八年级数学竞赛试题及答案 (2)
- 格式:doc
- 大小:157.00 KB
- 文档页数:3
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
一、选择题(共27小题)1、设p是正奇数,则p2除以8的余数等于()A、1B、3C、5D、72、有棋子若干,三个三个地数余1,五个五个地数余3,七个七个地数余5,则棋子至少有()A、208个B、110个C、103个D、100个3、19972000被7除的余数是()A、1B、2C、4D、64、韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人.问:这队士兵至少有()人.A、8B、11C、38D、535、若n是大于1的整数,则P=的值()A、一定是偶数B、一定是奇数C、是偶数但不是2D、可以是偶数也可以是奇数6、已知三个整数a、b、c的和为奇数,那么,a2+b2﹣c2+2ab()A、一定是非零偶数B、等于零C、一定是奇数D、可能是奇数,也可能是偶数7、已知x为质数,y为奇数,且满足:x2+y=2005,则x+y=()A、2002B、2003C、2004D、20058、如果m表示奇数,n表示偶数,则m+n表示()A、奇数B、偶数C、合数D、质数9、(2009•营口)计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的,猜测32009+1的个位数字是()A、0B、2C、4D、810、51999的末三位数是()A、025B、125C、625D、82511、19932002+19952002的末位数字是()A、6B、4C、5D、312、若x2﹣12x+1=0,则x4+x﹣4的值的个位数字是()A、1B、2C、3D、413、=()A、2B、1C、0D、﹣214、把化成最简分数,应该是()A、B、C、D、15、若x=,则():()=()A、B、7:6C、x2:1D、x16、(2011•台湾)已知有一个正整数介于210和240之间,若此正整数为2、3的公倍数,且除以5的余数为3,则此正整数除以7的余数为何?()A、0B、1C、3D、417、一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,最小要抽()张才能保证有4张牌是同一花色的.A、12B、13C、14D、1518、钟面上有十二个数1,2,3,…,12.将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n个负号,这个数n是()A、4B、5C、6D、719、若n是自然数,则n9999﹣n5555的末位数字()A、恒为0B、有时为0有时非0C、与n的末位数字相同D、无法确定20、数20078+82007的个位数字是(B)A、1B、3C、5D、921、数22010具有下列哪一性质()A、个位数字是2B、个位数字是4C、个位数字是6D、个位数字是822、设A=55×1010×2020×3030×4040×5050,把A用10进制表示,A的末尾的零的个数是()A、260B、205C、200D、17523、20051989的末二位数字是()A、15B、25C、45D、5524、22011+32011的末位数字是()A、1B、3C、5D、725、从1到2002连续自然数的平方和12+22+32+…+20022的个位数是()A、0B、3C、5D、926、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,…根据上述算式中的规律,猜想22011的末位数字应是()A、2B、4C、6D、827、四个连续奇数之积为1666665,这四个奇数的和是()A、142B、143C、144D、145二、填空题(共3小题)28、把自然数n的各位数字之和记为,S(n)如n=38,,S(n)=3+8=11,n=247,S(n)=2+4+7=13,若对于某些自然数满足n﹣S(n)=207,则n的最大值是_________.29、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…请你推测32009的个位数是_________.30、如图用苹果垒成的一个“苹果图”,根据题意,第10行有_________个苹果,第n行有_________个苹果.答案与评分标准一、选择题(共27小题)1、设p是正奇数,则p2除以8的余数等于()A、1B、3C、5D、7考点:带余数除法。
沪科版八年级第二学期竞赛数 学 试 卷 (沪科版)考试时间:120分钟 满分:120分一、精心选一选:(本大题共7小题,每小题3分,共21分。
)1、实数a 在数轴上对应的点如图所示,则a 、-a 、1的大小关系正确的是【 】A 、-a <a <1B 、a <-a <1C 、1<-a <aD 、a <1<-a2、已知关于x 的方程3x +2a =2的解是a -1,则a 的值是 【 】A 、1B 、53 C 、51D 、-13 【 】A 、点PB 、点QC 、点MD 、点N4、若一元二次方程22(2)240m x x m -++-=的常数项为0,则m 得值为 【 】 A 、2. B 、 2-. C 、 2±. D 、4±. 5、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是 【 】 A 、22n +B 、22n -+C 、22n -D 、22n --6、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是 【 】A 、abB 、ab C 、a b + D 、a b - 7、若关于x 的一元二次方程22(21)10k x k x -++=有两不相等的实数根,那么k 的取值范围是【 】A 、k >14-B 、k >14-且0k ≠C 、k <14-D 、14k ≥-且0k ≠ 二、耐心填一填:(本大题共8小题,每小题4分,共32分。
)8、若a 、b 都是无理数,且a+b=2,则a 、b 的值可以是 . (填上一组满足条件的值即可)0 1第2题图9、已知113 x y-=,则代数式21422x xy yx xy y----的值为.10、一个同学在进行多边形内角和计算时,求得内角和为02750,当发现错了之后,重新检查,发现少加了一个内角,则这个内角是度。
11、对于定义一种新运算“”:,其中为常数,等式右边是通常的加法和乘法的运算.已知:,那么= .12、如图,已知点F的坐标为(3,0),点A B,分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点...设点P的横坐标为x,PF的长为d,且d与x之间满足关系:355d x=-(05x≤≤),则结论:①2AF=;②5BF=;③5OA=;④3OB=中,正确结论的序号是_ .13、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_________.14、图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________.15、化简aaa3|2|2-=三、用心想一想:(本大题是解答题,共67分。
八年级数学竞赛试题(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 3.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .6 4.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定 6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( ) A .1 B .32 C .21 D .317.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10 B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |=15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。
第二学期八年级综合知识竞赛数 学 试 卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .BC .D 2.如图,已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( ) A .18ºB .36ºC .144ºD .72º3.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A.平均数是9 B.中位数是9 C.众数是5 D.方差是5 4.若点P (a ,2)与Q (-1,b )关于坐标原点对称,则a ,b 分别为( ) A .-1,2B .1,-2C .1,2D .-1,-25.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60° 6、菱形具有而矩形不一定具有的性质是 ( )A .内角和等于3600B .对角相等C .对角线互相垂直D .对边平行且相等 7.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是()8.定义:如果一元二次方程)0(02≠=++a c bx ax 满足0=+-c b a ,我们称这个方程为“阿凡达”方程,已知02=++c bx ax 是阿凡达方程,且有两个相等的实数根,则下列正确的是( ) A.b a =B.c a =C.c b a ==2D.c b =A BD C9、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BF CF =,四边形DCFE 是平行四边形,则图中阴影部分的面积为( ). A .8 B .6C .4D .310.如图,①②③④⑤五个平行四边形拼成一个含30º内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为26cm 2,四边形ABCD 面积是19cm 2,则①②③④四个平行四边形周长的总和为( )A .64cmB .48cmC . 36cmD .24cm二、填空题(每小题3分,共24分)11.使式子4x -有意义的条件是 。
八年级数学竞赛专题训练试卷(二)因式分解与分式一、选择题(每小题4分,共40分)1.已知a 2+b 2+4a -2b+5=0,则a b a b+-的值为 ( ) (A)3 (B)13 (C)-3 (D)13- 2.a 4+4分解因式的结果是 ( )(A)(a 2+2a -2)(a 2-2a+2) (B)(a 2+2a -2)(a 2-2a -2)(C)(a 2+2a+2)(a 2-2a -2) (D)(a 2+2a+2)(a 2-2a+2)3.下列五个多项式:①ab -a -b -1;②(x -2) 2+4x ;③3m(m -n)+6n(n -m );④x 2-2x -1;⑤6a 2-13ab+6b 2,其中在有理数范围内可以进行因式分解的有 ( )(A)1个 (B)2个 (C)3个 (D)4个4.a ,b ,c 为△ABC 的三边且3a 3+6a 2b -3a 2c -6abc=0,则△ABC 的形状为 ( )(A)直角三角形 (B)等腰三解形(C)等腰直角三角形 (D)等腰三角形或直角三角形5.a ,b ,c 是正整数,a >b >c ,且a 2-ab -ac+bc=7,则b -c 等于 ( )(A)1 (B)6 (C)土6 (D)1或76.若x 取整数,则使分式6321x x +-的值为整数的x 的值有 ( ) (A)3个 (B)4个 (C)6个 (D)8个7.已知x 2+ax -18能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )(A)3个 (B)4个 (C)6个 (D)8个8.若a=20092+20092×20102+20102,则n ( )(A)是完全平方数,还是奇数 (B)是完全平方数。
还是偶数(C)不是完全平方数,但是奇数 (D)不是完全平方数,但是偶数9.设有理数a ,b ,c 都不为零,且a+b+c=0,则222222222111b c a c a b a b c +++-+-+- 的值是 ( )(A)正数 (B)负数 (C)零 (D)不能确定10.当x 分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211x x -+的值,将所得的结果相加,其和等于 ( ) (A)-1 (B)1 (C)0 (D)2007二、填空题(每小题4分,共40分)11.因式分解:4a 2-4b 2+4bc -c 2=_________.12.已知a 、b 为实数,且ab=1,a ≠1,设11a b M a b =+++,1111N a b =+++,则M -N 的值等于_________.13.若多项式x 3+ax 2+bx 能被(x -)和(x+4)整除,那么a=________,b=_________.14.整数a ,b 满足6ab -9a+10b=303,则a+b=_________.15.k 取________时,方程2211x k x x x x x+-=++会产生增根. 16.已知15a b +=-,a+3b=1,则22331295a ab b +++的值为__________. 17.分解因式:x 4-x 3+4x 2+3x+5=________.18.分解因式:x 2-2xy -8y 2-x -14y -6=_________.19.分解因式:24x 2-1507x -337842=_________.20.已知abc=1,a+b+c=2,a 2+b 2+c 2=3,则111111ab c bc a ca b +++-+-+-的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.解方程:(1)(x+1)(x+3)(x+5)(x+7)+15=0.(2)()()()()()111511291012x x x x x x ++=+++++…+.22.已知:3(a2+b2+c2)=(a+b+c) 2,求证:a=b=c.23.小明在计算中发现:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…由此他做出猜想:四个连续正整数的乘积加1必为平方数.你认为他的猜想正确吗?试说明理由.参考答案一、选择题1.B 2.D 3.B 4.B 5.B 6.B 7.C 8.A 9.C 10.C二、填空题11.原式=(2a+2b -c)(2a -2b+c).12.M -N=0.13.a=1,b=12.14.a+b=15.15.k=-1或k=2时方程有增根.16.0.17.x 4-x 3+4x 2+3x+5=(x 2+x+1)(x 2-2x+5).18.原式=x 2-(2y+1)x -(8y 2+14y -6)=x 2-(2y+1)x -2(4y+3)(y+1)=(x -4y -3)(x+2y+2).19.原式=(3x+274)(8x -1233).20.23- 三、解答题21.(1)原方程可整理成:(x 2+8x+7)(x 2+8x+15)+15=0.将(x 2+8x)看成整体,则有(x 2+8x) 2+22(x 2+8x)+120=0.∴(x 2+8x+12)(x 2+8x+10)=0,即x 2+8x+12=0或x 2+8x+10=0,解得x 1=-2,x 2=-6,34x =-44x =-(2)原方程可写成:1111115112x+91012x x x x x -+-+-=++++…+, 即1151012x x -=+,去分母,整理得x 2+10x 24=0, 解得x 1=12,x 2=2,且经检验是原方程的解.22.∵3(a 2+b 2+c 2)=(a+b+c) 2,∴3a 2+3b 2+3c 2=a 2+b 2+c 2+2ab+26c+2ca .∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ca+a 2)=0.即(a -b ) 2+(b -c) 2+(c -a) 2=0.∴a -b =0且b -c=0且c -a=0,∴a =b =c .23.猜想正确.设四个连续正整数为n ,(n+1),(n+2),(n+3)(其中n 为正整数), n(n+1)(n+2)(n+3)+l=(n 2+3n)(n 2+3n+2)+1=(n 2+3n) 2+2(n 2+3n)+1=[(n 2+3n)+1] 2∴四个连续正整数的乘积加1必为平方数.。
八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。
八年级“我爱数学”竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2+12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰a ⎩⎨⎧=+=+m y x n y 281120042003200320032003=+--+xy x y x y y x 20011198********⋯⋯++=S是某正整数的立方,则这样的数共___个。
八年级数学竞赛试题
八年级( )班 姓名
一、选择题 (每小题8分,共64分.每小题的四个选项中,仅有一个是正确的,请将正确答案前的字母写在题后的括号内.选对一题得8分,不选得0分,选错一题得扣2分 )
1.如果0<m <1,那么m 一定小于它的( )
(A) 相反数 (B) 倒数 (C) 绝对值 (D) 平方
2.在277,355,544,633这四个数中,最大的数是( )
(A) 277 (B) 355 (C) 544 (D) 633
3.若a+b=2012,b ≠a 十1,则b
a b a b b a ++--+-222212的值等于( ) (A) 2012 (B) 2011 (C) 20112012 (D) 2012
2011 4.方程3
112112=---x x ( ) (A)只有一个根x=1 (B)只有一个根x=2 (C)有两个根x 1=l ,x 2=2 (D)无解.
5.方程组⎪⎩
⎪⎨⎧=+=-+=++40250310y x z y x z y x ( ) (A) 无解 (B) 有1组解 (C) 有2组解 (D) 有无穷多组解.
6.一次函数y=(m 2一4)x +(1一m)和y=(m+2)x+(m 2—3)的图象分别与y 轴交于
点P 和Q ,这两点关于x 轴对称,则m 的值是( )
(A) 2 (B) 2或一1 (C) l 或一1 (D) -1
7.如图1,在周长是lOcm 的□ABCD 中,AB≠AD,AC 、BD 相交于点O ,点E 在
AD 边上,且OE ⊥BD ,则△ABE 的周长是( )
(A) 2cm (B) 3cm
(C) 4cm (D) 5cm 8.x 1,x 2,x 3,…,x 100是自然数,且x 1<x 2<x 3<…x 100,若x 1+x 2+…+x 100=7001,
那么x 1+x 2+…+x 50的最大值是( )
(A) 2225 (B) 2226 (C) 2227 (D) 2228
二.填空题(每小题8分,共56分)
1.有下列命题:
①矩形既是中心对称图形,又是轴对称图形;
②平行四边形是中心对称图形,不是轴对称图形;
③等腰梯形是轴对称图形,不是中心对称图形;
④有一个锐角是30°的直角三角形不是中心对称图形,也不是轴对称图形. 其中正确命题的序号是______________.(把所有正确的命题的序号都填上)
2.若n 是正整数,且x 2n =5 , 则()()n
n x x 22342÷=______________. 3.已知整数a ,b 满足6ab=9a 一10b +16.则a +b 的值是____________.
4.如图2,已知△ABC 中,AD 平分∠BAC .∠C=20°,AB +BD=AC ,则∠B 的度数是____________.
5.若关于x 的分式方程22121=-+--x
x mx 有整数解,m 的值是_____________________. 6.若x 是自然数,x +13和x -76都是完全平方数,那么x=_____________.
7.如图3,在□ABCD 中,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,点P
在线段GF 上,则△PHE 与□ABCD 的面积的比值是_____________.
答 案
一、选择题
1--4. BCDB. 5—8.ADDB.
二、1.①②③④.
2、25
3、-1
4、40°
5、0、3、4
6、2012
1
7、
4。