八年级数学上册 13.3 等腰三角形 13.3.1 等腰三角形 第1课时 等腰三角形的性质学案 (新版)新人教版
- 格式:doc
- 大小:101.00 KB
- 文档页数:4
八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形第1课时等边三角形的性质与判定说课稿(新版)新人教版一. 教材分析等腰三角形和等边三角形是八年级数学上册第13.3节的内容。
这部分内容是学生学习了三角形的基本性质之后,进一步研究三角形的特殊形态。
等腰三角形和等边三角形具有很多独特的性质,例如等腰三角形的两底角相等,等边三角形的三个角都相等,三条边都相等。
这些性质在解决实际问题中有着广泛的应用。
二. 学情分析学生在学习这部分内容时,已经掌握了三角形的基本性质,具备了一定的观察、分析和推理能力。
但等边三角形的性质和判定较为复杂,学生可能难以理解和掌握。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能目标:让学生了解等腰三角形的性质和判定方法,掌握等边三角形的性质和判定方法。
2.过程与方法目标:通过观察、分析和推理,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:等腰三角形的性质和判定方法,等边三角形的性质和判定方法。
2.教学难点:等边三角形的性质和判定方法的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。
2.教学手段:利用多媒体课件、实物模型、黑板等。
六. 说教学过程1.导入新课:通过回顾三角形的基本性质,引导学生发现等腰三角形和等边三角形的特殊性质。
2.讲解等腰三角形的性质和判定方法:利用多媒体课件和实物模型,展示等腰三角形的性质,引导学生通过观察、分析和推理得出判定方法。
3.讲解等边三角形的性质和判定方法:同样利用多媒体课件和实物模型,展示等边三角形的性质,引导学生通过观察、分析和推理得出判定方法。
4.练习巩固:设计一些具有代表性的练习题,让学生运用所学的性质和判定方法进行解答。
5.课堂小结:让学生总结等腰三角形和等边三角形的性质和判定方法。
13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质●悬念激趣(1)如图是一组含有等腰三角形的生活图片,这些图片有哪些共同点?(2)将一把等腰三角尺和一个铅锤按图放置,就能检查一根横梁是否水平,你知道为什么吗?要想解决这个问题我们需要先研究等腰三角形具有哪些性质.【教学与建议】教学:活跃课堂气氛,让学生带着问题进入学习,也为后面的学习打下基础.建议:尽量给学生制造疑问,如怎样检查一根横梁是否水平;测平仪能测平的道理是什么等.●归纳导入问题1:如图①,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?你能画出具有这种特点的三角形吗?图①图②学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=__AC__.归纳:有两边相等的三角形是__等腰三角形__,相等的两边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,底边和腰的夹角叫做__底角__(如图②).问题2:把问题1中剪下的△ABC沿折痕AD对折,找出其中重合的线段和角,你能填好下表吗?重合的线段重合的角AB=AC∠B=∠CBD=CD∠BAD=∠CADAD=AD∠ADB=∠ADC从上表中你能发现等腰三角形具有什么性质吗?(引入课题)【教学与建议】教学:创设问题情境,激发学生的学习兴趣,归纳等腰三角形的性质.建议:教师引导学生归纳.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).命题角度1利用等腰三角形的定义(两边相等)解决问题当已知边没有确定为底边或腰时,要分情况讨论求解,并注意三角形的三边关系这一隐含条件.【例1】一个等腰三角形的一边长为2 cm,另一边长为5 cm,那么这个等腰三角形的周长是(B)A.9 cm B.12 cmC.9 cm或12 cm D.以上都不对【例2】等腰三角形的底边长为8 cm,一腰上的中线把这个三角形分成周长差为2 cm的两部分,则腰长为__6__cm或10__cm__.命题角度2利用等腰三角形的性质进行角度计算(1)在等腰三角形中,当已知锐角不能确定是顶角还是底角时,需分类讨论;(2)在等腰三角形中,已知的直角或钝角只能是顶角,不需分类讨论.【例3】如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D 等于(B)A.40°B.50°C.60°D.80°【例4】等腰三角形的一个角是30°,则这个等腰三角形的底角为(C)A.75°B.30°C.75°或30°D.不能确定【例5】等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为__60°或120°__.命题角度3利用等腰三角形的性质证明有关结论(1)等腰三角形“等边对等角”的性质在证全等三角形时可以得到等角.(2)等腰三角形“三线合一”的性质可以用来证明角相等、线段相等和线段垂直.【例6】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【例7】如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:如图,过点A作AP⊥BC于点P.∵AB=AC,∴BP=PC.∵AD=AE,∴DP=PE.∴BP-DP=PC-PE.∴BD=CE.高效课堂教学设计1.探索并证明等腰三角形的性质.2.运用等腰三角形的性质证明两个角相等或两条线段相等.3.体会轴对称在研究几何问题中的作用.▲重点理解和掌握等腰三角形的性质.▲难点等腰三角形性质证明中辅助线的添加和对性质2的理解.◆活动1新课导入提出问题:(1)把一张长方形的纸片对折,并剪下阴影部分(教材P75图13.3-1),再把它展开,得到一个什么图形?(2)上述过程中得到的△ABC有什么特点?(3)除了剪纸的方法,还可以怎样作出一个等腰三角形?学生动手剪纸、观察,教师在学生观察的同时提出问题.学生讨论问题(3),教师在学生充分发表自己想法的基础上给出画图的方法,并画出图形.◆活动2探究新知1.如图,将一张长方形纸片对折,沿图中虚线剪下一个三角形,把得到的三角形记为△ABC,并将折线的另一端记为D.提出问题:(1)△ABC是什么特殊三角形?为什么?(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:重合的线段 重合的角__AB __与__AC __ __∠B __与__∠C __ __BD __与__CD __ __∠BAD __与__∠CAD ____AD __与__AD __ __∠ADB __与__∠ADC __(3)图中有哪些相等的角?有哪些相等的线段? (4)△ABC 是不是轴对称图形?对称轴是什么?(5)等腰三角形ABC 除两腰相等外,角有什么性质? (6)在等腰三角形ABC 中,AD 有几种角色?各是什么? (7)等腰三角形具有哪些性质? 学生完成并交流展示. ◆活动3 知识归纳1.性质1:等腰三角形的两个__底角__相等(简写成“等边对__等角__”).2.性质2:等腰三角形的__顶角平分线____底边上的高____底边上的中线__互相重合(简写成“__三线合一__”).◆活动4 例题与练习 例1 教材P 76 例1.例2 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:BE =CE .证明:∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴AD 是BC 的垂直平分线.又∵点E 在AD 上,∴BE =CE .例3 如图,在△ABC 中,AB =AC ,点E 在CA 的延长线上,且∠AEF =∠AFE ,试问直线EF 和BC 有何位置关系?并说明理由.解:EF ⊥BC .理由如下:过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠BAD =12∠BAC .∵∠BAC =∠AEF +∠AFE ,∠AEF =∠AFE ,∴∠AFE =12∠BAC =∠BAD ,∴EF ∥AD .又∵AD ⊥BC ,∴EF ⊥BC .练习1.教材P 77 练习第1,2,3题.2.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为(B ) A .30° B .45° C .50° D .75°(第2题图) (第3题图)3.如图,在△ABC 中,点D 在边BC 上,BD =AD =AC ,E 为CD 的中点.若∠CAE =16°,则∠B =__37°__.4.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .求证:BD =CE .证明:过点A 作AF ⊥BC 于点F ,则AF ⊥DE .∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,即BD =CE .◆活动5 课堂小结 1.等腰三角形的性质. 2.等腰三角形性质的运用.1.作业布置(1)教材P81~82习题13.3第1,3,4,6,7,9题;(2)对应课时练习.2.教学反思。
教学设计13.3.1等腰三角形(第一课时)项目概要部分课题 13.3.1等腰三角形(第一课时)教材数学学科人教版八年级上册第十三单元课题3教学目标一、知识与技能:通过学习等腰三角形的概念及性质,会应用等腰三角形的性质计算、证明。
二、过程与方法:1、经历等腰三角形性质的探究,学生通过实践、操作、观察、猜想、论证,发展了合情推理的水平和演绎推理的水平,同时增强了语言表达水平。
2、在应用等腰三角形性质的过程中,培养了学生应用数学的意识。
三、情感、态度与价值观:在活动中,培养学生自主探究,合作交流的意识,提升学习的兴趣。
任务分析1.本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所以针对学生的特点,能充分地发挥学生主观能动性,让学生自己去发现、去联想.2. 通过学生自己动手实验得到等腰三角形性质的内容,能够使他们比较好的掌握知识、提升学习数学的兴趣,达到了事半功倍之效.3. 在整个教学过程中,利用直观教具及电化教学手段,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯.教学重点探索并证明等腰三角形的性质。
教学难点性质1证明中辅助线的添加和对性质2的理解。
预习设计1、有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫2、如图,在△ABC中,AB=AC,标出各部分名称。
3、把活动中剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表4、归纳等腰三角形的性质:性质 1 等腰三角形的两个相等(简写成“”)性质2 等腰三角形、、互相重合。
重合的线段重合的角产出学生能利用等腰三角形的两个性质解决问题,提升使用知识和技能解决问题的水平。
课前教学准备提示1.教具:长方形纸,剪刀,幻灯片、尺子。
2.学具:长方形纸。
学习过程(学生活动)学习指导(教师活动)内容和目标提示[活动一]回顾知识等腰三角形:有两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰所夹的角叫做底角。
13.3 等腰三角形
13.3.1等腰三角形
第1课时等腰三角形的性质
1.了解等腰三角形的概念,掌握等腰三角形的性质.
2.运用等腰三角形的概念及性质解决相关问题.
阅读教材P75~77“探究与例1”,完成预习内容.
知识探究
如图,在△ABC中,AB=AC,标出各部分名称.
(1)如图,把一张长方形纸片按图中的虚线对折,剪下阴影部分,再把它展开,得到△ABC,则AB________AC.
(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:
根据轴对称的性质可得以上结论.
(3)等腰三角形的性质
①等腰三角形的两个________相等(简写成“________________”).
②等腰三角形的顶角的平分线、底边上的________、底边上的________互相重合.
③等腰三角形是轴对称图形,________是底边上的中线(顶角平分线、底边上的高)所在的直线.
自学反馈
1.在△ABC中,若AC=AB,则∠______=∠______.
2.如图,在△ABC中,AB=AC,点D在BC上.
①∵AD⊥BC,
∴∠1=∠______,______=______;
②∵AD是中线,
∴______⊥______,∠______=∠______;
③∵AD是角平分线,
∴____⊥____,____=____.
3.课本P77练习1、2、3题
根据等腰三角形的性质解决上述问题,注意模仿例题格式.
活动1小组讨论
例1已知△ABC是等腰三角形,且∠A+∠B=130°,求∠A的度数.
解:①当∠A为顶角时,∵∠A+∠B+∠C=180°,∠A+∠B=130°,∴∠C=50°.∴∠A=80°.
②当∠C为顶角时,则∠A=∠B,
∵∠A+∠B=130°,∴∠A=65°.
③当∠B为顶角时,则∠A=∠C,
∵∠A+∠B=130°,
∴∠A=∠C=50°.
利用等腰三角形的性质解题时易犯考虑不周全的错误,解题时应认真审题,分析已知条件,分清是顶角还是底角.
例2如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.
证明:过点A作AE⊥BC于点E.
∵AB=AC,
∴∠BAD=2∠2.
∵BD⊥AC于点D,
∴∠BDC=90°.
∴∠2+∠C=∠C+∠DBC=90°.
∴∠DBC=∠2.
∴∠BAD=2∠DBC.
利用等腰三角形三线合一的性质求证.
活动2跟踪训练
1.等腰三角形有两条边长为4 cm和9 cm,则该三角形的周长是________.
等腰三角形在分类讨论的同时,还要注意三边关系.
2.等腰三角形的一个外角是80°,则其底角是________.
3.等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为________________.
4.已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm,则它的底边长为________.5.如图,在△ABC中,如果AB=AC,AE∥BC,求证:AE平分△ABC的外角∠DAC.
6.已知:如图,在△ABC中,AB=AC,O为△ABC内一点,且OB=OC.求证:AO⊥BC.
延长AO交BC于D,要证AO是等腰三角形ABC边BC上的高,根据“三线合一”,只要证AO是∠BAC的角平分线即可.
活动3课堂小结
在等腰三角形中,常常需要作底边上的高,运用等腰三角形“三线合一”的性质,对于解决所有相关的问题能起到事半功倍的效果.
【预习导学】
知识探究
(1)=(2)AB AC ∠B∠C BD CD ∠BAD∠CAD AD AD ∠ADB∠ADC(3)①底角等边对等角②中线高③对称轴
自学反馈
1.B C 2.①2BD CD ②AD BC 1 2 ③AD BC BD CD
【合作探究】
活动2跟踪训练
1.22 cm 2.40° 3.60°或120° 4.4 cm 5.证明:∵AE∥BC,∴∠DAE=∠B,∠EAC=∠C.又∵AB=AC,∴∠B=∠C.∴∠DAE=∠EAC,即AE平分△ABC的外角∠DAC.
6.证明:延长AO交于BC于点D,证△ABO≌△ACO,∴AO平分∠BAC.∵AB=AC,∴AD⊥BC.。