25.4 第2课时 相似三角形的判定定理2
- 格式:ppt
- 大小:1.98 MB
- 文档页数:20
相似三角形的判定定理课件一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
相似三角形对应边的比值叫做相似比。
在探讨相似三角形的判定定理之前,我们先来回顾一下三角形全等的判定方法,这对于理解相似三角形的判定会有一定的帮助。
二、三角形全等的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、相似三角形的判定定理 1:两角分别相等的两个三角形相似为什么两角分别相等就能判定两个三角形相似呢?我们可以通过三角形内角和定理来理解。
因为三角形的内角和是 180 度,如果两个三角形中有两个角分别相等,那么第三个角也必然相等。
此时,这两个三角形的对应角就都相等了。
例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么∠C = 180 ∠A ∠B,∠C' = 180 ∠A' ∠B',由于∠A =∠A',∠B =∠B',所以∠C =∠C'。
这样,三角形 ABC 和三角形A'B'C'的对应角都相等,根据相似三角形的定义,它们相似。
四、相似三角形的判定定理 2:两边成比例且夹角相等的两个三角形相似这个定理的理解可以通过三角函数来辅助。
我们知道,在一个三角形中,如果已知两边和它们的夹角,可以用余弦定理求出第三边。
如果两个三角形的两边成比例且夹角相等,那么通过余弦定理求出的第三边也成比例。
比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C',且∠A =∠A',那么根据余弦定理,BC²= AB²+ AC²2AB·AC·cos∠A,B'C'²= A'B'²+ A'C'² 2A'B'·A'C'·cos∠A'。
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。