三角恒等变换
- 格式:doc
- 大小:165.50 KB
- 文档页数:12
三角恒等变换所有公式
三角恒等变换是一种重要的数学思想,它是一种重要的数学变换,它可以将函数或形式转换成另一种形式。
它具有良好的几何意义,包括积分,平方,幂和三角函数。
这种变换可以帮助我们理解数学概念,解决数学问题,更好地应用数学的思想。
三角恒等变换的公式有很多种,其中最受欢迎的是“反三角变换”,它的公式如下:
反三角变换:f(x) = sinx和 cosx反三角变换是
Acos(x)+Bsin(x)。
它的反三角变换表示式是:
Acos(x)+Bsin(x) = f(x)
利用反三角变换可以将函数 f(x)换成 Acos(x)+Bsin(x),其中A和B是任意实数。
也可以把它看成是三角函数的线性组合。
反射恒等变换:反射恒等变换是另一种常用的三角变换,它的公式是:
Csin(x)+Scos(x) = f(x)
反射恒等变换表示上式函数 f(x)以用 Csin(x)+Scos(x)表示,其中C和S是任意实数。
反射恒等变换也可以看成是三角函数的线性组合。
另外,三角恒等变换还有其他公式,例如求导公式:
f(x)=Acosx + Bsinx
反三角变换也可以应用于求积分,其求积分公式为:
F(x) = Asin(x)+Bcos(x)
F(x) =f (x) dx
上述就是三角恒等变换的所有公式,它们是数学的重要变换,有着无限的应用空间,被广泛应用在科学中和工程中。
他可以帮助我们更快地理解数学概念,解决数学问题,更好地运用数学思想。
三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。
这些恒等变换在解决三角函数相关问题时非常有用。
下面是对一些常见的三角恒等变换进行总结和详解。
1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。
- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。
- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。
2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。
- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。
- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。
3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。
- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。
- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。
4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。
- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。
- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。
三角恒等变换的概念与性质三角恒等变换是指具有相同数学结构的两个三角形之间的一系列等式和比例关系。
在三角学中,恒等变换是非常重要的概念,它不仅可以帮助我们简化计算,还可以帮助我们发现三角形的各种性质和关系。
本文将介绍三角恒等变换的概念和一些常见的性质。
一、三角恒等变换的概念三角恒等变换是由三角函数的基本性质推导出来的一系列等式和比例关系。
它可以将一个三角函数的表达式变换为另一个等价的表达式,或者将一个三角函数与其他三角函数进行关联。
三角恒等变换的概念是基于三角函数的周期性和对称性的特点而建立的。
根据三角函数的定义,我们可以得到很多关于三角函数之间的等式和比例关系,这些等式和比例关系就是三角恒等变换的基础。
通过利用这些等式和比例关系,我们可以进行三角函数的简化、求值和证明等操作。
二、常见的三角恒等变换1. 倍角公式:a) 正弦函数的倍角公式:sin(2θ) = 2sinθcosθb) 余弦函数的倍角公式:cos(2θ) = cos^2(θ) - sin^2(θ)c) 正切函数的倍角公式:tan(2θ) = 2tanθ / (1 - tan^2(θ))2. 半角公式:a) 正弦函数的半角公式:sin(θ/2) = √[(1 - cosθ) / 2]b) 余弦函数的半角公式:cos(θ/2) = √[(1 + cosθ) / 2]c) 正切函数的半角公式:tan(θ/2) = sinθ / (1 + cosθ)3. 和差公式:a) 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβb) 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβc) 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)4. 三角函数的倒数关系:a) sinθ = 1 / cscθb) cosθ = 1 / secθc) tanθ = 1 / cotθ以上仅是一些常见的三角恒等变换,实际上还有更多的变换关系可以推导得到。
三角恒等变换技巧三角恒等变换是指一系列三角函数的等价关系,通过这些等价关系,可以将复杂的三角函数表达式简化为简单的形式,从而更容易进行求解和计算。
在解三角函数方程、化简三角函数表达式、证明三角恒等式等问题中,三角恒等变换技巧是非常重要的。
1.基本恒等式:基本恒等式是指最基本的三角函数之间的等价关系,包括正弦函数、余弦函数和正切函数。
(1)正弦函数的基本恒等式:sin²θ + cos²θ = 1sin(-θ) = -sinθsin(π/2 - θ) = cosθsin(π/2 + θ) = cosθsin(π - θ) = sinθsin(π + θ) = -sinθsin(2θ) = 2sinθcosθ(2)余弦函数的基本恒等式:cos²θ + sin²θ = 1cos(-θ) = cosθcos(π/2 - θ) = sinθcos(π/2 + θ) = -sinθcos(π - θ) = -cosθcos(π + θ) = -cosθcos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ(3)正切函数的基本恒等式:ta nθ = sinθ/cosθtan(-θ) = -tanθtan(π/2 - θ) = 1/tanθtan(π/2 + θ) = -1/tanθtan(π - θ) = -tanθtan(π + θ) = tanθtan(2θ) = 2tanθ/(1 - tan²θ)2.和差角公式:和差角公式是指可以将两个三角函数的和、差转化为一个三角函数的等价关系。
(1)正弦函数的和差角公式:sin(α ± β) = sinαcosβ ± cosαsinβ(2)余弦函数的和差角公式:cos(α ±β) = cosαcosβ ∓ sinαsinβ(3)正切函数的和差角公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)3.二倍角公式:二倍角公式是指可以将一个三角函数的二倍角转化为一个三角函数的等价关系。
三角恒等变换的证明在几何学和三角学中,恒等变换是指在三角函数中等价的形式,这些形式可以通过变换互相转化。
在本文中,我们将证明三角恒等变换的一些常见形式。
1. 正弦恒等变换对于一个任意的角度θ,我们有以下正弦恒等变换:正弦函数的倒数等于余弦函数:csc(θ) = 1/sin(θ)余弦函数的倒数等于正弦函数:sec(θ) = 1/cos(θ)正切函数除以余切函数等于正弦函数:cot(θ) = cos(θ)/sin(θ)证明:考虑一个直角三角形,其中θ 是一个锐角。
根据三角函数的定义,我们可以得出以下恒等关系:正弦函数定义为:sin(θ) = 对边/斜边余弦函数定义为:cos(θ) = 邻边/斜边正切函数定义为:tan(θ) = 对边/邻边余切函数定义为:cot(θ) = 邻边/对边根据直角三角形的勾股定理:斜边的平方 = 对边的平方 + 邻边的平方接下来,我们将根据这些定义和恒等关系证明上述恒等变换。
1.1 正弦函数的倒数等于余弦函数:由正弦函数的定义可得:sin(θ) = 对边/斜边对边/斜边 = 1/斜边/对边= 1/cos(θ)因此,csc(θ) = 1/sin(θ)1.2 余弦函数的倒数等于正弦函数:由余弦函数的定义可得:cos(θ) = 邻边/斜边邻边/斜边 = 1/斜边/邻边= 1/sin(θ)因此,sec(θ) = 1/cos(θ)1.3 正切函数除以余切函数等于正弦函数:由正切函数和余切函数的定义可得:tan(θ) = 对边/邻边,cot(θ) = 邻边/对边tan(θ)/cot(θ) = (对边/邻边)/(邻边/对边) = 对边/邻边 * 对边/邻边 = (对边^2)/(邻边^2)使用直角三角形的勾股定理:(对边^2)/(邻边^2) = (邻边^2 + 对边^2)/(邻边^2) = (邻边^2/邻边^2) + (对边^2/邻边^2) = 1 + (对边^2/邻边^2) = sin^2(θ)/cos^2(θ)根据sin^2(θ) + cos^2(θ) = 1,我们得出:tan(θ)/cot(θ) =sin^2(θ)/cos^2(θ) = sin^2(θ) / (1 - sin^2(θ)) = sin(θ)以上就是正弦恒等变换的证明。
三角恒等变换的推导与应用知识点总结三角恒等变换,又被称为三角恒等式,是指三角函数之间的一系列等价关系。
这些等式在数学和物理领域中广泛应用,用于推导和证明各种三角函数的性质以及解决三角函数相关的计算问题。
本文将对三角恒等变换的推导方法和应用知识点进行总结,并探讨其在数学和物理中的实际应用。
一、三角恒等变换的推导方法1.1 三角恒等变换的基本等式三角恒等变换的推导基于三角函数的基本性质,利用分析几何中的三角关系和三角函数之间的等价关系。
三角恒等变换的基本等式如下:(1)正弦函数的基本恒等式:sin^2(x) + cos^2(x) = 1(2)余弦函数的基本恒等式:1 + tan^2(x) = sec^2(x)(3)正切函数的基本恒等式:1 + cot^2(x) = cosec^2(x)利用这些基本等式,可以导出许多三角恒等变换的推导公式。
1.2 常见的三角恒等变换公式除了基本恒等式,还存在很多常见的三角恒等变换公式,如下:(1)相反角公式:sin(-x) = -sin(x)cos(-x) = cos(x)tan(-x) = -tan(x)cot(-x) = -cot(x)sec(-x) = sec(x)cosec(-x) = -cosec(x)(2)余弦函数与正弦函数的关系:cos(x) = sin(π/2 - x)sin(x) = cos(π/2 - x)(3)倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)tan(2x) = 2tan(x) / (1 - tan^2(x))(4)和差角公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)tan(y))(5)半角公式:sin(x/2) = ±√[(1 - cos(x))/2]cos(x/2) = ±√[(1 + cos(x))/2]通过以上公式的推导和证明,可以构建出更多的三角恒等变换公式。
三角恒等变换考点1 三角函数公式的基本应用1.两角和与差的正弦、余弦和正切公式sin(α±β)=________________; cos(α∓β)=________________; tan(α±β)=tan α±tan β1∓tan αtan β.答案:sin αcos β±cos αsin β cos αcos β±sin αsin β 2.二倍角的正弦、余弦、正切公式 sin 2α=________________;cos 2α=______________=______________=______________; tan 2α=2tan α1-tan 2α. 答案:2sin αcos α cos 2α-sin 2α 2cos 2α-1 1-2sin 2α[典题1] (1)[2017·江西新余三校联考]已知cos ⎝ ⎛⎭⎪⎫π3-2x =-78,则sin ⎝ ⎛⎭⎪⎫x +π3的值为( )A.14B.78 C .±14 D .±78 [答案] C[解析] 因为cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =cos ⎝ ⎛⎭⎪⎫2x +2π3=78,所以有sin 2⎝ ⎛⎭⎪⎫x +π3=12×⎝ ⎛⎭⎪⎫1-78=116,从而求得sin ⎝⎛⎭⎪⎫x +π3的值为±14,故选C.(2)已知cos θ=-513,θ∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫θ-π6的值为________.[答案]5-12326[解析] 由cos θ=-513,θ∈⎝ ⎛⎭⎪⎫π,3π2得sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎪⎫θ-π6=sin θcos π6-cos θsin π6=-1213×32-⎝ ⎛⎭⎪⎫-513×12=5-12326.(3)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.[答案]3[解析] ∵sin 2α=2sin αcos α=-sin α,∴cos α=-12.又α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231--32= 3.[点石成金] 三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.练习(1)[教材习题改编]计算:sin 108°cos 42°-cos 72°sin 42°=________. 答案:12(2)[教材习题改编]已知cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,则sin ⎝ ⎛⎭⎪⎫α+π3的值是________. 答案:4-3310(3)(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.1625(4)计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32答案 (1)A (2)B解析 (1)tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425. (2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.逆用公式与辅助角公式一般地,函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=________⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=________⎝ ⎛⎭⎪⎫其中tan φ=a b .答案:a 2+b 2sin(α+φ)a 2+b 2cos(α-φ)[典题2] (1)[2017·贵州贵阳监测]已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-45[答案] D[解析] ∵sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435,即32sin α+12cos α=45. 故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-12[答案] B[解析] 由tan A tan B =tan A +tan B +1,可得tan A +tan B 1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22. 练习(1)[教材习题改编]计算:sin 43°cos 13°-sin 13°cos 43°=________. 答案:12(2)函数f (x )=sin x +cos x 的最大值为________. 答案: 2考点2 三角函数式的求值[考情聚焦] 研究三角函数式的求值,解题的关键是找出条件中的角与结论中的角的联系,依据函数名称的特点,选择适当的公式进行求解,在高考中是一个热点考查方向.主要有以下几个命题角度:角度一 给值求值[典题3] 设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________. [答案] -105[解析] tan θ=tan ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ+π4-π4=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1,∴cos 2θ=910,又易知cos θ<0,∴cos θ=-31010,∴sin θ=1010,故sin θ+cos θ=-105. 角度二 给值求角[典题4] [2017·山东济南模拟]已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值;(2)求β的值. [解] (1)因为tan α2=12,所以sin α=sin ⎝ ⎛⎭⎪⎫2·α2=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tan α21+tan 2α2=2×121+⎝ ⎛⎭⎪⎫122=45.(2)因为0<α<π2,sin α=45,所以cos α=35.又0<α<π2<β<π,所以0<β-α<π.由cos (β-α)=210,得0<β-α<π2.所以sin(β-α)=9810=7210,所以sin β=sin [(β-α)+α]=sin(β-α)cos α+cos (β-α)sin α=7210×35+210×45=25250=22.由π2<β<π,得β=3π4. [点石成金] 三角函数式求值的常见题型及求解策略 (1)给值求值已知三角函数值,求其他三角函数式的值的一般思路: ①先化简所求式子;②观察已知条件与所求式子之间的联系(从三角函数名及角入手); ③将已知条件代入所求式子,化简求值. (2)给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解.(3)给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: ①已知正切函数值,则选正切函数.②已知正、余弦函数值,则选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,则选正弦较好(1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 .答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453,(12cos α+32sin α)=453,3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 考点3 三角函数式的化简与证明[典题3] (1)化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).解 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ)(sin θ2-cos θ2)=(2sin θ2cos θ2+2cos 2θ2)(sin θ2-cos θ2)=2cos θ2(sin 2θ2-cos 2θ2)=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)原式=2cos 210°2×2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2(12cos 10°-32sin 10°)2sin 10°=3sin 10°2sin 10°=32.(1)(2016·宿州模拟)若sin(π4+α)=13,则cos(π2-2α)等于( )A.429 B .-429 C.79 D .-79(2)(2016·青岛模拟)化简(tan α+1tan α)·12sin 2α-2cos 2α等于( )A .cos 2αB .sin 2αC .cos 2αD .-cos 2α(3)计算:sin 50°(1+3tan 10°)= . 答案 (1)D (2)D (3)1解析 (1)∵sin(π4+α)=13,∴cos(π4-α)=13,∴cos(π2-2α)=cos 2(π4-α)=2×19-1=-79.(2)原式=1sin αcos α·12sin 2α-2cos 2α=1-2cos 2α=-cos 2α.(3)sin 50°(1+3tan 10°)=sin 50°(1+3sin 10°cos 10°)=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2(12cos 10°+32sin 10°)cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.[点石成金] 三角函数式化简的原则与方法 (1)三角函数式的化简遵循的三个原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”. ③三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.(2)三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次.(3)化简三角函数式的常用技巧①注意特殊角的三角函数与特殊值的互化;②对于分式形式,应分别对分子、分母进行变形处理,有公因式的提取公因式后进行约分; ③对于二次根式,注意倍角公式的逆用; ④注意利用角与角之间的隐含关系; ⑤注意利用“1”的恒等变形.1.(2015·课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°等于( ) A .-32 B.32 C .-12 D.12答案 D解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.2.(2016·全国甲卷)若cos ⎝⎛⎭⎫π4-α=35,则sin 2α等于( ) A.725 B.15 C .-15 D .-725 答案 D解析 因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又因为cos ⎝⎛⎭⎫π4-α=35,所以sin 2α=2×925-1=-725,故选D.3.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23答案 A解析 因为cos 2⎝⎛⎭⎫α+π4=1+cos 2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,故选A. 4.(2016·东北三省三校联考)已知sin α+cos α=13,则sin 2(π4-α)等于( )A.118 B.1718 C.89 D.29答案 B解析 由sin α+cos α=13,两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos (π2-2α)2=1-sin 2α2=1+892=1718.5.2cos 10°-sin 20°sin 70°的值是( )A.12B.32C. 3D. 2答案 C解析 原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.6.(2016·江西九校联考)已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( ) A .α<π4<βB .β<π4<αC.π4<α<β D.π4<β<α 答案 B解析 ∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.7.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α= . 答案 12解析 原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α =cos 2αsin 2α·12·sin 2αcos 2α=12. 8.已知tan(π4+θ)=3,则sin 2θ-2cos 2θ的值为 .答案 -45解析 ∵tan(π4+θ)=3,∴1+tan θ1-tan θ=3,解得tan θ=12.∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 9.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin(β+5π4)= .答案7210解析 依题意可将已知条件变形为 sin [(α-β)-α]=-sin β=35,sin β=-35.又β是第三象限角,因此有cos β=-45.sin(β+5π4)=-sin(β+π4)=-sin βcos π4-cos βsin π4=7210.*10.(2016·宝鸡模拟)已知cos(π4+θ)cos(π4-θ)=14,则sin 4θ+cos 4θ的值为 .答案 58解析 因为cos(π4+θ)cos(π4-θ)=(22cos θ-22sin θ)(22cos θ+22sin θ) =12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=(1-cos 2θ2)2+(1+cos 2θ2)2=116+916=58. 11.已知α∈(0,π2),tan α=12,求tan 2α和sin(2α+π3)的值.解 ∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1,∴5sin 2α=1, 而α∈(0,π2),∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin(2α+π3)=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310.12.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. *13.(2017·合肥质检)已知cos(π6+α)cos(π3-α)=-14,α∈(π3,π2). (1)求sin 2α的值; (2)求tan α-1tan α的值. 解 (1)cos(π6+α)·cos(π3-α) =cos(π6+α)·sin(π6+α) =12sin(2α+π3)=-14, 即sin(2α+π3)=-12. ∵α∈(π3,π2),∴2α+π3∈(π,4π3), ∴cos(2α+π3)=-32, ∴sin 2α=sin[(2α+π3)-π3] =sin(2α+π3)cos π3-cos(2α+π3)sin π3=12. (2)∵α∈(π3,π2),∴2α∈(2π3,π), 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin2α-cos2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。