概率的对偶原则
- 格式:docx
- 大小:10.07 KB
- 文档页数:1
知识要点一 概念:1随机事件:用,,A B C 等表示 互不相容: AB =Φ互逆: AB =Φ且A B ⋃=Ω ,此时,B A = 互逆⇒互不相容 ,反之不行相互独立: ()()P A B P A =或()()()P AB P A P B =2 随机事件的运算律:(1) 交换律: ,A B B A AB BA ⋃=⋃= (2) 结合律: ()(),()()A B C A B C AB C A BC ⋃⋃=⋃⋃=(3) 分配律: (),()()()A B C AB AC A BC A B A C ⋃=⋃⋃=⋃⋃(4 ) De Morgen 律(对偶律)B A B A =⋃ B A AB ⋃= 推广:11n ni i i i A A ===U I11nni i i i A A ===IU3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ⊂ 则()()P A P B ≤ 条件概率 ()()()P AB P A B P B =4 随机变量: 用大写,,X Y Z 表示 .若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X =若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立⇒不相关 反之不成立当X 与Y 服从正态分布时 ,则相互独立 ⇔不相关二 两种概率模型古典概型 :()MP A N=:M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n mn n P m C p q -=n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率2112()()m n m m P m m m P m =≤≤=∑n 次独立试验序列中事件A 至少发生r 次的概率1()()1()nr n n m rm P m r P m P m -==≥==-∑∑特别的 ,至少发生一次的概率 (1)1(1)nP m p ≥=--三 概率的计算公式:加法公式:()()()()P A B P A P B P AB ⋃=+-若B A ,互不相容 ,则)()()(B P A P B A P +=+推广:)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃若B A,,C 互不相容,则()()()()P A B C P A P B P C ++=++乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B =推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L全概率公式:若 A 为随机事件,n B B B ΛΛ21,互不相容的完备事件组,且 0)(>i B P 则 )()()()()()()(2211n n B A P B P B A P B P B A P B P A P +++=ΛΛ 注: 常用,B B 作为互不相容的完备事件组有诸多原因可以引发某种结果 ,而该结果有不能简单地看成这诸多事件的和 ,这样的概率问题属于全概问题. 用全概率公式解题的程序:(1) 判断所求解的问题 是否为全概率问题(2) 若是全概率类型,正确的假设事件A 及i B ,{}i B 要求是互斥的完备事件组 (3) 计算出(),()i i P B P A B(4) 代入公式计算结果四 一维随机变量:分布函数:)()(x X P x F ≤= 性质:(1) 1)(0≤≤x F(2) 若21x x < ,则)()(21x F x F ≤ (3) 右连续(4)1)(lim =+∞→x F x 即 1)(=+∞F0)(lim =-∞→x F x 即 0)(=-∞F ( 此性质常用来确定分布函数中的常数)利用分布函数计算概率:()()()P a X b F b F a <≤=- 一维离散随机变量:概率函数:()()1,2i i p x P X x i ===L (分布律)性质:()0i p x ≥()1iip x =∑ (此性质常用来确定概率函数中的常数)已知概率函数求分布函数 ()()()i i iix xx xF x P X x p x ≤≤===∑∑一维连续随机变量: 概率密度()f x性质:(1) 非负性()0f x ≥ (2)归一性:()1f x dx +∞-∞=⎰(常用此性质来确定概率密度中的常数)分布函数和概率密度的关系: ()()f x F x '= ()()xF x f x dx -∞=⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用概率密度求概率 ()()baP a X b f x dx <≤=⎰五 一维随机变量函数的分布:离散情形 : 列表 、整理、合并连续情形()Y g X =: 分布函数法. 先求Y 的分布函数 ,再求导 六 二维随机变量: 联合分布函数 :(,)(,)F xy P X x Y y =≤≤性质: (1) (,)0F -∞-∞= (2) (,)0F x -∞= (3) (,)0F y -∞= (4) (,)1F +∞+∞=(此极限性质常用来确定分布函数中的常数)边缘分布函数: ()(,)X F x F x =+∞ ()(,)Y F y F y =+∞ 二维离散随机变量:联合概率函数 (,)(,)i j i j p x y P X x Y y === 列表 边缘概率函数: ()(,)X i ijjp x p x y =∑ ()(,)Yi i j ipy p x y =∑二维连续随机变量: 联合概率密度 (,)f x y性质 (1)(,)0f x y ≥(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(常用此性质来确定概率密度中的常数)联合分布函数与联合概率密度的关系(,)(,)(,)(,)x yf x y F x y x yF x y f x y dxdy-∞-∞∂=∂∂=⎰⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用联合概率密度求概率((,))(,)RP x y R f x y dxdy ∈=⎰⎰已知联合概率密度求边缘概率密度()(,)X f x f x y dy +∞-∞=⎰()(,)Y f y f x y dx +∞-∞=⎰(注意:当被积函数是分段函数时,要分区间讨论,其结果也是分段函数)七 随机变量的数字特征: 若X 为离散随机变量:1()()niii E X x p x ==∑若X 为连续随机变量: ()()E X xf x dx +∞-∞=⎰二维情形 若(,)~(,)X Y f x y 为二维连续随机变量,则 ()()(,)X E X xf x dx xf x y dxdy +∞+∞+∞-∞-∞-∞==⎰⎰⎰()(,)E Y yf x y dxdy +∞+∞-∞-∞=⎰⎰若(,)~(,)i j X Y p x y 为二维离散随机变量,则()()(,)i X i i i j iijE X x p x x p x y ==∑∑∑()()(,)j Y j j i j jjiE Y y p y y p x y ==∑∑∑随机变量的函数的数学期望:若X 为离散随机变量:[]()()()iiiE g X g x p x =∑若X 为连续随机变量 []()()()E g X g x f x dx +∞-∞=⎰方差:定义 []{}2()()D X EX E X =-方差的计算公式:22()()()D X E X E X =- 注意这个公式的转化:22()()()E X D X E X =+关于期望的定理: 关于方差的定理 (1) ()E C C = (1) ()0D C =(2)()()E CX CE X = (2) 2()()D CX C D X =(3) ()()()E X Y E X E Y +=+ 相互独立: ()()()D X Y D X D Y +=+ ()()()E X Y E X E Y -=- ()()()D X Y D X D Y -=+ ()()()E X Y E X E Y λμλμ+=+ (注意:反之不成立) 相互独立()()()E XY E X E Y =(注意:反之不成立)八 要熟记的常用分布及其数字特征:01-分布 (1,)B p 1()0,1x xp x p q x -== ()()E X p D X pq == 二项分布(,)B n p ()0,1x x n xi n p x C p qx n -==L ()()E X np D X npq ==泊松分布()p λ ()0,1!xp x e x x λλ-==L ()()E X D X λλ==均匀分布:(,)U a b 1()0a x b f x b a ⎧<≤⎪=-⎨⎪⎩其他 ()01x aa xb b a F X x ax b -⎧≤<⎪-⎪=<⎨⎪≥⎪⎩2()()()212a bb a E X D X +-==指数分布:()e λ 0()00xe xf x x λλ-⎧>=⎨≤⎩ 10()00x e x F x x λ-⎧->=⎨≤⎩211()()E X D X λλ==正态分布:2~(,)X N μσ22()21()2x f x e μσπσ--=22()21()2x xF x edx μσπσ---∞=⎰2()()E X D X μσ==特别地(0,1)N 221()2x x e ϕπ-=221()2x xx edx π--∞Φ=⎰()(1)(x x Φ-=-Φ)()0()1E X D X ==2~(,)X N μσ 1212()()x x X P x X x P μμμσσσ---<<=<<21()()x x μμσσ--=Φ-Φ九 正态随机变量线性函数的分布十 统计部分:统计量 无偏性 有效性矩估计 最大似然估计 区间估计 假设检验例: 甲袋中有5只红球10只白球,乙袋中有8只红球6只白球,现先从甲袋中任取一球放入乙袋,然后又从乙袋中任取一球放入甲袋. 求这一个来回后甲袋中红球数不变的概率 . 解: 设A :从甲袋中取出放入乙袋的是红球,B :从乙袋中返还甲袋的是红球,C : 这一个来回后甲袋中红球数不变,则,B A AB C +=从而)()()()()()()(A B P A P A B P A P B A P B A P C P +=+=951581510159155=⋅+⋅=.例 高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为3.0 ,又若敌机中一弹,其坠落的概率为2.0,若敌机中两弹,其坠落的概率为6.0,若敌机中三弹,则必然坠落。
概率论重要知识点总结概率论重要知识点总结概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
下面为帮助同学们更好地理解概率论,小编汇总了关于概率论的重要知识点总结,希望对同学们学习上有所帮助。
第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω 表示. 一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A-B。
用交并补可以表示为互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时可记为A+B。
对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:事件运算律:设A,B,C为事件,则有:(1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC(3)分配律:A(BC)=(AB)(AC) ABAC(4)对偶律(摩根律):第二节事件的概率概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型, 其样本空间Ω 个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ 理解为长度或体积即可. 第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的`相互独立:若两事件A、B 满足P(AB)= 相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)= 相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)= 两两独立独立的性质:若A 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
第十四章 概率论初步第一节 事件与概率一、随机事件和样本空间在研究自然界和人类社会时,人们可观察到各种现象,按它是否带有随机性将它们划分为两类。
一类是在一定条件下必然会发生的现象,称这类现象为确定性现象。
例如苹果从树上掉下来总会落到地上,三角形的内角和一定为180º。
另一类现象是在一定条件可能出现也可能不出现的现象,称这类现象为随机现象。
例如掷一枚质地均匀的硬币时,它可能出现正面向上,也可能出现反面向上等。
对于随机现象的一次观察,可以看作是一次试验,如果某种试验满足以下条件:(1)试验可在相同条件下重复地进行;(2)每次试验的结果可能不止一个,并且能事先确定试验的所有可能的结果;(3)每次试验的结果事先不可预测,称这种试验为随机试验。
随机试验的每一个可能的结果,称为基本事件,它们的全体,称作样本空间,通 常用字母Ω表示。
样本空间的元素即基本事件,有时也称作样本点,常用ω表示。
例1、一次掷两颗骰子,观察每颗的点数解: Ω=}654321,|),{(、、、、、j i j i =其中()j i ,表示第一颗掷出i 点,第二颗掷出j 点,显然, Ω共有36个样本点。
例2、 一个盒子中有十个完全相同的球,分别标以号码1021、、、Λ从中任取一球, 解:令 {}i i 取出球的号码为=则}1021{、、、Λ=Ω称样本空间Ω的某一子集为一个随机事件,简称事件,通常用大写英文字母A 、B 、C ……表示。
如在例2中, A={}取出球的标号为奇数因为Ω是所有基本事件所组成,因而在任一次试验中,必然要出现Ω中的某一些基本事件ω,即Ω∈ω,也即在试验中,Ω必然会发生,又用Ω来代表一个必然事件。
相应地,空集φ可以看作是Ω的子集,在任意一次试验中,不可能有φω∈,即φ永远不可能发生,所以φ是不可能事件。
我们可用集合论的观点研究事件,事件之间的关系与运算如下:(1)包含 如果在一次试验中,事件A 发生必然导致事件B 发生,则称事件B 包含事件A ,记为B A ⊂由例2,{}5球的标号为=B ,则A B ⊂(2)等价 如果B A ⊂同时A B ⊂,则称事件A 与事件B 等价,记为A=B 。
第1篇一、帕斯卡定理及其背景帕斯卡定理是组合数学中的一个基本定理,它描述了二项式系数的性质。
具体来说,对于任意的非负整数n和k,有:C(n, k) = C(n-1, k-1) + C(n-1, k)其中,C(n, k)表示从n个不同元素中取出k个元素的组合数,也称为二项式系数。
帕斯卡定理的证明有多种方法,其中一种常用的是数学归纳法。
假设当n=1时,帕斯卡定理成立,即C(1, k) = C(0, k-1),显然成立。
接下来,假设当n=m时,帕斯卡定理成立,即C(m, k) = C(m-1, k-1) + C(m-1, k)。
现在考虑n=m+1的情况,我们有:C(m+1, k) = C(m, k-1) + C(m, k)根据归纳假设,上式可转化为:C(m+1, k) = [C(m-1, k-2) + C(m-1, k-1)] + [C(m-1, k-1) + C(m-1, k)]合并同类项,得:C(m+1, k) = C(m-1, k-2) + 2C(m-1, k-1) + C(m-1, k)这正是C(m+1, k) = C(m, k-1) + C(m, k)的形式,说明帕斯卡定理在n=m+1时也成立。
由数学归纳法,帕斯卡定理对所有的非负整数n和k都成立。
二、帕斯卡定理的对偶定理帕斯卡定理的对偶定理是关于组合数之间的一种对偶关系。
具体来说,对于任意的非负整数n和k,有:C(n, k) = C(n, n-k)这个对偶定理揭示了组合数之间的对称性。
证明如下:由组合数的定义,C(n, k)表示从n个不同元素中取出k个元素的组合数。
而C(n, n-k)表示从n个不同元素中取出n-k个元素的组合数。
由于从n个元素中取出的元素个数总和为n,因此取出k个元素的同时,必然取出了n-k个元素。
因此,C(n, k)和C(n, n-k)表示的是相同的情况,即从n个元素中取出k个元素,剩下的n-k个元素也被取出。
因此,C(n, k) = C(n, n-k)。
《概率论与数理统计》 第一章 随机事件与概率事件之间的关系: 事件之间的运算: 运算法则:交换律A ∪B=B ∪A A ∩B=B ∩A结合律(A ∪B)∪C=A ∪(B ∪C) (A ∩B)∩C=A ∩(B ∩C) 分配律(A ∪B)∩C=(AC)∪(BC) (A ∩B)∪C=(A ∪C)∩(B ∪C) 对偶律 A ∪B ‾‾ =A ‾∩B ‾ A ∩B ‾‾ =A ‾∪B ‾ 古典概型: 概率公式:求逆公式 P(A ‾)=1- P(A)加法公式 P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 求差公式:P(A-B)=P(A)-P(AB); 当A ⊃B 时,有P(A-B)=P(A)-P(B)注意: A-B = A B ‾ = A-AB = (A ∪B)-B条件概率公式:P(A|B)=P(AB)P(B); (P(B)>0)P(A|B)表示事件B 发生的条件下,事件A 发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0) 一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)全概率公式:P(A)= ∑i=1nP(A|B i )P(B i ) 其中B 1,B 2,…,B n 构成Ω的一个分斥。
贝叶斯公式:P(A k |B)= P(B|A k )P(A k )P(B) = P(B|A k )P(A k )∑i=1nP(B|A i )P(A i )(由果溯因)概论的性质:事件的独立性:如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
结论:1. 如果P(A)>0,则事件A 与B 独立⇔2. 事件A 与事件B 独立⇔事件A 与事件B ‾独立⇔事件A ‾与事件B 独立⇔事件A ‾与事件B ‾独立贝努里概型:指在相同条件下进行n 次试验;每次试验的结果有且仅有两种A 与A ‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p 。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论知识点总结概率论知识点总结「篇一」概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。
其次,做游戏是学习数学最好的方法之一,根据课的内容的特点,教师设计了转盘游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性,在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理,在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式。
再次,我们教师在上课的时候要理解频率和概率的关系,教材中概率的概念是通过频率建立的,即频率的稳定值及概率,也就是用频率值估计概率的大小。
通过实验,让学生经历“猜测结果一进行实验一分析实验结果”的过程,建立概率的含义。
要建立学生正确的概率含义,必须让他们亲自经历对随机现象的探索过程,引导他们亲自动手实验收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,真正树立正确的概率含义。
第四,我们努力让学生在具体情景中体会概率的意义。
由于初中学生的知识水平和理解能力,初中阶段概率教学的基本原则是:从学生熟悉的生活实例出发,创设情境,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作,在知识的主动建构过程中,促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历会使他们终身受益,在具体情境中体验概率的意义。
《概率统计与随机过程》知识总结第1章 随机事件及其概率一、随机事件与样本空间 1、随机试验我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行;(2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。
随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。
2、样本空间随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。
3、随机事件称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。
随机事件通常利用大写字母A 、B 、C 等来表示。
在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。
特别地,将只含有一个样本点的事件称为基本事件;样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件;事件∅(S ∅⊂)不包含任何样本点,它在每次试验中都不发生,称∅为不可能事件。
4、随机事件间的关系及运算(1)包含关系:若B A ⊂,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。
(2)相等关系:若B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为A B =。
(3)事件的和:称事件{|A B x x A ⋃=∈或}x B ∈为事件A 与事件B 的和事件。
事件A B ⋃发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。
类似地,称1n i i A =⋃为n 个事件12n A A A ⋯、、、的和事件,称1i i A ∞=⋃为可列个事件12 A A ⋯、、的和事件。
(4)事件的积:称事件{|A B x x A ⋂=∈且}x B ∈为事件A 与事件B 的积事件。
事件A B ⋂发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。
概率论期末考试公式复习对偶律: ,=; = 概率的性质 1. P (Ø)=0;2. A 1,A 2,…, A n 两两互斥时:P (A 1∪A 2∪…∪A n )=P (A 1)+…+P (A n ),3.)(1)(A P A P -=(A 是 A 不发生)(D )4.若A ⊂B , 则有: P (A )≤ P(B ),P (AB ) = P (A ),P (B -A )=P (B )-P (A ),P (A ∪B )=P (B ).5.)()()()(AB P B P A P B A P -+=⋃(D ), P (B -A )=P (B )-P (AB )。
古典概率模型中,事件A 的概率基本事件总数中包含基本事件数A A P =)(从n 件商品中取出k 商品,共有)!(!!k n k n C k n -=[即⎪⎪⎭⎫ ⎝⎛k n ]种取法[12)1(!⋅⋅⋅-⋅= n n n ]。
D 1- P (B )>0,称下式为事件B 发生条件下,事件A 的条件概率, )()()|(B P AB P B A P =乘法公式:若P (B )>0,则 P (AB )=P (B )P (A |B ) ;若P (A )>0,则P (AB )=P (A )P (B |A )。
设A 1, A 2,…,A n 是两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0, i =1, 2,…, n ; 另有一事件B , 它总是与A 1, A 2,…, A n 之一同时发生,则全概率公式:∑==ni i i A B P A P B P 1)()()(|贝叶斯公式:. ,,2 ,1 , )()()()()|(1n i A B P A P A B P A P B A P nj j j i i i ==∑=||(D 1)随机变量 X 的分布函数:F (x )= P (X ≤x ), -∞< x <∞。
附加知识:排列组合知识小结:一、计数原理1•加法原理:分类计数。
2•乘法原理:分步计数。
二、排列组合1 •排列数(与顺序有关):A"' = n(ti—1)(/1 —2)…(“—m + l),(/n M ii)A:二〃!,=女口:4^ = 7x6x5x4x3=2520, 5!= 5x 4x 3x2x 1= 1202•组合数(与顺序无关):如:C4=< = 7x6x5x4 = 3 C S=C;.5= C;=Z X6=214! 4x3x2xl 2x13•例题:(1)从1, 2, 3, 4, 5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_^ = 5x4x3 = 60_种取法。
(2)从0, 1, 2, 3, 4这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_AX = 4x4x3 = 48_种取法。
(3)有5名同学照毕业照,共有_^ = 5x4x3x2xl=120—种排法。
(4)有5名同学照毕业照,其中有两人要排在一起,那么共有—A2^ = (2xl)x(4x 3x2x1)= 48 种排法。
(5)袋子里有8个球,从中任意取出3个,共有_C;—种取法。
(6)袋子里有8个球,5个白球,3个红球。
从中任意取岀3个,取到2个白球1个红球的方法有_ __________ 种。
8x7x63x2x1第一章、基础知识小结一、随机事件的关系与运算1•事件的包含设A, B为两个事件,若A发生必然导致B发生,则称事件B 包含于A,记作Bu4。
2.和事件事件=A,B中至少有一个发生“为事件A与B的和事件,记作AUB 或A+B。
性质:(1) AuAUBEuAUE;(2)若Ac B,则AUB = B3•积事件:事件A,B同时发生,为事件A与事件B的积事件,记作AQB 或AB。
性质:(1)AB CZ A9AB CZ B;(2)若AuB,则AB= A4•差事件:書件A发生而B不发生为事件A与B事件的差事件,记作A-B(AB)O性质:(1) A—BuA;(2)若AuB,则A—B = 05•互不相容事件:若事件A与事件B不能同时发生,即AB = <P,则称事件A与事件B是互不相容的两个事件,简称A与B互不相容(或互斥)。