2015高三数学讲义 第十讲 立体几何
- 格式:doc
- 大小:83.00 KB
- 文档页数:4
yk iA(x,y,z)O jxzlB'O'A'B O A βα1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k r r r ,以点O 为原点,分别以,,i j k r r r 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O叫原点,向量 ,,i j k r r r都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++u u u r r r,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz-中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r ,112233(,,)a b a b a b a b -=---r r ,123(,,)()a a a a R λλλλλ=∈r , 112233a b a b a b a b ⋅=++r r , 112233//,,()a b a b a b a b R λλλλ⇔===∈r r, 1122330a b a b a b a b ⊥⇔++=r r.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a =r , 则222123||a a a a a a =⋅=++r r r .5.夹角公式:112233222222123123cos ||||a ba b a b a a a b b b ⋅⋅==⋅++++r rr r r r .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2222212121||()()()AB AB x x y y z z ==-+-+-uuu r uuu r7.直线和平面所成角:(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角8.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交成2角,则有θϕϕcos cos cos 21=ϕ2ϕ1c b aθPαO ABED'B'C'A'ODACBαHDCBA9 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--10.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角(1)二面角的平面角范围是[0,180]o o ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直11 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面12.面面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 13.面面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 练习:1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,求a b -r r 与x 轴正方向的夹角的余弦值2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___ 3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45oo,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为22,4,42,求二面角的大小6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角; (2)AO 与平面ABCD 所成角的正切值;(3)平面AOB 与平面AOC 所成角7已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离参考答案: 1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,αHDCBA求a b -r r与x 轴正方向的夹角的余弦值解:取x 轴正方向的任一向量(,0,0)c x =r,设所求夹角为α,∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -⋅=---⋅=-r r r∴1111()()cos ||||a b c a b x a bmx m a b c α-⋅--===-⋅r r r r rr ,即为所求 2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___解:(2,4,0),(1,3,0),BA BC =--=-u u u r u u u rQcos ,||||BA BC BA BC BA BC ⋅∴===u u u r u u u r u u u r u u u r u u u r u u u r ∴∠ABC =45°3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)⑴求以向量,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标分析:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB BAC Θ ∴∠BAC =60°,3760sin ||||==∴οAC AB S ⑵设a r=(x,y,z),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x z y x解得x =y =z =1或x =y =z =-1,∴a r =(1,1,1)或a r=(-1,-1,-1).4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45o o,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=o,45CBH ∠=o,CDH ∠为所求CD 与α所成角,记为θ, 令CH a =,则2,AC a BC ==,则在Rt ABC ∆中,有AC BC CD AB ⋅==βαlP C B图1AED'B'C'A'ODACB在Rt CDH ∆中,sin CH CD θ==∴CD 与平面α所成角的正弦值2. 5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为4,,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时, ∵PA α⊥ ∴PA l ⊥ ∵AC l ⊥ ∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC I 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1sin 2PA ACP PB ∠=== ∴30ACP ∠=o在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠=o故304575ACB ∠=+=ooo(图1)或453015ACB ∠=-=ooo(图2) 即二面角l αβ--的大小为75o 或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)βαlPCB图2AO ED 1C 1B 1A 1DCBA OD 1C 1B 1A 1D CB A在Rt AOC ∆中, 2,2OC AC == ∴30OAC ∠=o (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角 在Rt OAE ∆中,22115,1()22OE AE ==+= ∴5tan 5OE OAE AE ∠== (3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC 即平面AOB 与平面AOC 所成角为907已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离 解:(1)解法一:延长EO 交1A A 于F ,则F 为1A A 的中点,∴//EF AC , ∵1CC AC ⊥,∴1C C EF ⊥,连结1,D E BE ,则1D E BE =, 又O 是1BD 的中点,∴1OE BD ⊥,∴OE 是异面直线1CC 和1BD 的公垂线(2)由(1)知,OE 122AC ==. 解法二:建立空间直角坐标系,用坐标运算证明(略)引申:求1B C 与BD 间的距离解法一:(转化为1B C 到过BD 且与1B C 平行的平面的距离) 连结1A D ,则1A D //1B C ,∴1B C //平面1A DB ,连1AC ,可证得1AC BD ⊥,1AC AD ⊥,∴1AC ⊥平面1A DB ,∴平面1AC ⊥平面1A DB ,且两平面的交线为1A O ,过C 作1CE AO ⊥,垂足为E ,则CE 即为1B C 与平面1A DB 的距离,也即1B C 与BD 间的距离,在1A OC ∆中,111122OC A A CE AO ⋅=⋅,∴CE a =. (解法二):坐标法:以D 为原点,1,,DA DC DD 所在的直线分别为x 轴,y 轴、z 轴建立空间直角坐标系, 则(,0,0),(,,0),(0,,0)A a B a a C a ,11(,,),(,0,),(0,0,0)B a a a A a a D , 由(解法一)求点C 到平面1A DB 的距离CE ,设(,,)E x y z , ∵E 在平面1A DB 上,∴111A E A D A B λμ=+u u u u r u u u u r u u u r,即(,,)(,0,)(0,,)x a y z a a a a a λμ--=--+,∴x a a y a z a a a λμμλ=-⎧⎪=⎨⎪=--⎩, ∵1,CE A D CE BD ⊥⊥u u u r u u u u r u u u r u u u r ,∴(,2,)(,0,)0(,2,)(,,0)0x y z a a x y z a a ---=⎧⎨---=⎩,解得:23λμ==,∴111(,,)333CE a a a =--u u u r,∴3CE a =. 解法三:直接求1B C 与BD 间的距离设1B C 与BD 的公垂线为1OO ,且11,O B C O BD ∈∈,设(,,)O x y z ,设DO BD λ=u u u r u u u r,则(,,)(,,0)x y z a a λ=--,∴0x a y a z λλ=-⎧⎪=-⎨⎪=⎩,∴(,,0)O a a λλ--,同理1(,,)O a a a μμ,∴1((),,)OO a a a a μλλμ=++u u u u r ,∴111,OO BD OO B C ⊥⊥u u u u r u u u r u u u u r u u u u r , ∴1110,0OO BD OO B C ⋅=⋅=u u u u r u u u r u u u u r u u u u r,解得:21,33λμ=-=,1OO =u u u u r 111(,,)333a a a -,1||OO =u u u u r .。
平面与空间直线(Ⅰ)、平面的基本性质及其推论1、空间图形是由点、线、面组成的。
点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上。
AaA a ∉ 点A 不在直线a 上。
AαA α∈点A 在平面α内。
AαA α∉ 点A 不在平面α内。
b a Aa b A = 直线a 、b 交于A 点。
aαaα直线a 在平面α内。
aαa α=∅ 直线a 与平面α无公共点。
aAαa A α= 直线a 与平面α交于点A 。
l αβ= 平面α、β相交于直线l 。
α⊄a αa )表示a α=∅或a A α=。
2、平面的基本性质公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A ABB ααα∈⎫⇒⎬∈⎭。
如图示:应用:是判定直线是否在平面内的依据,也是检验平面的方法。
BA α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上。
例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD ,∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β,即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M .又∵AB ⊂α,CD ⊂β,∴M ∈α,且M ∈β.∴M ∈α β.又∵α β=l ,∴M ∈l ,即AB ,CD ,l 共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.公理3: 经过不在同一条直线上的三点,有且只有一个平面。
直观图和三视图的画法 二、考纲要求:1、了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述 现实生活中的简单物体的结构。
能画出简单空间几何体的三视图,能识别上述三视图所表示的立 体模型,会用斜二测画法画出它们的直观图。
能用平行投影与中心投影两种方法画出简单空间几 何体的三视图与直观图。
了解空间几何体的不同表示形式。
会画某建筑物的视图与直观图。
空间 几何体的结构与视图主要培养观察能力、归纳能力和空间想象能力,能通过观察几何体的模型和 实物,总结出柱、锥、台、球等几何体的结构特征;能识别三视图所表示的空间几何体,会用材料制作模型,培养动手能力。
2、理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们 的侧面展开图,、知识网络第三章立体几何初步点、直线、平面占 八、、 、 直 线 、 平 面 的 位 置 关 系相交直线异面直线的判定三个公理、三个推论空间直 线- 与平面—直线与平面平行直线与平面相交空间两个平面两个平面垂直的定义 、空间几何体1-两个平面相交 "L"两个平面垂直的判定与性质 空间的角、距离异面直线所成的角、距离空 间 几 何 体直线与平面所成的角、距离正多面体柱、锥、台、 —球的结构特 征柱、锥、台、球的表面积和 体积及其对计算侧面积的作用,会根据条件计算表面积和体积。
理解球的表面积和体积的计算方法。
把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中所学知识解决有关问题。
3、理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。
通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力。
会用平面的基本性质证明共点、共线、共面的问题。
4、掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。
立体几何知识点整理立体几何知识点整理归纳数学知识点1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
数学知识点2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c…l,m,n…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;Aα—点A不在平面α内;b)lα—直线l在平面α内;c)aα—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.公理4平行于同一条直线的两条直线互相平行.高三数学学习方法归纳一、课后及时回忆如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
2015年高考第一轮复习知识点讲解立体几何证明二:垂直主编:贾海琴老师一、直线与面垂直:1、判定定理:平面外的一条直线与平面内的两条相交直线垂直,那么这条直线与这个平面垂直。
分析:在平面内找两条相交直线,然后证明平面的这条直线分别与这两条相交直线垂直。
证明一次线与面垂直⇔两次线与线垂直α⊥ααbcPcb,,,,a⊂⊥b⇒=⊥ac⊂a方法:第一步:在平面内找两条相交直线;第二步:证明平面外的一条直线与这两条相交直线垂直;2、证明两条直线垂直的方法:方法一:等腰三角形三线合一。
(三线是角平分线,中线,高线)等腰三角形中线当做垂线用。
ABC AC AB ∆⇒=是等腰三角形,BC AD CD BD ⊥⇒=。
推广:一个等腰三角形,其中一个角为060,那么这个三角形为等边三角形,等边三角形三个边上都可以中线当做垂线用。
方法二:菱形对角线垂直。
正方形是特殊的菱形,所以正方形对角线垂直。
菱形BD AC ABCD ⊥⇒方法三:勾股定理逆定理:在三角形中,如果一个边的平方等于另外两个边的平方和,那么这个三角形为直角三角形。
ABC AC BC AB ∆⇒=+222为直角三角形BC AB ⊥⇒方法四:传递性。
两条平行线,如果一条垂直第三条边,另一条也垂直于第三条边。
c b c a b a ⊥⇒⊥,//方法五:在圆中,直径所对的圆周角等于090。
在圆O 中:AB 是圆O 的直径BC AC ⊥⇒方法六:如果线垂直于面,那么这条线与这个面中的任意一条线垂直。
d a c a b a d c b a ⊥⊥⊥⇒⊂⊂⊂⊥,,,,,αααα推广:面与面垂直的性质定理:如果两个面垂直,那么在其中一个平面上做交线的垂线,这条垂线垂直于另一个平面。
αββαβα⊥⇒⊥⊂=⊥b b a b a ,,,3、例题:例题一:如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点 求证:⊥BC 面PAC在圆O 中:AB 是圆O 的直径BC AC ⊥⇒⊥PA 圆O ,⊂BC 圆O BC PA ⊥⇒⊂⊥⊥PA AC BC PA BC AC ,,,面PAC ⊥⇒BC 面PAC例题二:如图,在四棱锥ABCD P -中,,2,,//AB CD AD AB CD AB =⊥平面⊥PAD 底面ABCD ,AD PA ⊥,E 和F 分别为CD 和PC 的中点。
§8.3 平行关系1. 直线与平面平行的判定与性质aα,b α,a ∥b a ∥α,aβ,α∩β=b 2.a β,b β,a ∩b=P ,a ∥α,b ∥α α∥β,a β1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. ( × ) (2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. ( √ ) (3)若直线a 与平面α内无数条直线平行,则a ∥α.( × )(4)空间四边形ABCD 中,E 、F 分别是AB ,AD 的中点,则EF ∥平面BCD . ( √ ) (5)若α∥β,直线a ∥α,则a ∥β.( × ) 2. 若直线l 不平行于平面α,且l α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交 答案 B解析 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的. 3. 下列命题中,错误的是( )A .平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B .平行于同一个平面的两个平面平行C .若两个平面平行,则位于这两个平面内的直线也互相平行D .若两个平面平行,则其中一个平面内的直线平行于另一个平面 答案 C解析 由面面平行的判定定理和性质知A 、B 、D 正确.对于C ,位于两个平行平面内的直线也可能异面.4. 已知平面α∥平面β,直线a α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直.其中真命题的序号是________. 答案 ②解析 因为α∥β,a α,所以a ∥β,在平面β内存在无数条直线与直线a 平行,但不是所有直线都与直线a 平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a 垂直,故命题③为假命题.5. 如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________. 答案2解析 因为直线EF ∥平面AB 1C ,EF 平面ABCD , 且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC , 又E 是DA 的中点,所以F 是DC 的中点, 由中位线定理可得EF =12AC ,又在正方体ABCD -A 1B 1C 1D 1中,AB =2, 所以AC =22,所以EF = 2.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN平面BEC,BE平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN平面BEC,BC平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM平面DMN,所以DM∥平面BEC.方法二 如图,延长AD ,BC 交于点F ,连接EF . 因为CB =CD ,∠BCD =120°, 所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因为∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由于点M 是线段AE 的中点, 因此DM ∥EF .又DM 平面BEC ,EF 平面BEC , 所以DM ∥平面BEC .思维升华 判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a α,b α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,aα⇒a ∥β);(4)利用面面平行的性质(α∥β,a β,a ∥α⇒a ∥β).如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别为棱A 1B 1,D 1C 1上的点,且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相 交,交点分别为F ,G ,求证:FG ∥平面ADD 1A 1. 证明 因为EH ∥A 1D 1,A 1D 1∥B 1C 1, EH 平面BCC 1B 1,B 1C 1平面BCC 1B 1, 所以EH ∥平面BCC 1B 1.又平面FGHE ∩平面BCC 1B 1=FG , 所以EH ∥FG ,即FG ∥A 1D 1.又FG 平面ADD 1A 1,A 1D 1平面ADD 1A 1, 所以FG ∥平面ADD 1A 1.题型二 平面与平面平行的判定与性质例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证: (1)B ,C ,H ,G 四点共面;(2)平面EF A1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF平面BCHG,BC平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E平面BCHG,GB平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB平面BDD1B1,EG平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD平面BDD1B1,FG平面BDD1B1,∴FG ∥平面BDD 1B 1,且EG 平面EFG , FG 平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1. 题型三 平行关系的综合应用例3 如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大?思维启迪 利用线面平行的性质可以得到线线平行,可以先确定截 面形状,再建立目标函数求最值. 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得 x a =CG BC ,y b =BGBC, 两式相加得x a +y b =1,即y =ba (a -x ),∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b2.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解 在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG , ∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG 平面P AD ,FE 平面P AD ,∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2, 由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE = a 2-(63a )2=33a , ∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .立体几何中的探索性问题典例:(12分)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明 理由.思维启迪 (1)利用DE ∥PC 证明线面平行;(2)利用平行关系和已知PC ⊥AB 证明DE ⊥DG ; (3)Q 应为EG 中点.规范解答(1)证明 因为D ,E 分别是AP ,AC 的中点, 所以DE ∥PC . 又因为DE平面BCP ,所以DE ∥平面BCP .[3分](2)证明 因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF .所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG .所以四边形DEFG 为矩形.[7分] (3)解 存在点Q 满足条件,理由如下:[8分]连接DF ,EG ,设Q 为EG 的中点,由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点 Q ,且QM =QN =12EG ,所以Q 为满足条件的点.[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论. 第二步:证明探求结论的正确性. 第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒 (1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是() A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案 A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.2.若直线m平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D3. 已知a ,b 是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是( )A .a ∥b ,b α,则a ∥αB .a ,b α,a ∥β,b ∥β,则α∥βC .a ⊥α,b ∥α,则a ⊥bD .当a α,且b α时,若b ∥α,则a ∥b 答案 C解析 A 选项是易错项,由a ∥b ,b α,也可能推出a α;B 中的直线a ,b 不一定相交,平面α,β也可能相交;C 正确;D 中的直线a ,b 也可能异面.4. 在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H ,G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFG ,且四边形EFGH 是平行四边形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是平行四边形 D .EH ∥平面ADC ,且四边形EFGH 是梯形 答案 B解析 如图,由题意得,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行.故选B.5. 下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .①④C .②③D .②④答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图).④中,NP ∥AB ,能得出AB ∥平面MNP .二、填空题6. 过三棱柱ABC —A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条.答案 6解析 如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.7. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3, 过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.答案 223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a 3, ∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .8. 在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的为________.①AC ⊥BD ;②AC ∥截面PQMN ;③AC =BD ;④异面直线PM 与BD 所成的角为45°.答案 ③解析 ∵PQMN 是正方形,∴MN ∥QP ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又∵BD ∥MQ ,∴异面直线PM 与BD 所成的角即为∠PMQ =45°,故④正确.三、解答题9. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C的中点.(1)求证:DE ∥平面ABC ;(2)求三棱锥E -BCD 的体积.(1)证明 取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1. 由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG .又DE 平面ABC ,AG 平面ABC ,所以DE ∥平面ABC .(2)解 因为AD ∥BB 1,所以AD ∥平面BCE ,所以V E -BCD =V D -BEC =V A -BCE =V E -ABC ,由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.10.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥GE ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1.如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .B 组 专项能力提升(时间:30分钟)1. 设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2答案 B解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由于n ∥l 2可转化为n ∥β,同选项C ,故不符合题意.综上选B.2. 已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.3. 空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是________.答案 (8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).4. 平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE=2,过EB 的中点B 1的平面β∥α,若β分别交EA 、DC 于A 1、C 1, 求△A 1B 1C 1的面积.解 ∵α∥β,∴A 1B 1∥AB ,B 1C 1∥BC ,又因∠A 1B 1C 1与∠ABC 同向.∴∠A 1B 1C 1=∠ABC .又∵cos ∠ABC =52+82-722×5×8=12, ∴∠ABC =60°=∠A 1B 1C 1.又∵B 1为EB 的中点,∴B 1A 1是△EAB 的中位线,∴B 1A 1=12AB =52, 同理知B 1C 1为梯形BCDE 的中位线,∴B 1C 1=12(BC +DE )=5. 则S △A 1B 1C 1=12A 1B 1·B 1C 1·sin 60° =12·52·5·32=2583. 故△A 1B 1C 1的面积为2583.5. 如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD .又因ABCD 是矩形,所以AD ⊥CD .因PD ∩CD =D ,所以AD ⊥平面PCD ,所以AD 是三棱锥A —PDE 的高.因为E 为PC 的中点,且PD =DC =4,所以S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4.又AD =2,所以V A —PDE =13AD ·S △PDE =13×2×4=83.(2)取AC 中点M ,连接EM ,DM ,因为E 为PC 的中点,M 是AC 的 中点,所以EM ∥P A .又因为EM 平面EDM ,P A 平面EDM ,所以P A ∥平面EDM .所以AM =12AC = 5. 即在AC 边上存在一点M ,使得P A ∥平面EDM ,AM 的长为 5.。