用正负数表示它们的运动.(1)如果向东运动4 记作4 ,向西运动5记作_______________.(2)如果-7 表示物体向西运动7 ,那么6表明物体怎样运动?学生活动:l题学生审题后回答.2题学生演示,其他学生观察举手回答.3题回答.【教法说明】用正数.负数表示相反意义的量是本节的重点.首先,先让学生举出自己所熟悉的相反意义的量,并用正数负数表示,激发学生兴趣,这时再出示补充的练习中的1题,学生能非常轻松地回答出来,这时学生有一种非常轻松的感觉,噢!原来正数.负数是用来表示这样的量的.紧接着,让一个学生向前后任意走,规定向前为正,让其他学生观察,第一次他向哪个方向走了?走了几步?记作什么?第二次呢?第三次呢?这时学生积极观察举手回答,然后让一个学生提出类似要求〝记作+5应怎样走?〞,这样在活跃.欢快的气氛中加深了对正数负数的理解.最后利用例2作为巩固练习就非常容易了,这一环节就是要学生在一种轻松愉快的气氛中获取知识,符合素质教育的要求.师:通过今天这节课的学习,你能回答老师开始时提出的问题吗?—有没有比零小的数?(有,是负数)1.正数和负数表示的是一对相反意义的量.2.零既不是正数也不是负数.八.随堂练习1.判断题(l)0是自然数,也是偶数( )(2)0可以看成是正数,也可以看成是负数( )(3)海拔-_5米表示比海平面低_5米( )(4)如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元( )(5)如果向南走记为正,那么-10米表示向北走-10米( )(6)温度0℃就是没有温度( )2.将下列各数填入相应的大括号里-9,,0, ,2000,+61,,-10.8正数集合负数集合3.用正数和负数表示下列各量(1)零上24摄氏度表示为___________,零下3.5摄氏度表示为______________.(2)足球比赛,赢2球可记作_________球,输一球应记作____________球.九.布置作业(一)必做题1.下列各数中哪些是正数?哪些是负数?-_,0._,+ , , ,0,25.8,-3.6,-4,9651,-0.12.一物体可左右移动,设向右为正,(1)向左移动_ 应记作什么?(2)〝记作8 〞表明什么?(二)选做题1.一潜水艇所在高度为-50 ,一条鲨鱼在艇上方10 处,鲨鱼所在的高度是多少?2.甲地海拔高度是30 ,乙地海拔高度是20 ,丙地海拔高度是-10 ,哪个地方,哪个地方最低?的地方比最低的地方高多少?十.板书设计随堂练习答案1.√ _ √ √ _ _2.正数集合负数集合3.(1)+24℃,-3.5℃;(2)+2,-1作业答案(一)必作题1.0._, , ,25.8,9651是正数;-_,,-3.6,-4,-0.1是负数;2.(1)向左移动_ 记作 ;(2)记作表明物体向右移动 .(二)选作题1. .2.甲地,丙地最低,的地方比最低的地方高 .(二)一.素质教育目标(一)知识才学点1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解数0在有理数分类中的作用.(二)能力训练点培养学生树立对数分类讨论的观点和能正确地进行分类的能力.(三)德育渗透点通过联系与发展.对立与统一的思考方法对学生进行辩证唯物主义教育.(四)美育渗透点通过有理数的分类,给学对称美的享受二.学法引导1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识.2.学生学法:识记→练习巩固.三.重点.难点.疑点及解决办法1.重点:有理数包括哪些数.2.难点:有理数的分类.3.疑点:明确有理数分类标准.四.教具学具准备投影仪.自制胶片.五.师生互动活动设计教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题.六.教学步骤(一)复习导入(出示投影1)1.把下列各数填入相应的大括号内:+6, ,3.8,0,-4,-6.2, ,-3.8,正数集合负数集合2.填空:(1)若下降5 记作-5 ,那么上升8 记作__________________,不升不降记作_____________________.(2)如果规定+20表示收入20元,那么-10元表示______________.(3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在地不动记作__________________.【教法说明】出示投影后,学生思考,然后举手回答问题.当学生回答完一题后.教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正.负数的概念,以及零的特殊意义.通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示.师:在小学大家学过1,2,3,4……这是什么数呢?生:自然数.师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?生:负数.师:具体叫什么负数呢?师:今天我们要把大家学过的数分类命名,然后给一个统一的名称.【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题.这样一步一个台阶的教学过程,符合学生认识问题的一般规律.(二)探索新知,讲授新课1.分类数的名称1,2,3,4……叫做正整数;-1,-2,-3,-4……叫做负整数.0叫做零., , (即)……叫做正分数;, , (即)……叫做负分数;正整数.负整数和零统称为整数.正分数和负分数统称为分数.整数和分数统称有理数.即【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律.提出问题:巩固概念(出示投影2)(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?【教法说明】这三道小题主要是检查学生对概念的理解.新授过程中随时设计习题进行反馈练习,以便调节回授.注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数.2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:(1)先把有理数按〝整〞和〝分〞来分类,再把每类按〝正〞与〝负〞来分类,如下表:(2)先把有理数按〝正〞和〝负〞来分类,再把每类按〝整〞和〝分〞来分类,如下表尝试反馈,巩固练习(出示投影3)下列有理数中:-7,10.1, ,89,0,-0.67, .哪些是整数?哪些是分数?哪些是正数?哪些是负数?学生思考,然后找同学逐一回答.其他同学准备补充或纠正.【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力.3.数的集合我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合.同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合.(三)变式训练,培养能力(出示投影4)(1)把有理数6.4,-9, ,+10,,-0._1,-1, ,-8.5,25,0,100按正整数.负整数.正分数.负分数分成四个集合.正整数集合 ,负整数集合正分数集合 ,负分数集合(2)把下列有理数:-3,+8, ,+0.1,0, ,-10,5,-0.7填入相应的集合:整数集合 ,分数集合正数集合 ,负数集合【教法说明】学生思考后,动笔完成上述第(1)题.一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力.第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感.(四)归纳小结师:今天我们一起学习了哪些内容?由学生自己小结,然后教师再总结:今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意〝0〞不是正数,但是整数.【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识.再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标.(五)反馈检测(出示投影5)(1)整数和分数统称为_______________;整数包括___________________._________________和零,分数包括________________和__________________.(2)把下列各数填入相应集合的持号内:-3,4,-0.5,0,8.6,-7整数集合 ,分数集合正有理数集合 ,负分数集合(4)选择题:-100不是( )A.有理数;B.自然数;C.整数;D.负有理数.以小组为单位计分,积分的组为优胜组.【教法说明】通过反馈检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感.七.随堂练习1.判断题(1)整数又叫自然数.()(2)正数和负数统称为有理数()(3)向东走-20米,就是向西走20米( )(4)温度下降-2℃,是零上2℃( )(5)非负数就是正数,非正数就是负数()2.在下列适当的空格里打上〝√〞号有理数整数分数正整数负分数自然数2-3._ 03.把下列各数分别填在相应的大括号里 1.8,-42,+0._, ,0,-3.__926,,1整数集合分数集合正数集合负数集合。
正数和负数教案正数和负数教学反思优秀4篇初一上册数学《正数和负数》教案篇一一、教学目标1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
二、教学重点和难点重点:正负数的概念难点:负数的概念三、教具投影片、实物投影仪四、教学内容(一)引入师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4这些数,我们把它叫做什么数?生:自然数师:为了表示“没有”,又引入了一个什么数?生:自然数0师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数)师:可见数的概念是随着生产和生活的需要而不断发展的。
请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。
[板书:1、1正数与负数](二)新课教学1、相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)(1) 汽车向东行驶2.5千米和向西行驶1.5千米;(2) 气温从零上6摄氏度下降到零下6摄氏度;(3) 风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义请学生举出一些相反意义的量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。
正数和负数优秀教案设计年级七年级学科数学课题 1.1正数和负数课型新授课时 1教学目标知识与技能1.了解正数与负数是从实际需要中产生的.2.理解正数、负数及0的意义,掌握正数、负数的表示方法.3.会用正数、负数表示具有相反意义的量.过程与方法1.通过探索和发现数学概念的过程,体会数学的逻辑性和结构美,初步学会与他人合作学习。
2.通过解决实际问题的过程,学会分析问题、解决问题的方法,提高逻辑思维能力。
情感、态度、价值观1.通过参与数学活动,体验学习数学的乐趣,形成积极探索的精神和态度。
2.通过数学学习,形成实事求是的态度和勇于探索的科学精神。
教学重点、难点会用正数、负数表示具有相反意义的量.学情分析在小学阶段,学生已经学习过自然数、小数和分数等相关概念,也在主题活动和项目学习中了解过负数,他们已经对正数和负数有了浅表的认识,尽管当时教材没有给出正数和负数的明确定义,但也使学生初步认识了常见数中的正数和负数,这些知识构成了本节内容新知的“最近发展区”七年级的学生正处于认知发展的关键时期,他们的抽象思维能力正在逐步发展,但对于较为抽象的概念和理论,仍需要借助具体的事物或情境进行理解和记忆,在本节内容的学习中,学生可能会对负数的概念感到困惑,但也会因为负数的引人而感受到数学的魅力和趣味性,教师在教学过程中应关注学生的情感状态,激发学生的学习兴趣和动机,帮助学生建立学习的信心.七年级的学生在学习能力和智力发展方面已经具备了一定的基础,能够通过观察、思考、实践等方式来获取知识和技能,但在思维方面,学生可能会遇到一些困难,如理解负数的概念、意义等,这些困难可能会导致学生在学习过程中产生挫败感或焦虑情绪,教师需关注学生的情绪,及时疏导,由于学生的个体差异较大,教师在教学过程中应因材施教,根据学生的实际情况进行有针对性的教学。
教学方法及学法指导讨论法、探究法、指导法教学媒体课本,黑板、多媒体教学通案教师活动学生活动教学过程(一)情境导入同学们,今天我们来学习第一章第一节课正数和负数。
第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ±5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。
正数和负数教案优秀5篇《正数和负数教案》篇一学习目标1、了解负数是从实际需要中产生的;2、能判断一个数是正数还是负数,理解数0表示的量的意义;3、会用正负数表示实际问题中具有相反意义的量。
重点难点重点:正、负数的概念,具有相反意义的量难点:理解负数的概念和数0表示的量的意义教学流程师生活动时间复备标注一、导入新课我先向同学们做个自我介绍,我姓,大家可以叫我老师,身高米,体重千克,今年岁,教龄是年龄的,我将和同学们一起度过三年的初中学习生活。
老师刚才的介绍中出现了一些数,它们是些什么数呢?[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
所以,数产生于人们实际生产和生活的需要。
在生活中,仅有整数和分数够用了吗?二、新授1、自学章前图、第2 页,回答下列问题数-3,3,2,-2,0,1.8%,-2.7%,这些数中,哪些数与以前学习的数不同?什么是正数,什么是负数?归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。
根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+1/3,…,就是2、0.5、1/3,…。
这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值。
如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.2、自学第23页,回答下列问题大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?0有什么意义?归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
3、用正负数表示具有相反意义的量:自学课本34页有哪些相反意义的量?请举出你所知道的相反意义的量?“相反意义的量”有什么特征?归纳小结:一是意义相反,二是有数量,而且是同类量。
初一数学《正数和负数》教案(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初一数学《正数和负数》教案(精选9篇)教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。
《正数与负数》七年级数学教案五篇《正数与负数》教案1教学内容:教材2-4页例题及“做一做”的内容。
教学目标:1.知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受利用负数的需要和方便。
2.过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。
正数都大于0,负数都小于0。
3.情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教具学具:温度计、练习纸。
教学过程:一.游戏导入(感受生活中的相反现象)1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。
游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2.下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③XX月份,学校小卖部赚了500元。
(亏了500元)。
④零上10摄氏度(零下10摄氏度)。
3.谈话:老师的一位朋友喜欢旅游, XX月下旬,他又打算去几个旅游城市走一走。
我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。
下面就请大家一起和我走进天气预报。
(天气预报片头)例11.认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。
我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?现在你能看得出南京是多少摄氏度吗? (是0℃。
)你是怎么知道的?(那里有个0,表示0摄氏度)。
__的气温:__的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)指出:__的气温比0℃要高,是零上4摄氏度。
了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?比较:现在我们已经知道了这三个地方的最低气温。
仔细观察__和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①__的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。
+4也可以直接写成4,把正号省略了。
因此同学们所说的4℃也就是+4℃。
(板书)②北京的气温比0℃低,是零下4摄氏度。
我们可以用-4℃来表示零下4摄式度(板书-4)。
跟老师一起来读一下。
写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2.试一试:学生看温度计,写出各地的温度,并读一读。
3.听一段中央台的天气预报,将你听到城市的最低和温度记录下来。
4.小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三.学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)1.同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差较大,这是和它的海拔高度关于的。
最近经国家测绘局公布了珠峰的最新海拔高度。
2.我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?3.我们再来看x疆的吐鲁番盆地的海拔图。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4.珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。
(板书)(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四.小组讨论,归纳正数和负数。
1.通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。
那你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?2.学生交流、讨论。
3.指出:因为+8844.43也可以写成8844.43米,因此有正号和没正号都可以归于一类。
明确提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4.小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。
同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。
0就象一条分界线,把正数和负数分开了,它谁都不属于。
但对于正数和负数来说,它却必不可少。
我们把象+4. 4.+8844.43等这样的数叫做正数;象-4.-155等这样的数我们叫做负数;而0既不是正数,也不是负数。
(板书)正数都大于0,负数都小于0。
这节课我们就和大家一起来认识正数和负数。
(板书:认识正数和负数)五.联系生活,巩固练习1.练习一第2.3题2.你知道吗:水沸腾时的温度是____。
水结冰时的温度是____。
地球表面的最低温度是3.讨论生活中的正数和负数(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。
老师现在要到33层应该按几啊?要到地下3层呢?六.课堂小结这节课我们一起认识了正数和负数。
在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都有相反的意义,我们都可以用正数和负数来表示。
七.布置作业《家庭作业》第1页的练习。
《正数与负数》教案2教学内容:比较正数和负数的大小。
教学目的:1.知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
2.过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。
3.情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
重点难点:负数与负数的比较。
教学过程:一.复习1.读数,指出哪些是正数,哪些是负数?-8 5.6 +0.9 -20XX六年级数学下册教案01-02 +20XX六年级数学下册教案01-02 0 -822.如果+20%表示增多20%,那-6%表示。
3.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度二.新授(一)教学例31.怎样在数轴上表示数?(1.2.3.4.5.6.7)2.出示例3(1)提问你能在一条直线上表示他们运动后的情况吗?(2)让学生确定好起点(原点)、方向和单位长度。
学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察A、从0起往右依次是?从0起往左依次是?你发现什么规律?B、在数轴上分别找到1.5和-1.5对应的点。
如果从起点分别到。
5和-1.5处,应如何运动?(7)练习:做一做的第1.2题。
(二)教学例41.出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2.学生交流比较的方法。
3.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4.再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,因此-8〈-6”5.再通过让另一学生比较“8 〉6,但-8〈 -6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6.总结:负数比0小,正数比0大,负数比正数小。
7.练习:做一做第3题。
三.巩固练习1.练习一第4.5题。
2.练习一第6题。
四.全课总结1.在数轴上,从左到右的顺序就是数从小到大的顺序。
2.负数比0小,正数比0大,负数比正数小。
五.布置作业《家庭作业》第2页的练习。
《正数与负数》教案3一.教学内容:第2~3页例1.例2。
及相应的“做一做”,练习一第1题二.教学目标:1.使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。
知道0既不是正数,也不是负数,负数都小于0。
2.使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
三.教学重点:知道正数、负数和0之间的关系。
四.教学难点:在现实情境中了解负数的产生与应用。
五.教学准备:多媒体课件,温度计。
六.教学过程:㈠、创设情境,初步认识负数。
1.情境引入:中央电视台天气预报节目片头。
出示例1:宜昌、哈尔滨的温度。
2.提问:你能知道些什么信息?学生回答:宜昌是零上16度,哈尔滨是零下16度3.引导:宜昌和哈尔滨的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?4.请会的学生介绍写法、读法。
同时在图片下方出示:16℃(+16℃)-16℃师问:你们怎么知道的?5.小结并板书:“+16”这个数读作正十六,书写这个数时,只要在以前学过的数16的前面加一个正号,“+16”也可以写成“16”;“-16”这个数读作负十六,书写时,可以写成“-16”。
6.通过“零上16摄氏度”和“零下16摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的明确提出,让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求。
同时,学生已有的生活经验,使他们能很快联想到在“16”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。
㈡、进一步体验负数,了解正、负数与0的关系1.课件出示例2直观图,银行取款与存款。
2.师:你从图中能知道些什么?你能用今天所学的知识表示取款预存款吗?3.学生尝试表达,并说含义。