第四章.基带数字信号及其传输
- 格式:ppt
- 大小:1.78 MB
- 文档页数:85
第四章(数字基带传输系统)习题及其答案【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。
【答案4-1】【题4-2】设随机二机制序列中的0和1分别由g(t)和g(t)组成,其出现概率分别为p和(1p):1)求其功率谱密度及功率;2)若g(t)为图(a)所示的波形,T为码元宽度,问该序列存在离散分量s1f Ts否?3)若g(t)改为图(b)所示的波形,问该序列存在离散分量1f Ts否?【答案4-2】1)随机二进制序列的双边功率谱密度为2 2P ( ) f P(1 P) G ( f ) G ( f ) f [PG (mf ) (1 P)G (mf )] ( f mf ) s s 1 2 s 1 s 2 s sm由于g1(t) g2 (t) g(t )可得:22 2 2P ( ) 4 f P(1 P)G ( f ) f (1 2P) G(mf ) ( f mf )s s s s sm式中:G( f )是g(t )的频谱函数。
在功率谱密度P() 中,第一部分是其连续谱成s分,第二部分是其离散谱成分。
随机二进制序列的功率为1S P ( )ds2--22[4 f P(1 P)G ( f ) f (1 2P)G (mf ) ( f mf )] dfs s s sm224 f P(1 P) G ( f )df f (1 2P)G( mf ) ( f mf )dfs s s s--m2 2 24 f P(1 P) G ( f )df f (1 2P) G( m f )s s s-m22)当基带脉冲波形g(t ) 为Ts1 tg(t) { 20 elset g(t )的付式变换G( f )为G( f ) T Sa( T f )s s因此sinG( f s ) T s Sa( T s f s) T s 0式中:fs1T 。
信息论与编码技术实验教案第一章:信息论基础1.1 信息的概念与度量介绍信息的基本概念,信息源的随机性,信息的不确定性。
讲解信息的度量方法,如香农熵、相对熵等。
1.2 信道模型与容量介绍信道的概念,信道的传输特性,信道的噪声模型。
讲解信道的容量及其计算方法,如单符号信道、多符号信道等。
第二章:信源编码与压缩2.1 信源编码的基本概念介绍信源编码的定义、目的和方法。
讲解信源编码的基本原理,如冗余度、平均冗余度等。
2.2 压缩算法与性能评价介绍无损压缩算法,如霍夫曼编码、算术编码等。
讲解有损压缩算法,如JPEG、MP3等。
分析各种压缩算法的性能评价指标,如压缩比、重建误差等。
第三章:信道编码与错误控制3.1 信道编码的基本概念介绍信道编码的定义、目的和方法。
讲解信道编码的基本原理,如纠错码、检错码等。
3.2 常见信道编码技术介绍常用的信道编码技术,如卷积码、汉明码、奇偶校验等。
分析各种信道编码技术的性能,如误码率、编码效率等。
第四章:数字基带传输4.1 数字基带信号与基带传输介绍数字基带信号的概念,数字基带信号的传输特性。
讲解数字基带信号的传输方法,如无编码调制、编码调制等。
4.2 基带传输系统的性能分析分析基带传输系统的性能指标,如误码率、传输速率等。
讲解基带传输系统的优化方法,如滤波器设计、信号调制等。
第五章:信号检测与接收5.1 信号检测的基本概念介绍信号检测的定义、目的和方法。
讲解信号检测的基本原理,如最大后验概率准则、贝叶斯准则等。
5.2 信号接收与性能分析分析信号接收的方法,如同步接收、异步接收等。
讲解信号接收性能的评价指标,如信噪比、误码率等。
第六章:卷积编码与Viterbi算法6.1 卷积编码的基本原理介绍卷积编码的定义、结构及其多项式。
讲解卷积编码的编码过程,包括初始状态、状态转移和输出计算。
6.2 Viterbi算法及其应用介绍Viterbi算法的原理,算法的基本步骤和性能。
讲解Viterbi算法在卷积编码解码中的应用,包括路径度量和状态估计。
简述数字基带信号的传输过程。
数字基带信号是指在通信系统中用来表示数字信息的信号,它是一种低频信号,通常用来传输语音、图像和数据等信息。
数字基带信号的传输过程可以分为三个主要步骤:数字信号的产生、数字信号的调制和数字信号的传输。
数字信号的产生是指将原始的语音、图像或数据信息转换成数字形式。
这一步骤通常包括采样、量化和编码三个过程。
采样是指将连续的模拟信号在时间上进行离散化,将其转换为一系列离散时间点上的采样值。
量化是指对每个采样点的幅度进行离散化,将其转换为一系列离散的幅度值。
编码是指将每个幅度值用二进制数表示,以便于数字信号的处理和传输。
接下来,数字信号的调制是指将数字信号转换为模拟信号,以便在传输介质上进行传输。
调制的主要目的是将数字信号的频率范围限制在传输介质所能承载的频率范围内。
调制技术常用的有脉冲编码调制(PCM)、频移键控(FSK)、相位键控(PSK)和正交振幅调制(QAM)等。
其中,脉冲编码调制是最常用的一种调制技术,它将数字信号转换为一系列脉冲,并通过改变脉冲的幅度、宽度和位置来表示数字信号的不同取值。
数字信号的传输是指将调制后的信号通过传输介质传输到接收端。
传输介质可以是导线、光纤、空气等。
在传输过程中,数字信号可能会受到各种噪声和干扰的影响,如信号衰减、失真、干扰等。
为了保证传输质量,通常会采用差错检测和纠正技术,如循环冗余检验(CRC)和前向纠错(FEC)等。
总结起来,数字基带信号的传输过程包括数字信号的产生、数字信号的调制和数字信号的传输三个主要步骤。
通过这些步骤,可以将原始的语音、图像或数据信息转换为数字形式,并通过调制技术将其转换为模拟信号进行传输。
在传输过程中,还需要考虑信号的传输质量,采取相应的差错检测和纠正技术。
数字基带信号的传输过程在现代通信系统中起着重要的作用,它使得数字信息可以方便地在不同的设备之间传输和交换,极大地推动了信息通信技术的发展。