2008年湖南省高中数学竞赛试题
- 格式:doc
- 大小:697.00 KB
- 文档页数:11
高中数学2008年普通高等学校招生全国统一考试(湖南卷)(理科) 试题 2019.091,在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨<⎪⎩的点(,)x y 的集合用阴影表示为下列图中的2,已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则A.2-B. 2C.98-D.983,将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线4x π=则θ的一个可能取值是 A.512π B.512π- C.1112πD.1112π-4,函数1()1f x n x =A.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃5,从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A.100B.110C.120D.1806,如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子:①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.c c a a <其中正确式子的序号是A.①③B.②③C.①④D.②④7,一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 .8,在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===︒则A = .9,方程223x x -+=的实数解的个数为 .10,明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是.11,圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为, 和圆C 关于直线0x y -=对称的圆C ′的普通方程是.12,已知函数2()sin cos cos 2.222x x xf x =+-(Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ωϕϕϕπ++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[,]12f x ππ在上的最大值和最小值13,已知函数322()1f x x mx m x =+-+(m 为常数,且m>0)有极大值9. (Ⅰ)求m 的值;(Ⅱ)若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 14,如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11.A ABB (Ⅰ)求证: ;AB BC ⊥(Ⅱ)若1AA AC a ==,直线AC 与平面1A BC 所成的角为θ,二面角1,.2A BC A πϕθϕ--+=的大小为求证:15,如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm 2,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,怎样确定广告的高与宽的尺寸(单位:cm ),能使矩形广告面积最小?16,已知双曲线2222:1(0,0)x y C a b a b -->>的两个焦点为:(2,0),:(2,0),F F P -点的曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程17,已知数列12{}{},13n n x a b a an a λ=+=和满足:4,(1)(321)nn n n n b a n +-=--+,其中λ为实数,n 为正整数.(Ⅰ)证明:当18{}n b λ≠-时,数列是等比数列;(Ⅱ)设n S 为数列{}n b 的前n 项和,是否存在实数λ,使得对任意正整数n ,都有 12?n S >-若存在,求λ的取值范围;若不存在,说明理由.18,复数31()i i -等于( )A.8B.-8C.8iD.-8i19,“12x -<成立”是“(3)0x x -<成立”的( ) A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件20,已知变量x 、y 满足条件1,0,290,x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩则x y +的最大值是( )A.2B.5C.6D.8试题答案1, 解:在坐标系里画出图象,C 为正确答案。
2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。
(A )0 (B )1 (C )2 (D )32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。
(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3)3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。
(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
2008年湖南省高三数学竞赛试题一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、{}{}{}()A B=,,,A=2,0B=0,8A B A A 16B 18C 20D 22z z xy x A y B ⊗=∈∈⊗定义集合运算:设,,则集合的所有元素之和为,,,。
2{}()()[)[)25122311432163212,16,8,16,8,,,.333n n n a n N C A B C D *+∈⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭已知是等比数列,a =2,a =,则a a +a a ++a a 的取值范围是3、(()21C A 4B 3C 2D 1a b a ab +,小数部分为,则的值为。
,,,。
4、()C AB -3OA=OB=OC=,A 1331,2,2,.2222a b c A c a b B c b a C c a b D c a b =-+=-+=-+=-如图所示:已知点分有向线段的比为,且,,则以下等式成立的是O5、从存有号码为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( A) A 0.53, B 0.5, C 47, D 0.37。
6、(08江西理)(较难) 连结球面上两点的线段称为球的弦。
半径为4的球的两条弦AB 、CD 的长度分别等于M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为1 其中真命题的个数为( C )A .1个B .2个C .3个D .4个解:①③④正确,②错误。
易求得M 、N 到球心O 的距离分别为3、2,若两弦交于N ,则OM ⊥MN ,Rt OMN ∆中,有OM ON <,矛盾。
当M 、O 、N 共线时分别取最大值5最小值1。
2016年湖南省高中数学竞赛试题及答案一、选择题(本大题共6个小题,每小题5分,满分30分.每小题所提供的四个选项中只有一项是符合题目要求的)1.设集合{}0123,,,S A A A A =,在S 上定义运算“⊕”为:i j k A A A ⊕=,其中k 为i j +被4除的余数,,0,1,2,3.i j =则满足关系()20x x A A ⊕⊕=的()x x S ∈的个数为( )A .1B .2C .3D .4 答案:B .提示:因为()20,x x A A ⊕⊕=,设kx x A ⊕=,所以20,2,k A A a k ⊕==即2x x A ⊕=,故1x A =或3.x A =答案:A .2.一个骰子由1-6六个数字组成,根据如图所示的三种状态显示的数字,可推得“?”的数字是 ( )A .6B .3C .1D .2 3.设函数()2c o s ,fx x x =-{}n a 是公差为8π的等差数列,()()12f a f a +++()n f a 5,π=则()2315f a a a -=⎡⎤⎣⎦ ( )A .0B .116π C .18π D .21316π答案:D .提示:因为{}n a 是公差为8π的等差数列,且 ()()12f a f a +++()5f a()()()1122552cos 2cos 2cos 5,a a a a a a π=-+-++-=即()()1251252cos cos cos 5a a a a a a π+++-+++=,所以33333310cos cos cos cos cos 5.4884a a a a a a πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-+++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦即33102cos2cos1cos 5.48a a πππ⎛⎫-++= ⎪⎝⎭记()102cos2cos1cos 548g x x x πππ⎛⎫=-++- ⎪⎝⎭,则 ()102cos 2cos 1sin 048g x x ππ⎛⎫'=+++> ⎪⎝⎭,即()g x 在R 为增函数,有唯一零点2x π=,所以3.2a π=所以()2223151320.2242416f a a a ππππππ⎛⎫⎛⎫⎛⎫-=⨯---+=⎡⎤ ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭ 4.设,m n 为非零实数,i 为虚数单位,z C ∈,则方程z ni z mi n ++-=与方程z ni z mi m+--=-在同一复平面内的图形(其中12,F F 是焦点)是( )答案:B . 提示:z n i z m i n ++-=表示以()()120,,0,F n F m -为焦点的椭圆且0.n >z ni z mi m +--=-表示以()()120,,0,F n F m -为焦点的双曲线的一支.由n z ni z mi m n =++-≥+,知0.m <故双曲线z ni z mi m +--=-的一支靠近点2F .5.给定平面向量()1,1,那么,平面向量11,22⎛+ ⎝⎭是将向量()1,1经过 变换得到的,答案是 ( )A .顺时针旋转60所得B .顺时针旋转120所得C .逆时针旋转60所得D .逆时针旋转120所得 答案:C .提示:设两向量所成的角为θ,则()1,11cos ,2θ⋅==又0,180θ⎡⎤∈⎣⎦,所以60θ=.又110,022<>,所以C 正确. 6.在某次乒乓球单打比赛中,原计划每两名选手各比赛一场,但有3名选手各比赛了两场之后就退出了,这样全部比赛只进行了50场,那么上述3名选手之间比赛场数是( )A .0B .1C .2D .3 答案:B .提示:设这3名选手之间比赛的场数是r ,共n 名选手参赛,依题意有23650n Cr -+-=,即()()3444.2n n r --=+因为03r ≤≤,所以分4种情况讨论:①当0r =时,有()()3488n n --=,即27760n n --=,但它没有正整数解,故0r ≠;②当1r =时,有()()3490n n --=,解得13n =,故1r =符合题意;③当2r =时,有()()3492n n --=,即27800,n n --=但它没有正整数解,故2r ≠; ④当3r =时,有()()3494n n --=,即27820n n --=,但它没有正整数解,故 3.r ≠二、填空题(本大题共6个小题,每小题8分,满分48分,解题时只需将正确答案直接填在横线上.)7.规定:对于x R ∈,当且仅当()*1n n n n N ≤<+∈时,[]x n =.则不等式[][]2436450x x -+≤的解集是 .答案:28.x ≤≤。
2008年全国高中数学联合竞赛一试试题一、选择题(本题满分36分,每小题6分)1.函数f (x )=5−4x +x 22−x在(−∞,2)上的最小值是()A.0 B.1 C.2 D.3解答f (x )=2−x +12−x⩾2,等号成立时x =1.所以选C .2.设A =[−2,4),B ={x |x 2−ax −4⩽0},若B ⊆A ,则实数a 的取值范围为()A.[−1,2)B.[−1,2]C.[0,3]D.[0,3)解答设f (x )=x 2−ax −4,依题意f (x )=0的两根x 1,x 2∈[−2,4).由于∆=a 2+16>0,于是 f (−2)=2a ⩾0,f (4)=12−4a >0,a 2∈[−2,4)⇒a ∈[0,3).所以选D .3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.24181 B.26681 C.27481 D.670243解答由于比赛不满6局时胜者比对方多2分,则比赛局数只能是2,4,6.其中2局分胜负的情况为甲或乙胜2局;4局分胜负的情况为甲或乙胜3局负1局,且负的1局在前2局.于是需要比赛6局的情况是在前4局中,甲或乙在1,2局和3,4局中均为1胜1负.相应分布列为局数ξ246概率P (23)2+(13)2C 12·13(23)3+C 12·23(13)34(13)2(23)2于是Eξ=2×59+4×2081+6×1681=26681.所以选B .4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564cm 2,则这三个正方体的体积之和为()A.764cm 3或586cm 3B.764cm 3C.586cm 3或564cm 3D.586cm 3解答设三个正方体的棱长分别为a,b,c ,则6(a 2+b 2+c 2)=564⇒a 2+b 2+c 2=94.由于(3k ±1)2≡1(mod 3),于是a,b,c 中必有2个数为3的倍数,不妨设为a,b .检验得32+62=45⇒c =7;32+92=90⇒c =2.从而a 3+b 3+c 3=586或764.所以选A .5.方程组 x +y +z =0,xyz +z =0,xy +yz +xz +y =0的有理数解(x,y,z )的个数为()A.1B.2C.3D.4解答xyz +z =z (xy +1)=0⇒z =0或xy =−1.当z =0时, x +y =0,xy +y =y (x +1)=0⇒ x =0,y =0或 x =−1,y =1.当xy =−1时, (x +y )2=y −1,xy =−1⇒(y −1y )2=y −1⇒y 2+1y 2=y +1⇒y 4−y 3−y 2+1=(y −1)(y 3−y −1)=0.由于y 3−y −1=0没有有理根,则y =1⇒x =−1.于是有理解(x,y,z )的个数为2,所以选B .6.设△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin A cot C +cos A sin B cot C +cos B的取值范围是()A.(0,+∞) B.(0,√5+12)C.(√5−12,√5+12) D.(√5−12,+∞)解答设等比数列a,b,c 的公比为q ,则b =aq,c =aq 2.于是 a +b >c,b +c >a ⇒ q 2−q −1<0,q 2+q −1>0⇒√5−12<q <√5+12.sin A cot C +cos A sin B cot C +cos B =sin A cos C +cos A sin C sin B cos C +cos B sin C =sin (A +C )sin (B +C )=sin B sin A =b a =q ∈(√5−12,√5+12).所以选C .二、填空题(本题满分54分,每小题9分)7.设f (x )=ax +b ,其中a,b 为实数,f 1(x )=f (x ),f n +1(x )=f (f n (x )),n =1,2,···,若f 7(x )=128x +381,则a +b =.解答f 2(x )=a (ax +b )+b =a 2x +ab +b =a 2x +b (1−a 2)1−a ,f 3(x )=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b =a 3x +b (1−a 3)1−a ,···,f 7(x )=a 7x +b (1−a 7)1−a =128x +381⇒a =2,b =3.所以a +b =5.8.设f (x )=cos 2x −2a (1+cos x )的最小值为−12,则a =.解答设t =cos x ∈[−1,1],则f (x )=2t 2−1−2a (1+t )=2t 2−2at −2a −1=2(t −a 2)2−a 22−2a −1.于是 a 2∈[−1,1],−a 22−2a −1=−12或 a 2>1,1−4a =−12或 a 2<−1,1=−12.解得a =−2±√3(−2−√3舍去).所以a =−2+√3.9.将24个志愿者名额分配给3所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有种.解答将24个志愿者名额分配给3所学校,每校至少有一个名额的分配方法有C 223=253种;3所学校名额相同的分配方法有1种;有且仅有2所学校名额相同的分配方法(即满足2x +z =24且x =z 的正整数解)有10×3=30种.所以3所学校名额互不相同的分配方法共有253−1−30=222种.10.设数列{a n }的前n 项和S n 满足:S n +a n =n −1n (n +1),n =1,2,···,则通项a n =.解答S n +a n =2S n −S n −1=n −1n (n +1)=2n +1−1n ⇒2(S n −1n +1)=S n −1−1n ⇒数列{S n −1n +1}是公比为12的等比数列,且S 1−12=−12,于是S n −1n +1=−(12)n ⇒S n =1n +1−(12)n (n ∈N ∗).所以a n =S n −S n −1=1n +1−(12)n −1n +(12)n −1=(12)n −1n (n +1).11.设f (x )是定义在R 上的函数,若f (0)=2008,且对任意x ∈R ,满足f (x +2)−f (x )⩽3·2x ,f (x +6)−f (x )⩾63·2x ,则f (2008)=.解答f (2008)=f (0)+[f (2)−f (0)]+[f (4)−f (2)]+···+[f (2008)−f (2006)]⩽2008+3(20+22+···+22006)=2008+41004−1=22008+2007;f (2004)=f (0)+[f (6)−f (0)]+[f (12)−f (6)]+···+[f (2004)−f (1998)]⩾2008+63(20+26+···+21998)=2008+64334−1=22004+2007,又 f (x +6)−f (x )⩾63·2x ,f (x )−f (x +2)⩾−3·2x⇒f (x +6)−f (x +2)⩾60·2x ⇒f (2008)−f (2004)⩾60·22002⇒f (2008)⩾f (2004)+60·22002=64·22002+2007=22008+2007.所以f (2008)=22008+2007.12.一个半径为1的小球在一个内壁棱长为4√6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.解答如图,小球O 是正四面体P −DEF 的内切球.设AC 的中点为G ,作OM ⊥P G 于M .则有r =1⇒P O =3⇒P M =2√2=13P G ,同理AN =2√2=13AF ⇒MN =2√6.于是小球在正四面体一个面内能接触到的区域是以MN 为边长的正三角形及内部,其面积为正四面体一个面面积的14.所以该小球永远不可能接触到的容器内壁的面积为正四面体表面积的34,即S =34×4×√34×(4√6)2=72√3.三、解答题(本题满分60分,每小题20分)13.已知函数f (x )=|sin x |的图像与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,求证:cos αsin α+sin 3α=1+α24α.解答如图,直线y =kx (k >0)与f (x )=|sin x |的图像相切于点A (α,−sin α)(π<α<3π2),由于(−sin x )′=−cos x,于是有−sin αα=−cos α⇒α=tan α.所以cos αsin α+sin 3α=cos α2sin 2αcos α=12sin 2α=1+tan 2α4tan α=1+α24α.14.解不等式log 2(x 12+3x 10+5x 8+3x 6+1)<1+log 2(x 4+1).解答解析一:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+5x 8+3x 6−2x 4−1<0⇒(x 4+x 2−1)(x 8+2x 6+4x 4+x 2+1)<0⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).解析二:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+3x 8+x 6+2(x 8+x 6)<2x 4+1⇒x 6+3x 4+3x 2+1+2(x 2+1)<2x 2+1x 6⇒(x 2+1)3+2(x 2+1)<(1x 2)3+2x 2⇒x 2+1<1x 2⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).15.如图,P 是抛物线y 2=2x 上的动点,点B 、C 在y 轴上,圆(x −1)2+y 2=1内切于△P BC ,求△P BC 面积的最小值.解答如图,设P (2t 2,2t ),M (1,0),过P 的直线y −2t =k (x −2t 2)与圆M 相切,则有|k (1−2t 2)+2t |√1+k2=1⇒4t 2(t 2−1)k 2−4t (2t 2−1)k +4t 2−1=0设直线P B,P C 的斜率为k 1,k 2,于是y B =2t −2t 2k 1,y C =2t −2t 2k 2,S △P BC =12·2t 2|y B−y C |=2t 4|k 1−k 2|=2t 4·√16t 2(2t 2−1)2−16t 2(t 2−1)(4t 2−1)4t 2(t 2−1)=2t 2·|t |√(2t 2−1)2−(t 2−1)(4t 2−1)t 2−1=2t 4t 2−1=2(t 4−1+1t 2−1)=2(t 2+1+1t 2−1)=2(t 2−1+1t 2−1+2)⩾2(2+2)=8,等号成立时t 2=2⇒t =±√2.所以△P BC 面积的最小值是8.。
年湖南省高中数学竞赛试卷A及答案考生注意:1、本试卷共三大题(16个小题),全卷满分150分。
2、用钢笔、签字笔或圆珠笔作答。
3、解题书写不要超出装订线。
4、不能使用计算器。
一、选择题(本大题共6小题,每小题6分,满分36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.记[x]为不大于x的最大整数,设有集合,,则 ( ) A.(-2,2) B.[-2,2] C. D.2.若,则 = ( )A.-1 B. 1 C. D.3.四边形的各顶点位于一个边长为1的正方形各边上,若四条边长的平方和为t,则t的取值区间是 ( )A.[1,2] B.[2,4] C.[1,3] D.[3,6]4.如图,在正方体ABCD-A1B1C1D1中,P为棱AB上一点,过点P在空间作直线l,使l与平面ABCD和平面ABC1D1均成角,则这样的直线条数是 ( )A. 1 B. 2C. 3 D. 45.等腰直角三角形 ABC中,斜边BC= ,一个椭圆以C为其焦点,另一个焦点在线段AB上,且椭圆经过A,B两点,则该椭圆的标准方程是(焦点在x轴上) ( )A. B.C. D.(注:原卷中答案A、D是一样的,这里做了改动)6.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为 ( )A.1372 B. 2024 C. 3136 D.4495二、填空题(本大题共6小题,每小题6分,满分36分,请将正确答案填在横线上。
)7.等差数列的前m项和为90,前2 m项和为360,则前4m项和为_____.8.已知,,且,则的值为______ ___.9.100只椅子排成一圈,有n个人坐在椅子上,使得再有一个人坐入时,总与原来的n个人中的一个坐在相邻的椅子上,则n的最小值为__________.10.在 ABC中,AB= ,AC= ,BC= ,有一个点D使得AD平分BC并且是直角,比值能写成的形式,这里m、n是互质的正整数,则m-n=______ __.11.设ABCD-A1B1C1D1是棱长为1的正方体,则上底面ABCD的内切圆上的点P与过顶点A,B,C1,D1的圆上的点Q之间的最小距离是___________.12.一项“过关游戏”的规则规定:在第n关要抛一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。
二00八年湖南省高中数学竞赛试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准. 选择题和填空题严格按标准给分,不设中间档次分.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时参照本评分标准适当档次给分.一、选择题(本大题共10个小题,每小题5分,共40分. 在每小题给出的四个答案中,只有一项是符合题目要求的.)1.解:集合B A ⊗的元素:0021=⨯=z ,16822=⨯=z ,0003=⨯=z ,0804=⨯=z ,故集合B A ⊗的所有元素之和为16. 选A .2. 解: 设{}n a 的公比为q ,则81241253===a a q ,进而21=q . 所以,数列{}1+n n a a 是以821=a a 为首项,以412=q 为公比的等比数列. ()n n n n a a a a a a -+-=-⎪⎭⎫ ⎝⎛-=+⋅⋅⋅++41332411411813221. 显然,33281322121<+⋅⋅⋅++≤=+n n a a a a a a a a . 选C . 3. 解:5名志愿者随进入3个不同的奥运场馆的方法数为24335=种. 每个场馆至少有一名志愿者的情形可分两类考虑:第1类 ,一个场馆去3人,剩下两场馆各去1人,此类的方法数为60223513=⋅⋅A C C 种;第2类,一场馆去1人,剩下两场馆各2人,此类的方法数为90241513=⋅⋅C C C 种. 故每个场馆至少有一名志愿者的概率为81502439060=+=P .选D . 4. 解:设a OA =,b OB =,则b x 表示与-示点A 到直线OB 上任一点C 的距离AC,而表示点A 到B 的距离. 当()b a b -⊥时,.OB AB ⊥由点与直线之间垂直距离最短知,AB AC ≥,即对一切R x ∈,不等式-≥-恒成立.反之,如果AB AC ≥恒成立,则()AB AC ≥min ,故AB 必为点A 到OB 的垂直距离,AC OB ⊥,即()-⊥. 选C .5.解:用2-x 代替4)2()2(=-++x f x f 中的x ,得4)4()(=-+x f x f .如果点()y x ,在)(x f y =的图象上,则)4(4x f y -=-,即点()y x ,关于点()2,2的对称点()y x --4,4也在)(x f y =的图象上.反之亦然,故①是真命题.用2-x 代替)2()2(x f x f -=+中的x ,得)4()(x f x f -=.如果点()y x ,在)(x f y =的图象上,则)4(x f y -=,即点()y x ,关于点2=x 的对称点()y x ,4-也在)(x f y =的图象上,故②是真命题.由②是真命题,不难推知③也是真命题.故三个命题都是真命题.选D.6. 解:假设AB 、CD 相交于点N ,则AB 、CD 共面,所以A 、B 、C 、D 四点共圆,而过圆的弦CD 的中点N 的弦AB 的长度显然有CD AB ≥,所以②是错的.容易证明,当以AB 为直径的圆面与以CD 为直径的圆面平行且在球心两侧时,MN 最大为5,故③对.当以AB 为直径的圆面与以CD 为直径的圆面平行且在球心同侧时,MN 最小为1,故④对.显然是对的.①显然是对的.故选A.7. 解:因为00002818036052008++⨯=,所以,0)28sin(sin )28sin sin(00<-=-=a ;0)28sin(cos )28cos sin(00<-=-=b ; 0)28cos(sin )28sin cos(00>=-=c ;0)28cos(cos )28cos cos(00>=-=d . 又0028cos 28sin <,故.c d a b <<<故选B.8. 解:由()()101311463)(323++++=+++=x x x x x x f ,令y y y g 3)(3+=,则)(y g 为奇函数且单调递增.而()()110131)(3=++++=a a a f ,()()1910131)(3=++++=b b b f , 所以9)1(-=+a g ,9)1(=+b g ,9)1(-=--b g ,从而)1()1(--=+b g a g , 即11--=+b a ,故2-=+b a .选D.二、填空题(本大题共6个小题,每小题8分,共48分. 请将正确的答案填在横线上.)9. 解:由条件得 9631-+-=-+-y x y x ①当9≥y 时,①化为661-=+-x x ,无解;当3≤y 时,①化为661-+=-x x ,无解;当93≤≤y 时,①化为16122---=-x x y ②若1≤x ,则5.8=y ,线段长度为1;若61≤≤x ,则5.9=+y x ,线段长度为25;若6≥x ,则5.3=y ,线段长度为4.综上可知,点C 的轨迹的构成的线段长度之和为()1254251+=++.填()125+.10. 解:P 优于P ',即P 位于P '的左上方,“不存在Ω中的其它点优于Q ”,即“点Q 的左上方不存在Ω中的点”.故满足条件的点的集合为(){}00,2008|,22≥≤=+y x y x y x 且.填(){}00,2008|,22≥≤=+y x y x y x 且. 11.解:由多项式乘法法则可知,可将问题转化为求方程150=++r t s ①的不超过去100的自然数解的组数.显然,方程①的自然数解的组数为.2152C下面求方程①的超过100自然数解的组数.因其和为150,故只能有一个数超过100,不妨设100>s .将方程①化为49)101(=++-r t s记101-='s s ,则方程49=++'r t s 的自然数解的组数为.251C因此,150x 的系数为7651251132152=-C C C .填7651.12.解:因为底面周长为3,所以底面边长为21,底面面积为833=S . 又因为体积为89,所以高为3.该球的直径为()23122=+,球的体积ππ34343==R V .填π34. 13.解:第一行染2个黑格有24C 种染法.第一行染好后,有如下三种情况:(1)第二行染的黑格均与第一行的黑格同列,这时其余行都只有一种染法;(2)第二行染的黑格与第一行的黑格均不同列,这时第三行有24C 种染法,第四行的染法随之确定;(3)第二行染的黑格恰有一个与第一行的黑格同列,这样的染法有4种,而在第一、第二这两行染好后,第三行染的黑格必然有1个与上面的黑格均不同列,这时第三行的染法有2种,第四行的染法随之确定.因此,共有染法为()9024616=⨯++⨯种.填90.14.解:令⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=5251)(k k k f ,则 )(5251521511525515)5(k f k k k k k k k f =⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+-⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+-⎥⎦⎤⎢⎣⎡-+=+ 故)(k f 是周期为5的函数.计算可知:0)2(=f ;0)3(=f ;0)4(=f ;0)5(=f ;1)6(=f . 所以, )2008(5120072008f x x -+=;)2007(5120062007f x x -+=;…;)2(5112f x x -+=. 以上各式叠加,得[])2008()3()2(5200712008f f f x x +⋅⋅⋅++-+=[]{})3()2()6()3()2(401520071f f f f f x +++⋅⋅⋅++-+= 3401520071=⨯-+=x ;同理可得4022008=y .所以,第2008棵树的种植点为()402,3.填()402,3.三、解答题(本大题共4小题,共62分. 要求有必要的解答过程.)15.证明:由对称性,不妨设b a ≤,令t ba =,则因βα≤≤≤b a ,可得 .αββα≤=≤b a t …………………………(3分) 设t t t f 1)(+=⎪⎪⎭⎫ ⎝⎛≤≤αββαt ,则对t 求导,得211)(t t f -='.…………(6分) 易知,当⎪⎪⎭⎫⎢⎣⎡∈1,βαt 时,0)(<'t f ,)(t f 单调递减;当⎥⎦⎤ ⎝⎛∈αβ,1t 时,0)(>'t f ,)(t f 单调递增. …………………………………………………………………(9分)故)(t f 在βα=t 或αβ=t 处有最大值且αββαβα+=⎪⎪⎭⎫ ⎝⎛f 及βααβαβ+=⎪⎭⎫ ⎝⎛f 两者相等. 故)(t f 的最大值为βααβ+,即βααβ+≤+=t t t f 1)(.………………(12分) 由t b a =,得βααβ+≤+b a a b ,其中等号仅当βα==b a ,或αβ==b a ,成立. …………………………………………………………………………(14分)16. 解:如果某方以1:3或0:3获胜,则将未比的一局补上,并不影响比赛结果.于是,问题转化为:求“乙在五局中至少赢三局的概率”.…………(3分) 乙胜五局的概率为531⎪⎭⎫ ⎝⎛;………………………………………………(6分) 乙胜四局负一局的概率为3231415⨯⎪⎭⎫ ⎝⎛C ;………………………………(9分) 乙胜三局负二局的概率为.32312325⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C ……………………………(12分)以上结果相加,得乙在五局中至少赢三局的概率为.8117……………(14分)17. 解:(1)因为()x x x f -+=1ln )(,所以函数的定义域为()+∞-,1,…(2分) 又x x x x f +-=-+='1111)(.……………………………………………(5分) 当[]n x ,0∈时, 0)(<'x f ,即)(x f 在[]()*∈N n n ,0上是减函数,故 ().1ln )(n n n f b n -+==()()().1ln 1ln 1ln n n n n b n a n n =++-+=-+=…………………………(8分)因为()()()141421212222<-=+-k k k k k ,所以 ()()()()()121121212126754532312421253122222+<+⋅+-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅k k k k k k k . …………………………………………………………………………(12分) 又容易证明1212121--+<+k k k ,所以 ()()()*-∈--+<+<⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=N k k k k k k a a a a a a p k k k 1212121242125312421231, ………………………………………………………………(14分) n p p p +⋅⋅⋅++21()()()12123513--++⋅⋅⋅+-+-<n n 112-+=n112-+=n a .即 .11221-+<+⋅⋅⋅++n n a p p p ……………………(16分)18. 证明:(1)设()00,y x P 、()11,y x M 、()22,y x N . 则椭圆过点M 、N 的切线方程分别为192511=+y y x x ,192522=+y y x x .…………………………………………(3分) 因为两切线都过点P ,则有19250101=+y y x x ,19250202=+y y x x . 这表明M 、N 均在直线192500=+y y x x ① 上.由两点决定一条直线知,式①就是直线MN 的方程,其中()00,y x 满足直线l 的方程. …………………………………………………………………(6分)(1)当点P 在直线l 上运动时,可理解为0x 取遍一切实数,相应的0y 为.107500-=x y代入①消去0y 得01637052500=--+y x x x ② 对一切R x ∈0恒成立. …………………………………………………………(9分)变形可得 01910635250=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+y y x x 对一切R x ∈0恒成立.故有⎪⎩⎪⎨⎧=+=+.01910,063525y y x 由此解得直线MN 恒过定点⎪⎭⎫ ⎝⎛-109,1425Q .……………………………(12分) (2)当MN ∥l 时,由式②知.70176370552500--≠---x x 解得.53343750=x 代入②,得此时MN 的方程为03553375=--y x ③ 将此方程与椭圆方程联立,消去y 得 .012251280687533255332=--x x …………………………………………(15分) 由此可得,此时MN 截椭圆所得弦的中点横坐标恰好为点⎪⎭⎫ ⎝⎛-109,1425Q 的横坐标,即.14252553327533221=⨯--=+=x x x 代入③式可得弦中点纵坐标恰好为点⎪⎭⎫ ⎝⎛-109,1425Q 的纵坐标,即 .10925332125491357533142575-=⎪⎭⎫ ⎝⎛-=⨯-⨯=y 这就是说,点⎪⎭⎫ ⎝⎛-109,1425Q 平分线段MN .……………………………(18分)。
2008年全国高中数学联合竞赛一试试题(A 卷)一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )A .0B .1C .2D .32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3)3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( ) A. 24181 B. 26681 C. 27481D. 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 35.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( ) A. 1 B. 2 C. 3 D. 46.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( )A. (0,)+∞B.C.D. )+∞二、填空题(本题满分54分,每小题9分)题15图7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =L ,若7()128381f x x =+,则a b += .8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a = .9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 种.10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =L ,则通项n a = .11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f = .12.一个半径为1的小球在一个内壁棱长为46的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 ..三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+.14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.2008年全国高中数学联合竞赛一试参考答案及评分标准(A卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a ≥-且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B )A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =. 若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但。
2008年湖南省高中数学竞赛试题一、选择题(本大题共10个小题,每小题5分,共40分. 在每小题给出的四个答案中,只有一项是符合题目要求的.) 1.定义集合运算: {}B y A x xy z z B A ∈∈==⊗,,|.设{}0,2=A ,{}8,0=B ,则集合B A ⊗的所有元素之和为( )A .16B .18C . 20D .222.已知{}n a 是等比数列,41,252==a a ,则()*+∈+⋅⋅⋅++N n a a a a a a n n 13221的取值范围是( )A .[)16,12B .[)16,8C . ⎪⎭⎫⎢⎣⎡332,8 D . ⎪⎭⎫⎢⎣⎡332,316 3.5名志愿者随进入3个不同的奥运场馆参加接待工作,则每个场馆至少有一名志愿者的概率为 ( )A .53B .151C .85D .8150 4.已知、为非零的不共线的向量,设条件:M ()-⊥;条件:N 对一切R x ∈,不≥-M 是N 的( )A .必要而不充分条件B .充分而不必要条件C .充分而且必要条件D .既不充分又不必要条件5.设函数)(x f 定义在R 上,给出下述三个命题:①满足条件4)2()2(=-++x f x f 的函数图象关于点()2,2对称; ②满足条件)2()2(x f x f -=+的函数图象关于直线2=x 对称;③函数)2(-x f 与)2(+-x f 在同一坐标系中,其图象关于直线2=x 对称.其中,真命题的个数是( )A .0B .1C .2D .36.连结球面上两点的线段称为球的弦. 半径为4的球的两条弦AB 、CD 的长度分别等于72和34,M 、N 分别为AB 、CD 的中点,每两条弦的两端都在球面上运动,有下面四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为1 其中真命题为( )A .①③④B .①②③C .①②④D .②③④7.设)2008s i n (s i n0=a ,)2008sin(cos 0=b ,)2008cos(sin 0=c ,)2008cos(cos 0=d ,则d c b a ,,,的大小关系是( )A .d c b a <<<B .c d a b <<<C .a b d c <<<D .b a c d <<<8.设函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a( )A .2B .1C .0D .2-二、填空题(本大题共6个小题,每小题8分,共48分. 请将正确的答案填在横线上.) 9.在平面直角坐标系中,定义点()11,y x P 、()22,y x Q 之间的“直角距离”为.),(2121y y x x Q P d -+-=若()y x C ,到点()3,1A 、()9,6B 的“直角距离”相等,其中实数x 、y 满足100≤≤x 、100≤≤y ,则所有满足条件的点C 的轨迹的长度之和为 .10.已知集合(){}2008|,22≤+=Ωy x y x ,若点),(y x P 、点),(y x P '''满足x x '≤且y y '≥,则称点P 优于P '. 如果集合Ω中的点Q 满足:不存在Ω中的其它点优于Q ,则所有这样的点Q 构成的集合为 . 11.多项式()310021x x x +⋅⋅⋅+++的展开式在合并同类项后,150x的系数为 .(用数字作答)12.一个六棱柱的底面是正六边形,其侧棱垂直于底面.已知该六棱柱的顶点都在同一球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 . 13.将一个44⨯棋盘中的8个小方格染成黑色,使得每行、每列都恰有两个黑色方格,则有 不同的染法.(用数字作答)14.某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点()k k k y x P ,处,其中1,111==y x ,当2≥k 时,⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--+=--.5251;525515111k k y y k k x x k k k k 其中,[]a 表示实数a 的整数部分,例如[]26.2=,[].06.0= 按此方案,第2008棵树种植点的坐标为 .三、解答题(本大题共4小题,共62分. 要求有必要的解答过程.) 15.(本小题满分14分)设实数[]βα,,∈b a ,求证:βααβ+≤+b a a b 其中等号当且仅当βα==b a ,或αβ==b a ,成立,βα,为正实数.16.(本小题满分14分)甲、乙两人进行乒乓球单打比赛,采用五局三胜制(即先胜三局者获冠军).对于每局比赛,甲获胜的概率为32,乙获胜的概率为31.如果将“乙获得冠军”的事件称为“爆出冷门”.试求此项赛事爆出冷门的概率.17.(本小题满分16分)已知函数()x x x f -+=1ln )(在区间[]()*∈Nn n ,0上的最小值为nb ,令()n n b n a -+=1ln ,()*-∈⋅⋅⋅⋅⋅⋅=N k a a a a a a p kk k 2421231,求证:.11221-+<+⋅⋅⋅++n n a p p p18.(本小题满分18分)过直线07075:=--y x l 上的点P 作椭圆192522=+y x 的切线PM 、PN ,切点分别为M 、N ,联结.MN(1)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q ; (2)当MN ∥l 时,定点Q 平分线段.MN参考答案说明:1.评阅试卷时,请依据本评分标准. 选择题和填空题严格按标准给分,不设中间档次分.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时参照本评分标准适当档次给分.一、选择题(本大题共10个小题,每小题5分,共40分. 在每小题给出的四个答案中,只有一项是符合题目要求的.) 1. 解:集合B A ⊗的元素:0021=⨯=z ,16822=⨯=z ,0003=⨯=z ,0804=⨯=z ,故集合B A ⊗的所有元素之和为16. 选A.2. 解: 设{}n a 的公比为q ,则81241253===a a q ,进而21=q .所以,数列{}1+n n a a 是以821=a a 为首项,以412=q 为公比的等比数列. ()n n n n a a a a a a -+-=-⎪⎭⎫ ⎝⎛-=+⋅⋅⋅++41332411411813221.显然,33281322121<+⋅⋅⋅++≤=+n n a a a a a a a a . 选C. 3. 解:5名志愿者随进入3个不同的奥运场馆的方法数为24335=种. 每个场馆至少有一名志愿者的情形可分两类考虑:第1类 ,一个场馆去3人,剩下两场馆各去1人,此类的方法数为60223513=⋅⋅A C C 种;第2类,一场馆去1人,剩下两场馆各2人,此类的方法数为90241513=⋅⋅C C C 种. 故每个场馆至少有一名志愿者的概率为81502439060=+=P .选D. 4. 解:设=,=,则x 表示与OB-表示点A 到直线OB 上任一点C 的距离AC,而表示点A 到B 的距离. 当()-⊥时,.OB AB ⊥由点与直线之间垂直距离最短知,AB AC ≥,即对一切R x ∈,不等式-≥-恒成立.反之,如果AB AC ≥恒成立,则()AB AC ≥min ,故AB 必为点A 到OB 的垂直距离,AC OB ⊥,即()-⊥. 选C.5. 解:用2-x 代替4)2()2(=-++x f x f 中的x ,得4)4()(=-+x f x f .如果点()y x ,在)(x f y =的图象上,则)4(4x f y -=-,即点()y x ,关于点()2,2的对称点()y x --4,4也在)(x f y =的图象上.反之亦然,故①是真命题.用2-x 代替)2()2(x f x f -=+中的x ,得)4()(x f x f -=.如果点()y x ,在)(x f y =的图象上,则)4(x f y -=,即点()y x ,关于点2=x 的对称点()y x ,4-也在)(x f y =的图象上,故②是真命题.由②是真命题,不难推知③也是真命题.故三个命题都是真命题.选D. 6. 解:假设AB .CD 相交于点N ,则AB .CD 共面,所以A .B .C .D 四点共圆,而过圆的弦CD 的中点N 的弦AB 的长度显然有CD AB ≥,所以②是错的.容易证明,当以AB 为直径的圆面与以CD 为直径的圆面平行且在球心两侧时,MN 最大为5,故③对.当以AB 为直径的圆面与以CD 为直径的圆面平行且在球心同侧时,MN 最小为1,故④对.显然是对的.①显然是对的.故选A. 7. 解:因为02818036052008++⨯=,所以,0)28sin(sin )28sin sin(00<-=-=a ;0)28sin(cos )28cos sin(00<-=-=b ; 0)28cos(sin )28sin cos(00>=-=c ;0)28cos(cos )28cos cos(00>=-=d .又0028cos 28sin <,故.c d a b <<<故选B.8. 解:由()()101311463)(323++++=+++=x x x x x x f ,令y y y g 3)(3+=,则)(y g为奇函数且单调递增.而()()110131)(3=++++=a a a f ,()()1910131)(3=++++=b b b f ,所以9)1(-=+a g ,9)1(=+b g ,9)1(-=--b g ,从而)1()1(--=+b g a g , 即11--=+b a ,故2-=+b a .选D.二、填空题(本大题共6个小题,每小题8分,共48分. 请将正确的答案填在横线上.) 9. 解:由条件得 9631-+-=-+-y x y x ①当9≥y 时,①化为661-=+-x x ,无解; 当3≤y 时,①化为661-+=-x x ,无解;当93≤≤y 时,①化为 16122---=-x x y ②若1≤x ,则5.8=y ,线段长度为1;若61≤≤x ,则5.9=+y x ,线段长度为25;若6≥x ,则5.3=y ,线段长度为4.综上可知,点C 的轨迹的构成的线段长度之和为()1254251+=++.填()125+.10.解:P 优于P ',即P 位于P '的左上方,“不存在Ω中的其它点优于Q ”,即“点Q 的左上方不存在Ω中的点”.故满足条件的点的集合为(){}00,2008|,22≥≤=+y x y xy x 且.填(){}00,2008|,22≥≤=+y x y x y x 且.11.解:由多项式乘法法则可知,可将问题转化为求方程 150=++r t s ①的不超过去100的自然数解的组数.显然,方程①的自然数解的组数为.2152C下面求方程①的超过100自然数解的组数.因其和为150,故只能有一个数超过100,不妨设100>s .将方程①化为49)101(=++-r t s记101-='s s ,则方程49=++'r t s 的自然数解的组数为.251C因此,150x的系数为7651251132152=-C C C .填7651.12.解:因为底面周长为3,所以底面边长为21,底面面积为833=S . 又因为体积为89,所以高为3.该球的直径为()23122=+,球的体积ππ34343==R V .填π34.13.解:第一行染2个黑格有24C 种染法.第一行染好后,有如下三种情况:(1)第二行染的黑格均与第一行的黑格同列,这时其余行都只有一种染法; (2)第二行染的黑格与第一行的黑格均不同列,这时第三行有24C 种染法,第四行的染法随之确定;(3)第二行染的黑格恰有一个与第一行的黑格同列,这样的染法有4种,而在第一.第二这两行染好后,第三行染的黑格必然有1个与上面的黑格均不同列,这时第三行的染法有2种,第四行的染法随之确定.因此,共有染法为()9024616=⨯++⨯种.填90. 14.解:令⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=5251)(k k k f ,则 )(5251521511525515)5(k f k k k k k k k f =⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+-⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡-+-⎥⎦⎤⎢⎣⎡-+=+ 故)(k f 是周期为5的函数.计算可知:0)2(=f ;0)3(=f ;0)4(=f ;0)5(=f ;1)6(=f . 所以,)2008(5120072008f x x -+=;)2007(5120062007f x x -+=;…;)2(5112f x x -+=.以上各式叠加,得[])2008()3()2(5200712008f f f x x +⋅⋅⋅++-+=[]{})3()2()6()3()2(401520071f f f f f x +++⋅⋅⋅++-+= 3401520071=⨯-+=x ;同理可得4022008=y .所以,第2008棵树的种植点为()402,3.填()402,3.三、解答题(本大题共4小题,共62分. 要求有必要的解答过程.) 15.证明:由对称性,不妨设b a ≤,令t ba=,则因βα≤≤≤b a ,可得 .αββα≤=≤b a t …………………………(3分) 设t t t f 1)(+=⎪⎪⎭⎫⎝⎛≤≤αββαt ,则对t 求导,得211)(t t f -='.…………(6分) 易知,当⎪⎪⎭⎫⎢⎣⎡∈1,βαt 时,0)(<'t f ,)(t f 单调递减;当⎥⎦⎤ ⎝⎛∈αβ,1t 时,0)(>'t f ,)(t f 单调递增. …………………………………………………………………(9分) 故)(t f 在βα=t 或αβ=t 处有最大值且αββαβα+=⎪⎪⎭⎫ ⎝⎛f 及βααβαβ+=⎪⎭⎫ ⎝⎛f 两者相等.故)(t f 的最大值为βααβ+,即βααβ+≤+=t t t f 1)(.………………(12分) 由t b a =,得βααβ+≤+b a a b ,其中等号仅当βα==b a ,或αβ==b a ,成立. …………………………………………………………………………(14分)16. 解:如果某方以1:3或0:3获胜,则将未比的一局补上,并不影响比赛结果.于是,问题转化为:求“乙在五局中至少赢三局的概率”.…………(3分)乙胜五局的概率为531⎪⎭⎫⎝⎛;………………………………………………(6分)乙胜四局负一局的概率为3231415⨯⎪⎭⎫ ⎝⎛C ;………………………………(9分)乙胜三局负二局的概率为.32312325⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛C ……………………………(12分)以上结果相加,得乙在五局中至少赢三局的概率为.8117……………(14分) 17.解:(1)因为()x x x f -+=1ln )(,所以函数的定义域为()+∞-,1,…(2分)又xxx x f +-=-+='1111)(.……………………………………………(5分) 当[]n x ,0∈时, 0)(<'x f ,即)(x f 在[]()*∈N n n ,0上是减函数,故().1ln )(n n n f b n -+==()()().1ln 1ln 1ln n n n n b n a n n =++-+=-+=…………………………(8分)因为()()()141421212222<-=+-k k k k k ,所以 ()()()()()121121212126754532312421253122222+<+⋅+-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅k k k k k k k . …………………………………………………………………………(12分) 又容易证明1212121--+<+k k k ,所以()()()*-∈--+<+<⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=N k k k k k k a a a a a a p k k k 1212121242125312421231,………………………………………………………………(14分)n p p p +⋅⋅⋅++21()()()12123513--++⋅⋅⋅+-+-<n n112-+=n 112-+=n a .即 .11221-+<+⋅⋅⋅++n n a p p p ……………………(16分)18.证明:(1)设()00,y x P .()11,y x M .()22,y x N . 则椭圆过点M .N 的切线方程分别为192511=+y y x x ,192522=+y y x x .…………………………………………(3分) 因为两切线都过点P ,则有19250101=+y y x x ,19250202=+yy x x . 这表明M .N 均在直线192500=+yy x x ①上.由两点决定一条直线知,式①就是直线MN 的方程,其中()00,y x 满足直线l 的方程.…………………(6分) (1)当点P 在直线l 上运动时,可理解为0x 取遍一切实数,相应的0y 为.107500-=x y 代入①消去0y 得01637052500=--+y x x x ② 对一切R x ∈0恒成立. …………………………………………………………(9分) 变形可得 01910635250=⎪⎭⎫⎝⎛+-⎪⎭⎫⎝⎛+y y x x 对一切R x ∈0恒成立.故有⎪⎩⎪⎨⎧=+=+.01910,063525y y xc 由此解得直线MN 恒过定点⎪⎭⎫ ⎝⎛-109,1425Q .……………………………(12分) (2)当MN ∥l 时,由式②知.70176370552500--≠---x x 解得.53343750=x 代入②,得此时MN 的方程为03553375=--y x ③ 将此方程与椭圆方程联立,消去y 得.012251280687533255332=--x x …………………………………………(15分) 由此可得,此时MN 截椭圆所得弦的中点横坐标恰好为点⎪⎭⎫ ⎝⎛-109,1425Q 的横坐标,即 .14252553327533221=⨯--=+=x x x 代入③式可得弦中点纵坐标恰好为点⎪⎭⎫ ⎝⎛-109,1425Q 的纵坐标,即 .10925332125491357533142575-=⎪⎭⎫ ⎝⎛-=⨯-⨯=y 这就是说,点⎪⎭⎫ ⎝⎛-109,1425Q 平分线段MN .……………………………(18分)。