归纳超级好的Aspen-Energy-Analyzer教程.ppt
- 格式:ppt
- 大小:4.92 MB
- 文档页数:52
Jump Start: Activated Energy Analysis in Aspen Plus®and Aspen HYSYS®A Brief Tutorial (and supplement to training and online documentation)Jack Zhang, Product Management, Aspen Technology, Inc.Katherine Hird, Product Marketing, Aspen Technology, Inc.Table of Contents Introduction (1)Setting Up an Energy Analysis Project (2)Generating Process Revamp Solutions (10)Performing Multiple Revamp Solutions (12)Introducing Heat Exchanger Changes to Process Flowsheet (14)Analyzing and Fine-Tuning Heat Integration Results (16)Viewing Heat Exchanger Network Diagram and Composite Curves (17)Adding and Comparing Multiple Heat Integration Projects (19)Obtaining Heat Transfer Coefficients from Activated EDR (20)Filtering Streams by Pinch (22)Conclusions (23)Additional Resources (23)IntroductionIn today’s business climate, profitability is of pinnacle importance. One of the challenges facing industrial plants in reaching profitability is the minimization of annual costs related to utility consumption. In order to achieve a reductionin utility costs, many plants choose to perform an integration of heat exchanger networks. The specific network of heat exchangers that make best use of the available in-house heating and cooling is constructed using pinch calculations. However, these calculations can be daunting for simple plant setups with little equipment, and only increase in difficulty with a higher sophistication of plant design.To respond to this challenge, Aspen Technology has introduced an innovative approach to reduce energy use and greenhouse gas outputs in its Activated Energy Analysis offering. Activated Energy Analysis works inside of Aspen HYSYS and Aspen Plus, with no need to operate another program concurrently.Using Activated Energy Analysis, a summary of annual process energy and greenhouse gas consumptions and expenditures, along with potential savings through process upgrades and redesign, are provided. Activated Energy Analysis generates extensive revamp scenarios that can be implemented to reduce fresh utility dependence, and shows details relevant to the optimization including required capital cost, annual reduction in utility cost, and payback period for investment.The basic steps towards best utilizing Activated Energy Analysis will be described in this guide, as will advanced techniques. Some features denoted in this guide are only available in the V8.8 or later release of Activated Energy Analysis, but all basic workflow is included in Activated Energy Analysis V8.0 and higher.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.This document is not meant to be used as a stand-alone reference document. AspenTech recommends that a range of other resources be referenced to give the user a comprehensive view of how to use Activated Energy Analysis. These may include:•AspenTech support website ()•AspenTech courseware available in on-line and in-person versions•AspenTech business consultants•Additional Jump Start Guides, available on a variety of related topicsThis guide covers how to utilize Activated Energy Analysis to analyze and optimize energy in Aspen Plus and Aspen HYSYS. It assumes that the user has Aspen HYSYS or Aspen Plus V8.0 or higher installed on her or his computer and a functional process design completed.Setting Up an Energy Analysis ProjectAfter completing a process design in Aspen HYSYS or Aspen Plus, the maximum energy saving opportunity can be achieved through Activated Energy Analysis. Begin this process by clicking any empty blue space on the Energy Panel found in the Activation Dashboard. Clicking on the empty space, as demonstrated in Figure 1a, will bring up the energy configuration page, as shown in Figure 1b.Figure 1a.Utilizing the Energy Panel to launch the energy configuration page.Figure 1b. The energy configuration page to specify parameters.The energy configuration page provides areas to specify parameters of the project before activating energy analysis. Areas that can be customized include: process type, approach temperature, carbon fee, and scope, as well as the utility assignments table. The process type can be customized by clicking the drop down menu and selecting the correct process type, as shown in Figure 2a. Approach temperature is defaulted based on the process type, but this value and the carbon fee value can be customized by entering specified amounts, as seen in Figure 2b. The desired flowsheets and sub-flowsheets included in Activated Energy Analysis can be specified by selecting the “Define Scope” button and using the check boxes on the “Energy Analysis Scope” window that appears, select the regions of the flowsheet that should be analyzed as seen in Figure 2c. In this example, only the Preheat Train (TPL1) was chosen to be analyzed.Figure 2a.Specifying process type parameters utilizing the energy configuration form.Figure 2b.Specifying approach temperature and carbon fee in the energy configuration form.Figure 2c.Specifying the energy analysis scope using the energy analysis form.Once the parameters for your analysis have been set, run the targeting step utilizing Activated Energy Analysis. This can be completed in a few different ways. The first way is to select the “Analyze Energy Savings” button at the bottom of the Energy Configuration Page, as shown in Figure 3. Additionally, this step can be run by either scrolling or clicking on the “off” button at the bottom right corner of the blue Energy Panel of the Activation Dashboard, also shown in Figure 3.Figure 3. Launching Activated Energy Analysis through the energy analysis form or Energy Panel.Once Activated Energy Analysis is turned on, it will go through a series of calculation steps, outlined on the top of blue energy panel as “Loading Analysis” and “Calculating…”, shown in Figure 3. Once these steps are completed, the available energy savings of the process are reported. An overall report of the available energy savings is displayed on the blue Energy Panel of the Activation Dashboard, as highlighted in Figure 4.Figure 4. An overview of potential energy savings highlighted in the energy panel and the Savings Summary form.The number reported on the left hand side of the Energy Panel is the potential amount of energy that could be saved and the number reported on the right hand side is the percent, as compared to the current energy expenditures, that the energy could be reduced. These values are calculated using the difference between the actual utility consumption onthe flowsheet and the utilities target, calculated by pinch technology. More detailed savings are reported in the “Savings Summary” tab shown in Figure 4. The savings summary tab can be shown as both the duty and cost savings by selecting the corresponding radio button. The savings are displayed for the total, heating and cooling utilities, and the carbon emissions. The graphs at the top of the “Savings Summary” tab display the current actual utility, or carbon of the process, compared to the target, or ideal utility or carbon emission of the process. The table below highlights each of these parameters in table format to numerically organize potential savings.For ease of use, the user can right click on the Energy Analysis tab and select “New Vertical Tab Group” to view the Energy Analysis results side-by-side with simulation. This new feature is shown in Figure 5 below.Figure 5. The energy analysis form can be viewed side-by-side with the simulation for ease of use.Click on the utilities tab under the Energy Analysis parent tab to view more detailed information of each utility’s target and consumption amounts. Figure 6 shows the information presented in the Utilities tab.Figure 6. Utilities tab displays detailed utilities information for activated energy analysis.The utilities are listed with the hot utilities at the top of the table and the cold utilities listed at the bottom. This table displays information about the actual and target consumption and savings potential for each utility. The energy cost savings in both absolute and relative terms are also listed for each utility, along with the approach temperature, which can be customized by entering a value into the table. Additionally, there is a column with a “Status” for each utility. This column indicates if the utilities are sufficient to calculate the heating and cooling target.The “Carbon Emissions” tab displays a table with more detailed information about the carbon emissions of each utility in the process, as shown in Figure 7.Figure 7. Carbon Emissions tab displays detailed carbon emission information for activated energy analysis.It displays the information about the actual and target carbon emissions and savings potential associated with each utility. Additionally, the carbon emission cost savings in both absolute and relative terms are listed for each utility used in the process.The “Exchangers” tab on the Activated Energy Analysis form, shown in Figure 8 displays all the heat exchangers being analyzed in the process, including heaters, coolers, and process-process heat exchangers.Figure 8. Exchangers tab displays detailed exchanger information for activated energy analysis.This form displays the key information of the exchangers on the flowsheet. Hovering the mouse over the “Hot Side Fluid” and “Cold Side Fluid” text will display the hot side process pinch and cold side process pinch temperatures, respectively. The energy inefficiency of the process can be viewed through the recoverable duty column which gives the duty for each exchanger. This information is pertinent when deciding design change solutions later in the workflow.Note: For Aspen Plus users, only utilities defined in the Utilities Object Manager will be considered in the targeting process for utility switching. For Aspen HYSYS users, all utilities defined in the Process Utilities Manager will be considered. Undesired utilities need to be removed from the Process Utilities Manager in Aspen HYSYS if they are unavailable for selection.This table shows a listing of the heat exchangers included in the heat integration, each exchanger’s duty, temperatures, area, heat transfer coefficients, and hot and cold fluids. In version 8.4 or higher of Activated Energy Analysis, a column titled “Ideas for Changes” appears. In this column, if a light bulb appears, Activated Energy Analysis has detected a simple design change (i.e. changing the temperature of a heat exchanger inlet stream) that could lead to more efficient energy usage in the process. Additionally, heat transfer coefficients obtained from rigorous Aspen Exchanger Design and Rating models can be used to improve the accuracy of the heat exchangers being used in the heat integration model. See the Obtaining Heat Transfer Coefficients from the Activated EDR section later in this guide to learn more.Generating Process Revamp SolutionsTo help achieve the saving potential given by Activated Energy Analysis, revamp solutions can be generated fromthe “Design Changes” tab of the Activated Energy Analysis form, as shown in Figure 9. These solutions include the modification, addition, or relocation of heat exchangers in the process. For the addition and relocation of heat exchangers, the user can specify how many addition and relocation options they want presented, by selecting from the range of 1-5 for both change types in the “Design Changes” tab, as highlighted in Figure 9.Figure 9. The Design Changes tab specifying the number of retrofit solutions suggested.Revamp solutions are generated by clicking the “Find Design Changes” button which will launch the 3 types of design solutions to be produced, resulting in Figure 10.Figure 10.Selecting the “Find Design Changes” button will produce the available retrofit solutions.Once the retrofit analysis is complete, the table in the “Final Design Changes” tab is populated with retrofit solutions. The three types of retrofit options explored in more detail are:1. Modify Exchangers: This retrofit option will modify existing exchangers by adding surface areas to save energy. This option will produce one solution. The top gird shows the summary of this retrofit solution.2. Add Exchangers: This retrofit option will add a new heat exchanger to the existing heat exchanger network, one at a time. Users can select 1-5 solutions to be produced. The second grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.3. Relocate Exchangers: This retrofit option will relocate one existing heat exchanger to a different location within the process. Users can select 1-5 solutions to be produced. The third grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.The desired retrofit option can be chosen by clicking the hyperlink of the solution type, which will launch the details of the Energy Analysis Environment, as shown in Figure 11.Figure 11.The detailed Energy Analysis Environment.Select the radio button of the desired solution.Performing Multiple Revamp SolutionsMultiple heat exchanger operations can be performed at once (i.e. a heat exchanger addition following previous heat exchanger relocation) by opening the first revamp solution and then selecting the second revamp from the ribbon in the Energy Analysis environment.For example, if the heat exchanger addition solution is opened, the Energy Analysis Environment and form shown in Figure 12 opens. Clicking one of the retrofit options, highlighted in the ribbon, will add another second revamp solution to the previously existing solution.Figure 12. Performing Multiple Revamp SolutionsAfter instituting the second revamp solution, the scenario form will update. Figure 13 shows a scenario in which the process has added a new heat exchanger followed by the addition of a second heat exchanger.Figure 13. Multiple revamp solutions generatedThe top table in Figure 13 now includes four rows that display the specs for the base case design, the initial revamp, the process after two revamps, and the target. This table can be used to track energy savings as more revamps are included.Introducing Heat Exchanger Changes to Process FlowsheetThis section will demonstrate using Aspen HYSYS. The workflow shown is the same in Aspen Plus, and then save for simulation.Since Activated Energy Analysis is included in Aspen HYSYS and Aspen Plus, heat exchanger modifications, additions, or relocations can be added to the process flowsheet immediately after being created using the specifications provided. Figure 14 shows a crude preheat train modeled in Aspen HYSYS.Figure 14. Crude preheat train flowsheet in Aspen HYSYSAfter running Activated Energy Analysis to obtain a revamp solution, such as the heat exchanger addition case shown in Figure 15, use the “Location of Heat Exchanger” column in the design change table to determine where the new heat exchanger model should be placed on the flowsheet.Figure 15. Heat exchanger solution selection and locationThen, using the “Heat Exchanger Details” table found on the same form, locate the new load for the heat exchangers in the process. Highlighted in Figure 16, Design Load represents the new heat exchanger duties after adding a revamp scenario, while the base load was the load that existed for the initial simulation.Figure 16. New heat exchanger duty specificationsAdd a heat exchanger model to the flowsheet using the model palette in either Aspen HYSYS or Aspen Plus. Then, connect the appropriate streams as shown in Figure 15. Figure 17 shows the crude preheat train with the new heat exchanger addition. The shell side of the heat exchanger has been attached to the stream “PA_3_1”, which previously was a feed to E-113, and the tube side of the heat exchanger has been attached to the stream “crude46”, which was previously a feed to E-106.Figure 17. Crude preheat train flowsheet in Aspen HYSYS with heat exchanger additionThe updated duties for the heat exchangers listed in the table in Figure 16 were then input to all the corresponding heat exchanger models. After converging the simulation with the new heat exchanger duties, the flowsheet is then indicative of the revamp solution. The Activated Energy Analysis panel will update with new saving potentials if opened after updating the flowsheet.Analyzing and Fine-Tuning Heat Integration ResultsWhen finished generating revamp solutions for the process, the scenarios can be compared on one form by selecting the Compare Scenarios option from the ribbon.Figure 18. Comparing scenarios within a projectThe Result Comparison form allows for the quick comparison of revamp solutions for a given heat integration project. Viewing Heat Exchanger Network Diagram and Composite CurvesA copy of Aspen Energy Analyzer can be opened directly from within Activated Energy Analysis. This allows the user to see a detailed heat exchanger network (HEN) diagram and the composite curves used in generating the heat integration. The HEN diagram shows heat exchanger pairings, and approach temperatures for the streams.To access this feature, click the Details button from the ribbon, shown in Figure 19.Figure 19. Details option to open HEN diagram and composite curvesAspen Energy Analyzer then opens directly to the heat exchanger network diagram. An example HEN diagram is shown in Figure 20.Figure 20. HEN Diagram from Aspen Energy AnalyzerAt the bottom of the Aspen Energy Analyzer program, a tab labeled “Performance” is selected. To access the composite curves for the heat integration, select the “Targets” tab adjacent to the “Performance” tab.Figure 21. Accessing composite curves and example composite curves chartAdding and Comparing Multiple Heat Integration ProjectsIn version 8.4 and higher of Activated Energy Analysis, if there are multiple sections of a flowsheet requiring separate analysis (for example, hierarchies), multiple heat integration projects can be completed, and then compared. To do this, while in the Energy Analysis environment, click the Add Project option from the ribbon, shown below, and then set up the new project using the same steps used for the initial project.Note: In order to best use the multiple project feature to study the impact of process changes on energy saving opportunities, the energy dashboard should be deactivated and multiple project analysis then carried out directly inside the Energy Analysis environment.After setting up multiple heat integration projects, they can be compared by clicking the “Compare Projects” button, also on the ribbon. This brings the user to a project comparison form where energy and greenhouse gas saving and reduction potentials can be viewed.Figure 22. Adding a heat integration projectFigure 23. Project comparison formObtaining Heat Transfer Coefficients from Activated EDRIn version 8.4 of Aspen HYSYS or Aspen Plus or higher, Activated EDR can be used to size rigorous heat exchangers. The heat exchanger parameters obtained from Activated EDR can be used to improve heat integration using Activated Energy Analysis on the Saving Potential form, in the Heat Exchanger Details table. The value for the overall heat transfer coefficient can either be calculated in Aspen Energy Analyzer by default, be taken from simulation, or specified directly by the user.Figure 24. Choosing heat exchanger parameter optionsSimulation values and default values remain the same unless heat exchangers are sized using Activated EDR. To do this, return to the Simulation environment, and click the blank area of the EDR Exchanger Feasibility panel from the Activation dashboard, as shown in Figure 25.Figure 25. Initializing Activated EDRThe Exchanger Summary Table will appear showing the heat exchangers and their status as either rigorous or available to convert, as shown in Figure 26. Click a “Convert to Rigorous” button next to a heat exchanger to make it a rigorous model.Figure 26. Converting a heat exchanger to RigorousAfter a heat exchanger has been sized, return to the Saving Potential form in the Energy Analysis environment, and choose “Simulation” on the dropdown. The heat transfer coefficient and heat exchanger area should change to the values obtained from rigorous sizing.(For more information on using Activated EDR or in Aspen HYSYS and Aspen Plus, refer to the Activated EDR webpage, available here.Filtering Streams by PinchIn version 8.4 or higher of Activated Energy Analysis, the Heat Exchanger Details table on the Saving Potential form can be reduced to show streams that are either above, below, or across the pinch line. This enables visualization of process stream location relative to the pinch point and aids in development of process changes that maximize energy saving opportunities. To do this, click the “Hot Side Fluid” or “Cold Side Fluid” column in the table, and then choose an option, as shown in Figure 27.Figure 27. Sorting heat exchanger details table by pinch locationAs shown, sorting this table to only show streams below the pinch reduces the table to that in Figure 28.Figure 28. Reduced heat exchanger details table sorted below the pinchConclusionsActivated Energy Analysis is a tool capable of calculating process energy reliance and greenhouse gas emission, as well as reducing these values through more cost effective utility selection and process revamp. Located within Aspen HYSYS and Aspen Plus, Activated Energy Analysis allows users to generate changes and then implement them directly to simulation to view performance. Activated Energy Analysis, when used in conjunction with the other members of the Activated Analysis family, becomes an even more powerful process optimization tool. Activated Analysis can be implemented to new processes or existing ones to dramatically improve performance.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.Additional ResourcesPublic Website:/products/aspen-hysys.aspx/products/aspen-plus.aspx/Products/Activated-Energy-Analysis//products/aspen-hx-net.aspxSupporting Documents:Activated Energy Analysis Demo File in Aspen HYSYS - Crude Preheat TrainActivated Energy Analysis Demo File in Aspen Plus - Ethylene Separation ProcessOnline Training:/products/aspen-online-trainingAspenTech YouTube Channel:/user/aspentechnologyincAbout AspenTechAspenTech is a leading supplier of software that optimizes process manufacturing—for energy, chemicals, engineering and construction, and other industries that manufacture and produce products from a chemical process. With integrated aspenONE® solutions, process manufacturers can implement best practices for optimizing their engineering, manufacturing, and supply chain operations. As a result, AspenTech customers are better able to increase capacity, improve margins, reduce costs, and becomemore energy efficient. To see how the world’s leading process manufacturers rely on AspenTech to achieve their operational excellence goals, visit .Worldwide HeadquartersAspen Technology, Inc.20 Crosby DriveBedford, MA 01730United Statesphone: +1–781–221–6400fax: +1–781–221–6410info@Regional HeadquartersHouston, TX | USAphone: +1–281–584–1000São Paulo | Brazilphone: +55–11–3443–6261Reading | United Kingdomphone: +44–(0)–1189–226400 Singapore | Republic of Singapore phone: +65–6395–3900Manama | Bahrainphone: +973-13606-400For a complete list of offices, please visit aspen®© 2015 Aspen Technology, Inc. AspenTech®, aspenONE®, the aspenONE® logo, the Aspen leaf logo, and OPTIMIZE are trademarks。
1 绪论不论是设计生产聚乙烯的大型装置,还是检测生物试剂的微型反应器,计算机都使化学工程师设计和分析过程的方法发生了革命性的变化。
实际上,今天许多本科生研究的工程问题就复杂性而言与三四十年前的博士生研究的问题是类似的。
现在计算机程序能以过去所花时间的很小的百分数来求解困难的问题。
今天,不再必须为有效地利用计算机而自已编写软件程序。
计算机程序能为你进行数值计算,但你仍需要理解如何将这些程序用于特定的工程挑战问题。
本书的目的是帮助你更好地完成化学工程实践。
计算机已成为使化学工程发生具有深远影响的发展的重要工具。
遗憾的是,计算机不像激光唱机这样简单,对激光唱机,你插入一张唱片,按一下按钮,每次都会产生相同的结果。
对于计算机程序,有时你向它们提供的参数并不能使它们正确地工作。
因此,你必须仔细、明智地应用它们。
本书还将:(1)用实例说明你作为化学工程师可能需要解决的问题;(2)对你可能使用的计算机程序的类型进行比较,并说明对特定的应用问题哪种程序是最好的;(3)详述如何检查你的运算,以确保你已经正确地解决了问题。
计算机技巧的价值是无法衡量的,但作为一个工程师,你也需要理解物理现象。
每个阐述化学工程应用的章节都由以通用的术语描述物理问题开始。
然后,将这些术语翻译成数学语言,以便由计算机进行描述。
接着,该章节将提供几道求解这类问题的例题,并一步一步地给出说明,使你能在自己的计算机上循序渐进地求解。
有时同一问题可用不同的程序求解,使你能了解每种程序的优点。
最后,各章节将提供一些比较复杂的问题,可由教师布置作为家庭作业。
本书中的所有例题都示范了如何验证你的工作及如何理解计算机向你提供的答案。
在使用计算机时,了解计算机是否获得了正确的答案常常是至关重要的。
如果你遵循这种策略:(1)求解问题;(2)验证你的计算;(3)清楚理解你的答案是如何获得的。
你将会毫无困难地使你的指导教师或上司相信你的答案,对无法解析求解的问题,你将获得1.1 本书结构如表1.1所示,本书由11章和6个附录组成。