直线与圆的方程练习题
- 格式:docx
- 大小:60.94 KB
- 文档页数:5
高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。
直线和圆练习题(一)1.直线2ax+(a2+1)y﹣1=0的倾斜角的取值范围是()A.[,]B.[0,]∪[,π]C.(0,]∪[,π) D.[0,]∪[,π)2.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离3.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.04.下列四条直线,倾斜角最大的是()A.y=﹣x+1 B.y=x+1 C.y=2x+1 D.x=15.直线2xcosα﹣y﹣3=0(α∈[,])的倾斜角的变化范围是()A.[,]B.[,]C.[,)D.[,]6.已知曲线﹣=1与直线y=2x+m有两个交点,则m的取值范围是()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,4)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,3)7.若两直线3x+4y+3=0与6x+my+1=0平行,则它们之间的距离为()A.B.C.D.8.曲线y=lnx+x﹣1上的点到直线2x﹣y+3=0的最短距离是()A.B. C. D.09.直线l1:3x﹣y+1=0,直线l2过点(1,0),且它的倾斜角是l1的倾斜角的2倍,则直线l2的方程为()A.y=6x+1 B.y=6(x﹣1)C.y=(x﹣1) D.y=﹣(x﹣1)10.不论k为何值,直线(2k﹣1)x﹣(k﹣2)y﹣(k+4)=0恒过的一个定点是()A.(0,0)B.(2,3)C.(3,2)D.(﹣2,3)11.若三条直线l1:4x+y=4,l2:mx+y=0,l3:2x﹣3my=4不能围成三角形,则实数m的取值最多有()A.2个B.3个C.4个D.5个12.若三条直线2x+3y+8=0,x﹣y﹣1=0和x+ky=0交于一点,则k的值为()A.﹣2 B.﹣C.2 D.13.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.14.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d2,则d1+d2的最小值是.15.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.16.圆C1:x2+y2=4与圆C2:x2+y2﹣4x+2y+4=0的公切线有条.17.已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长;(3)若圆C与直线2x﹣y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值。。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。
5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。
6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。
12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。
直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。
圆与直线的方程练习题一、选择题1. 已知圆的方程为x^2 + y^2 = 4,则该圆的半径为()。
A. 1B. 2C. 4D. 82. 直线y = 2x + 1的斜率为()。
A. 0B. 1C. 2D. 1A. y = 3x + 2B. y = 3x 2C. x = 3D. y = 24. 若圆C的方程为(x 1)^2 + (y + 2)^2 = 16,则圆心坐标为()。
A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)5. 两条平行线的斜率分别为2和2,则这两条直线()。
A. 相交B. 平行C. 重合D. 垂直二、填空题1. 已知直线l的斜率为3,且过点(2, 1),则直线l的方程为______。
2. 圆心在原点,半径为5的圆的方程为______。
3. 若直线y = kx + b与圆x^2 + y^2 = 4相切,则k的取值范围为______。
4. 两条直线y = 2x + 3和y = 0.5x + 1的交点坐标为______。
5. 已知点A(3, 4)和B(2, 6),则线段AB的中点坐标为______。
三、解答题1. 已知圆的方程为(x 2)^2 + (y + 3)^2 = 25,求该圆的半径和圆心坐标。
2. 求过点(1, 2)和(3, 4)的直线方程。
3. 已知直线y = 3x 2和圆x^2 + y^2 = 16,求直线与圆的交点坐标。
4. 证明:若两条直线分别垂直于同一条直线,则这两条直线平行。
5. 设圆C的方程为x^2 + y^2 + Dx + Ey + F = 0,已知圆心在x轴上,半径为3,求圆C的方程。
四、应用题1. 在平面直角坐标系中,点A(1, 2)到直线y = x + 3的距离是多少?2. 一圆的圆心位于直线y = 2x + 1上,且与直线y = 2x 1相切,圆的半径为2,求该圆的方程。
3. 两条直线l1:2x + 3y + 1 = 0和l2:4x y 5 = 0相交于点P,求点P的坐标。
高二直线与圆练习题(正文)1. 已知直线L的方程为2x + y = 6,圆C的圆心坐标为(2, -1),半径为3。
求直线L与圆C的交点坐标。
解析:首先将直线L的方程转换为一般式,得到2x + y - 6 = 0。
利用直线L与圆C的交点坐标满足直线L的方程以及圆C的方程,代入得:2x + y - 6 = 0(x - 2)² + (y + 1)² = 3²解方程组得到:x = 1,y = 4 或 x = 3,y = 0因此,直线L与圆C的交点坐标为(1, 4)和(3, 0)。
2. 已知直线L的斜率为3,过直线L上一点P(1, 2),求直线L的方程。
解析:由已知的斜率和通过的点,可以使用点斜式来求解直线L的方程。
点斜式的公式为:y - y1 = m(x - x1)代入已知条件:y - 2 = 3(x - 1)展开得到:y - 2 = 3x - 3整理后得到直线L的方程:3x - y + 1 = 0因此,直线L的方程为3x - y + 1 = 0。
3. 已知直线L的方程为2x - 3y = 4,圆C的圆心坐标为(3, 2),经过点A(1, 2)。
求直线L与圆C的关系。
解析:首先将直线L的方程转换为一般式,得到2x - 3y - 4 = 0。
由于点A在直线L上,代入点A的坐标得:2(1) - 3(2) - 4 = 0解方程得到:-4 = 0由此可见,点A不满足直线L的方程,因此点A不在直线L上。
接下来,判断直线L是否与圆C相交。
直线L与圆C相交的条件是直线L与圆C的方程同时满足。
代入直线L的方程与圆C的方程:2x - 3y - 4 = 0(x - 3)² + (y - 2)² = r²整理得到:x² - 6x + 9 + y² - 4y + 4 = r²将直线L的方程代入上式:(-2y)² - 6(-2y) + 9 + y² - 4y + 4 = r²展开并整理得到:5y² + 2y + 5 = r²由此可见,直线L与圆C的关系是相交。
一、选择题(每题4分)1 .点A(4,0)关于直线5x+4y+21=0的对称点是( )A.(-6,8)B.(-8,-6)C.(6,8)D.(-6,-8)2 .经过点(2,1)的直线/到A(1,1)、B(3,5)两点的距离相等,那么直线/的方程为( )A.2x-y-3=OB.x=2C.2x-y-3=O或x=2D.都不对3 .圆心在y轴上,半径为1,且过点(1,2)的圆的方程是()A.x2+(y-2)2-lB./+(),+2)2=1C.(x-l)2÷(y-3)2=l D,x2÷(γ-3)2=l4,假设直线x+y+印=0与圆*+/=勿相切,那么卬为( ).A.0或2B.2C,√2D.无解5 .圆⅛-l)2+3+2)2=20在X轴上截得的弦长是().A.8B.6C.6V∑D.4V36 .两个圆G:%2+y+2Λ,+2y—2=0与G:x2+y—4x—2y+l=0的位置关系为( ).A.内切B.相交C,外切 D.相离x≤27 .假设x、y满足约束条件y≤2,那么z=x+2y的取值范围是〔)x+y≥2A、[2,6]B、[2,5]C、[3,6]D、(3,5]2x+y-6≥08,.不等式组卜+y-3≤0表示的平面区域的面积为()j≤2A、4B、1C、5D、无穷大9.圆元2+y2-ar+2=0与直线/相切于点A(3,l),那么直线/的方程为()A.2x-y-5=0B.x-2y-l=0C.x-y-2=0D.x+y-4=0x≥l10,(2011顺义二模文7)点PEy)的坐标满足条件y≥x,那么点P到直线x-2y+3≥031一4y一9=0的距离的最小值为()二、填空(每题4分)11 .∣S]x2÷r-4x=O在点P(l,√3)处的切线方程为.12 .当α二时,直线/1:x+αy=2α+2,直线“:依+y=〃+1平行.13 .直线2x+1Iy+16=O关于点P(O,1)的对称直线的方程是.14 .设圆*+/-4*一5=0的弦45的中点为尸(3,1),那么直线力6的方程是.15 .圆心为。
直线与圆的方程试题及答案大题一、选择题1.设直线过点A(1, 2),斜率为-2,则直线方程是()– A. y = 2x + 3– B. y = -2x + 3– C. 2y = x + 3– D. -2y = x + 3答案:B2.设点A(-1,3)和B(2,-4),则直线AB的斜率为()– A. -1– B. 1– C. 2– D. -2答案:D二、填空题1.过点A(2,1)且与直线y = 2x + 3平行的直线的方程是y = ___________。
答案:2x - 12.过点A(1,-2)且与直线2y = 4x - 3垂直的直线的方程是y = ___________。
答案:-0.5x - 13.过点A(-3,4),斜率为2的直线方程是 y = ___________。
答案:2x + 10三、解答题1.求过点A(2,3)和B(-1,5)的直线方程。
解:直线AB的斜率 m = (5 - 3)/ (-1 - 2) = 2 / -3 = -2/3直线方程的一般形式为y = mx + c,其中c为常数。
将坐标A(2,3)代入直线方程,得到3 = (-2/3) * 2 + c => 3 = -4/3 + c。
解得c = 3 + 4/3 = 13/3,所以直线方程为y = -2/3x + 13/3。
2.已知直线的斜率为-1/2,过点A(3,4),求直线的方程。
解:直线方程的斜率为-1/2,过点A(3,4),所以直线方程可以表示为y = (-1/2)x + c。
将点A(3,4)代入直线方程,得到4 = (-1/2) * 3 + c => 4 = -3/2 + c。
解得c = 4 +3/2 = 11/2,所以直线方程为y = (-1/2)x + 11/2。
四、应用题1.在直角坐标系中,过点A(2,3)和B(-1,5)的直线与y轴交于点C,求点C的坐标。
解:由题意可知,过点A(2,3)和B(-1,5)的直线与y轴交于点C,所以C的横坐标为0。
直线和圆的方程练习题一、选择题1、若直线1:310l ax y ++=与2:2(1)10l x a y +++=互相平行,则实数a 的值是()A.-3B.2C.-3或2D.3或-22、若直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,则k =()A.-3或-1B.3或1C.-3或1D.-1或33、已知点()00,P x y 是直线:0l Ax By C ++=外一点,则方程()000Ax By C Ax By C +++++=表示()A.过点P 且与l 垂直的直线 B.过点P 且与l 平行的直线C.不过点P 且与l 垂直的直线D.不过点P 且与l 平行的直线4、点(0,1)-到直线(1)y k x =+距离的最大值为()A.1D.25、已知(1,2)M ,(4,3)N ,直线l 过点(2,1)P -且与线段MN 相交,那么直线l 的斜率k 的取值范围是()A.(,3][2,)-∞-+∞ B.11,32⎡⎤-⎢⎥⎣⎦C.[3,2]- D.11,,32⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭6、已知直线:20l kx y -+=过定点M ,点(,)P x y 在直线210x y +-=上,则MP 的值最小是()B.5D.7、若直线l 经过(2,1)A ,()21,()B m m -∈R 两点,则直线l 的倾斜角α的取值范围是()A.04απ≤≤B.2απ<<π C.42αππ≤< D.324αππ<≤8、已知圆2222240x y k x y k ++++=关于直线y x =对称,则k 的值为()A.1B.-1C.-1或1D.09、方程||1y -=所表示的曲线的长度是()A.6πB. C.+ D.612π+10、点()sin 30,cos30︒︒与圆2212x y +=的位置关系是()A.点在圆上B.点在圆内C.点在圆外D.不能确定11、若圆2244100x y x y +---=上至少有三个不同的点到直线:0l ax by +=的距离为,则直线l 的倾斜角的取值范围是().A.,124ππ⎡⎤⎢⎥⎣⎦B.5,1212ππ⎡⎤⎢⎥⎣⎦C.,63ππ⎡⎤⎢⎥⎣⎦D.0,2π⎡⎤⎢⎥⎣⎦12、直线34120x y ++=与圆22(1)(1)9x y -++=的位置关系是()A.相交且过圆心B.相切C.相离D.相交但不过圆心二、填空题13、已知点(1,2)A -,(5,6)B ,经过线段AB 的中点M ,且在两坐标轴上的截距相等的直线方程为_________.14、若直线l 被直线1:10l x y -+=与2:30l x y -+=截得的线段长为l 的倾斜角9(00)θθ︒≤≤︒的值为__________.15、与直线3490x y ++=平行,并且和两坐标轴在第一象限所围成的三角形面积是24的直线方程为__________.16、在平面直角坐标系中,将直线l 上的点P 向下平移3个单位,再向右平移3个单位,若点P 仍在直线l 上,则直线l 的斜率是__________.17、直线10x y +-=与圆222410x y x y +-++=相交,所得的弦的长为__________.18、直线l 经过点()2,3P -,与圆22:22140C x y x y +++-=相交截得的弦长为则直线l 的方程为________.19、已知直线l 经过点(3,)P m 和点(,2)Q m -,直线l 的一个方向向量为(2,4),则直线l 的斜率为___________,实数m 的值为__________.三、多项选择题20、如图所示,下列四条直线1l ,2l ,3l ,4l 的斜率分别是1k ,2k ,3k ,4k ,倾斜角分别是1α,2α,3α,4α,则下列关系正确的是()A.2143k k k k <<<B.3214k k k k <<<C.2143αααα<<<D.3214αααα<<<四、解答题21、已知圆22:630C x y x y ++-+=上的两点P ,Q 满足:①关于直线:40l kx y -+=对称;②OP OQ ⊥(O 为坐标原点),求直线PQ 的方程.22、已知实数x ,y 满足222410x y x y ++-+=.(1)求4yx -的最大值和最小值;(2)2221x y x +-+.参考答案1、答案:A解析:因为直线1:310l ax y ++=与22(:1)10l x a y +++=互相平行,所以(1)23a a +=⨯,即260a a +-=,解得3a =-或2a =.当3a =-时,直线1:3310l x y --=与2221:0l x y -+=互相平行;当2a =时,直线1:2310l x y ++=,2:2310l x y ++=,1l 与2l 重合,不符合题意.所以3a =-.故选A.2、答案:C解析:因为直线(1)30kx k y +--=和直线(1)(23)20k x k y -++-=互相垂直,所以(1)(1)(23)0k k k k -+-+=,解得1k =或3k =-.故选C.3、答案:D解析: 点()00,P x y 不在直线0Ax By C ++=上,000Ax By C ∴++≠,∴直线()000Ax By C Ax By C +++++=不经过点P .又直线()000Ax By C Ax By C +++++=与直线:0l Ax By C ++=平行,故选D.4、答案:B解析:解法一:点(0,1)-到直线(1)y k x =+的距离d ==到212k k +≥,于是()22222221221121|1|k k k k k k k +=+=+++≥++=+,当且仅当1k =时取等号,即|1|k +≤,所以d =≤,故点(0,1)-到直线(1)y k x =+.故选B.解法二:由题意知,直线:(1)l y k x =+是过点(1,0)-且斜率存在的直线,记点(1,0)-为P ,点(0,1)-为Q .点(0,1)Q -到直线l 的最大距离在直线l 与直线PQ 垂直时取得,此时1k =,最大距离为PQ = B.5、答案:A 解析:如图,由图可知,过点P 且与x 轴垂直的直线斜率不存在,直线PN 绕点P 逆时针旋转到垂直于x 轴的过程中,直线的斜率始终为正,且逐渐增大,此时直线斜率的范围为PN k k ≥,直线由垂直于x 轴绕点P 逆时针旋转到PM 的过程中,斜率为负,且逐渐增大,此时直线斜率的范围是PM k k ≤.易得3(1)242PN k --==-,2(1)312PM k --==--,则3k ≤-或2k ≥.故选A.6、答案:B解析:直线:20l kx y -+=过定点(0,2)M .点(,)P x y 在直线210x y +-=上,MP ∴的最小值为点M 到直线210x y +-=的距离,min 225()5521MP ∴===+.故选B.7、答案:C解析:因为直线l 经过点()2,1A ,()21,()B m m -∈R ,所以直线l 的斜率2211112m k m --==+≥-,又0α≤<π,所以直线l 的倾斜角α的取值范围是42αππ≤<,故选C.8、答案:B解析:圆的方程可化为()2224(1)41x ky k k +++=-+.依题意得241,410,k k k ⎧-=-⎨-+>⎩解得1k =-,故选B.9、答案:B解析:因为方程2||13(2)y x -=--,所以||10y -≥,解得1y ≥或1y ≤-.将原式变形可得22(2)(||1)3x y -+-=,3所以曲线的长度为233=π.故选B.10、答案:C解析:因为2222131sin 30cos 301222⎛⎛⎫︒+︒=+=> ⎪ ⎝⎭⎝⎭,所以点在圆外.故选C.11、答案:B解析:将2244100x y x y +---=整理为222(2)(2)(32)x y -+-=,圆心坐标为(2,2),半径为32:0l ax by +=的距离为22,则圆心到直线l 的距离应小于等于2,222a b ≤+,所以2410a a b b ⎛⎫⎛⎫++≤ ⎪ ⎪⎝⎭⎝⎭,解得2323a b ⎛⎫-≤≤- ⎪⎝⎭令a k b ⎛⎫=- ⎪⎝⎭,则2323k -≤≤+,故直线l 的倾斜角的取值范围是5,1212ππ⎡⎤⎢⎥⎣⎦.12、答案:D解析:圆心坐标为(1,1)-,半径3r =,圆心到直线34120x y ++=的距离115d r ==<,又因为0d ≠,所以直线不过圆心,即直线与圆相交但不过圆心.故选D.13、答案:230x y -=或50x y +-=解析:点(1,2)A -,(5,6)B ,则线段AB 的中点M 的坐标为(3,2).当直线过原点时,方程为23y x =,即230x y -=.当直线不过原点时,设直线的方程为(0)x y k k +=≠,把中点(3,2)M 的坐标代入直线的方程可得5k =,故直线方程是50x y +-=.综上,所求的直线方程为230x y -=或50x y +-=.14、答案:75°或15°解析:画出图形,设直线l 与1l ,2l 分别交于A ,B 两点,过A 作2AC l ⊥于点C ,则AC ==AB =,所以在Rt ABC △中,1sin2AC ABC AB ∠===,因为ABC ∠为锐角,所以30ABC ∠=︒,因为直线1l 的斜率为1,所以直线1l 的倾斜角为45︒,所以直线l 的倾斜角θ为453075︒+︒=︒或453015︒-︒=︒.15、答案:34240x y +-=解析:解法一: 直线3490x y ++=,即3944y x =--的斜率为34-,∴设所求直线方程为3944y x b b ⎛⎫=-+≠- ⎪⎝⎭.令0x =,得y b =;令0y =,得43bx =.由题意知,0b >且403b >,0b ∴>,142423b b ∴⨯⨯=,解得6b =(6b =-舍去),∴所求直线的方程为364y x =-+,即34240x y +-=.解法二:设所求直线方程为340(9)x y m m ++=≠.令0x =,得4m y =-;令0y =,得3m x =-.由题意得0,40,3mm ⎧->⎪⎪⎨⎪->⎪⎩解得0m <,124243m m ⎛⎫⎛⎫∴⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭,解得24m =-(24m =舍去),∴所求直线方程为34240x y +-=.16、答案:-1解析:由题可得直线l 的斜率313y k x ∆-===-∆.17、答案:解析:因为圆222410x y x y +-++=即:()()22124x y -++=,则圆心()1,2-到直线10x y +-=的距离:d ==由弦长公式可得弦长为:==故答案为:.18、答案:512460x y --=或2x =解析:圆22:22140C x y x y +++-=,即()()221116x y +++=,圆心为()1,1C --,半径4r =,因为直线与圆相交截得的弦长为,所以圆心到直线的距离3d ==,若直线的斜率不存在,此时直线方程为2x =,满足圆心()1,1C --到直线2x =的距离为3,符合题意;若直线的斜率存在,设斜率为k ,则直线方程为()32y k x +=-,即230kx y k ---=,则3d ==,解得512k =,所以直线方程为()53212y x +=-,即512460x y --=,综上可得直线方程为512460x y --=或2x =.故答案为:512460x y --=或2x =.19、答案:2,43解析:由直线l 的一个方向向量为(2,4)得,直线l 的斜率为422=,因此(2)23m m--=-,解得43m =.故答案为2,43.20、答案:BC解析:由倾斜角的概念及题图可得390180α︒<<︒,14090αα︒<<<︒,20α=︒,所以2143αααα<<<,且30k <,410k k >>,20k =,所以3214k k k k <<<,故选BC.21、答案:1322y x =-+或1524y x =-+解析:由①知直线40kx y -+=过圆心1,32⎛⎫- ⎪⎝⎭,则2k =,直线PQ 的斜率为12PQ k =-.设直线PQ 的方程为12y x b =-+,()11,P x y ,()22,Q x y ,则P ,Q 两点的坐标是方程组221,2630y x b x y x y ⎧=-+⎪⎨⎪++-+=⎩的解,消去y 得225(4)6304x b x b b +-+-+=.由OP OQ ⊥得12120x x y y +=,即121211022x x x b x b ⎛⎫⎛⎫+-+-+= ⎪⎪⎝⎭⎝⎭,即()212125042bx x x x b -++=,将124(4)5b x x -+=-,()2124635b b x x -+=代入得32b =或54b =,所以直线PQ 的方程为1322y x =-+或1524y x =-+.22、答案:(1)最小值是2021-,最大值为0(2)最大值为2+,最小值为2-解析:将方程变形为22(1)(2)4x y ++-=,此方程表示以(1,2)-为圆心、2为半径的圆.(1)4y x -表示圆上的点(,)x y 与定点(4,0)连线的斜率,令4y k x =-,即(4)y k x =-.当直线(4)y k x =-与已知圆相切时,如图,4yx -取最值,2=,解得0k =或2021k =-.因此4y x -的最小值是2021-,最大值为0.222221(1)(0)x y x x y +-+=-+-它表示圆上的点(,)x y 与定点(1,0)的距离.定点(1,0)到已知圆的圆心的距离22(11)222d =++=,2221x y x +-+222d r +=,最小值为222d r -=-.。
直线与圆的方程练习题
1.直线l:ax +y −2−a =0在x 轴和y 轴上的截距相等,则实数a =__________.
2.过点A(3,4)且与直线l :x −2y −1=0平行的直线的方程是( )
A. x +2y −11=0
B. 2x +y −10=0
C. x −2y +5=0
D. x −2y −5=0
3.直线ax +2y −1=0与直线2x −3y −1=0垂直,则a 的值为( )
A. −3
B. −43
C. 2
D. 3 4.若直线3x +4y −b =0与圆(x −1)2+(y −1)2=1相切,则b 的值是( )
A. −2或12
B. 2或−12
C. 2或12
D. −2或−12
5.过点A (0,2)和B (−1,1),且圆心在直线x −y −1=0上的圆的方程是( )
A. (x −1)2+y 2=5
B. x 2+(y −1)2=5
C. (x −1)2+(y −1)2=5
D. (x −1)2+(y +1)2=5
6.以A(1,3),B(−5,1)为端点的线段的垂直平分线方程是( )
A. 3x −y +8=0
B. 3x +y +4=0
C. 3x −y +6=0
D. 3x +y +3=0
7.点P 是直线51280x y -+=上一点,O 为坐标原点,则OP 的最小值为( )
A. 13
B. 813
C. 8
D. 138
8.一条光线从点M (5,3)射出,与x 轴的正方向成α角,遇x 轴后反射,若tanα=3,则反射光线所在的直线方程为( )
A. y =3x −12
B. y =−3x −12
C. y =3x +12
D. y =−3x +12
9.直线102
n mx y +-=在y 轴上的截距是-1,0y --=的倾斜角的2倍,则( )
A. 2m n ==
B. 2m n ==-
C. 2m n ==-
D.
2m n ==
10.已知圆心(2,−3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )
A. x 2+y 2−4x +6y +8=0
B. x 2+y 2−4x +6y =0
C. x 2+y 2−4x −6y =0
D. x 2+y 2−4x +6y −8=0
11.圆222210x y x y +--+=上的点到直线的距离的最大值是( )
A. 1
B. 22
+ C. 1+ D. 2 12.直线22sin cos 055
x y ππ-=的倾斜角α是( ) A. 25
π- B. 25π C. 35π D. 75π 13.已知直线y =kx +k 过定点,则定点的坐标为__________.
14.圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +1=0的相交弦所在直线方程为_________________________.
15.已知直线l:x +2y +4=0及点A(1,−2).
)1)求经过点A ,且与直线l 平行的直线方程)
(2)求经过点A ,且倾斜角为直线l 的倾斜角的2倍的直线方程.
16.(1)过点P(2,4)向圆O:x 2+y 2=4作切线,求切线的方程;
(2)点P 在圆x 2+y 2+4x −6y +12=0上,点Q 在直线4x +3y =21上,求|PQ|的
最小值.
17.已知直线:20l x -=与圆22:2O x y +=相交于,A B 两点.
(1)求弦AB 的长;
(2)求弦AB 的垂直平分线的方程.
百度文库 - 让每个人平等地提升自我
1 直线与圆的方程参考答案
1.1或-2
2.C
3.D
4.C
5.A
6.B
7.B
8.D
9.B
10.B
11.A
12.B
13.(−1,0)
14.6430x y +-=
15.(1)x −2y −5=0(2)4x +3y +2=0
16.(1)x =2或3x −4y +10=0;(2)|PQ|的最小值为3.
17.(1)2(2
0y -=。