当前位置:文档之家› 分子荧光的机理和荧光探针原理

分子荧光的机理和荧光探针原理

分子荧光的机理和荧光探针原理
分子荧光的机理和荧光探针原理

1.3荧光分子探针识别机理

1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET)

典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。

图1-1 PET荧光探针的一般原理图LUMO

图1-2 PET荧光探针的前线轨道原理图

已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。de Silva研究小组利用类似于EDTA

结构的氨羧酸基团设计的化合物3是螯合型PET荧光分子探针,识别基羧酸基团形成一个小的空穴,可以有效螯合碱土金属Ca2+和Mg2+。

大多数PET荧光分子探针的设计是基于受体与客体结合,使光诱导电子转移作用受到抑制,荧光团发射出强烈荧光的原理,但是当与过渡金属作用时,结果有时会发生变化。由于过渡金属3d电子的氧化还原行为,可以发生从荧光团到键合过渡金属的电子转移,或者从过渡金属到荧光团的电子转移,因此可以通过无辐射能量转移导致荧光淬灭。化合物4受体冠醚为硫杂冠醚,众所周知,硫杂冠醚与Cu2+有强的亲和能力,该分子设计也是基于PET过程,但不同的是,与Cu2+键合后产生了从荧光团到金属离子的PET过程,导致荧光淬灭。

1.3.2分子内电荷转移(Intramolecular Charge Transfer,ICT)

典型的ICT荧光分子探针是荧光团上分别连接强推电子基和吸电子基,是一个强推-拉电子体系,推电子基和吸电子基、荧光团共轭相连,在光激发下会产生从电子给体向电子受体的电荷转移。ICT荧光探针的识别基团往往是推-拉电子体系整体中的一部分,当识别基团与客体结合时,会对荧光团的推-拉电子作用产生影响,减弱或是强化分子内电荷转移,从而导致荧光光谱的变化,如光谱发生蓝移,或是红移(图1-3)。

化合物5为典型的ICT荧光探针,氮杂冠醚既是识别基团,同时也是推-拉电子体系的电子给体。当冠醚与碱土金属离子如Ca2+络合时,由于金属离子的拉电子效应,降低了冠醚氮原子的供电子能力,因此发生荧光蓝移,且荧光增强。识别基团6为电子受体的典型ICT 荧光探针化合物6,二甲氨基为推电子基,当识别基团与碱土金属Ca2+结合后,拉电子能力增强,发生荧光红移。化合物7为螯合型的ICT荧光分子探针,可以选择性地与Mg2+络合。多数ICT荧光探针在结合客体后,光谱都有明显移动,但荧光强度变化不明显。然而化合物8是一个例外,与Li+络合后荧光增强90倍,与Mg2+络合增加2250倍。

1.3.3激发单体-激基缔合物(Monomer-Excimer)

当两个相同的荧光团,如多环芳烃萘、蒽和芘等连接到一个受体分子的合适位置时,其中一个被激发的荧光团(单体)会和另一个处于基态的荧光团形成分子内激基缔合物。它的发射光谱不同于单体的发射光谱,表现为一个新的、强而宽、长波、无精细结构的发射峰。由于形成这种激基缔合物需要激发态分子与基态分子达到“碰撞”距离(约35纳米),因

此荧光团间的距离是激基缔合物形成和破坏的关键。所以用各种分子间作用力改变两个荧光

团间的距离,用结合客体前后单体/激基缔合物的荧光光谱变化表达客体被识别的信息。萘、蒽、芘等荧光团由于具有较长的激发单线态寿命,易形成激基缔合物,常常被用于此类探针中。化合物9,通过乙二胺连结两个萘分子,Hg2+的加入导致激基缔合物荧光增强;化合物10具有双芘荧光发色团,能以不同的方式选择性响应Cu2+和Hg2+;化合物11是两个萘荧光团通过聚醚链连接的荧光化合物,碱土金属离子Ca2+、Ba2+可以与氧乙烯链上的多个氧原子以及酯键上的氧原子络合,造成链的收缩,使两个萘环得以靠近,促进激基缔合物的形成,使萘单体发射荧光强度减弱。

1.3.4荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)

当能量给体荧光团(D)与能量受体荧光团(A)相隔的距离远大于D-A的碰撞直径时,只要D与A的基态和第一激发态两者的能级间能量差相当,或者说D的发射光谱与A的吸收光谱能有效重叠,就可能发生从D到A的非辐射能量转移。实际上D-A发生能量转移两者除了光谱重叠外,还必须以适当的排列方式,A可以是荧光团,也可以是荧光淬灭团。前一种情形,激发D时,由于能量转移,将观察到A的荧光发射;而后一种情形,则只能观察到D的荧光变化,多用于核酸的检测。

化合物12中有两个不同的荧光团,分子中的脂肪叔胺能够通过PET淬灭蒽的荧光,在

酸性条件下,该PET过程被禁阻,但蒽被激发后并不发射荧光,而是将能量转移给查耳酮使其发射荧光。

1.3.5基于其他原理的荧光分子探针

大多数阳离子荧光分子探针是基于上述原理设计的,还有少量探针是按照其它原理设计的,也许有些是意外所得,但常常有出奇制胜的效果。

化合物13的乙腈溶液中加入汞离子后荧光显著增强(34倍)并红移,进一步用质谱检测发现生成了脱硫产物14。化合物13是对汞离子有选择性的化学反应荧光探针,这类不可逆的化学计量性识别分子也被称为化学计量剂。

化合物15在pH=4.75的缓冲溶液中,加入Cu2+后荧光淬灭,溶液颜色从橙色变为黄色,该识别过程被称为光学双通道识别。化合物16在中性缓冲溶液中,加入Ag+后黄绿色荧光淬灭,溶液颜色从浅黄色变为红色。化合物17在水溶液中,加入Hg2+后荧光淬灭。这些双通道识别具有很好的选择性,另外,也为这些离子的检测提供了方便、直观的方法。

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

2017肿瘤检测相关公司汇总

厦门艾德 K-ras ;BRAF ;PIK3CA ;NPM1; 突变检测或多态性检测;荧光定量/毛细管电泳 EGFR ;EML4-ALK 有无医疗器械证 江苏为真 EGFR ;KRAS ;EML4-ALK ;KRAS ;BRAF ;PI3K ;C-kit ;P DGFRA Taqman-ARMS qPCR-HRM ERCC1; BRAC1; TUBB3; BRAC1; STMN1; RRM1; RRM1; EGFR 荧光定量PCR CYP19A1;UGT1A1;CYP2D6;MTHFR ;DPD ;ERCC1;GSTP1; XRCC1 荧光定量PCR+高分辨率熔点曲线 分析(HRM ) EML4-ALK 融合基因检测试剂盒 通过RT-PCR 方法检测EML4-ALK 的多种融合突变 武汉友芝友 人类EGFR 基因29种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类KRAS 基因7种突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧 光定量技术 人类BRAF V600E 突变检测试剂盒(PCR-荧光探针法) 采用ARMS-PCR 荧光定量技术 北京雅康博 人EGFR 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人KRAS 基因突变检测试剂盒(荧光PCR 法) 采用荧光PCR 技术 人PIK3CA 基因突变检测试剂盒(荧光PCR 法) 人EML4-ALK 融合基因检测试剂盒(荧光PCR 法) 人VEGF 基因表达量检测试剂盒(荧光PCR 法) 人RRM1基因表达量检测试剂盒(荧光PCR 法) 人ERCC1基因表达量检测试剂盒(荧光PCR 法)

荧光光谱法

荧光分析法测定维生素B2 一、实验目的 1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法; 2.熟悉荧光分光光度计的结构及使用方法; 3、学习掌握固体及液体试样的荧光测试方法。 二、实验原理 当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。当照射光停止照射时,荧光也随之很快地消失。利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。 实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。 图1.荧光分光光度计的结构原理图

荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。 荧光光谱包括激发光谱与发射光谱两种。激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。一般所说的荧光光谱实际上仅指荧光发射光谱。这一光谱为分析指出了最佳的发射波长。 荧光定性定量分析与紫外可见吸收光谱法相似。定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。 定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。对同一物质而言,荧光强度F 与该物质的浓度c 有以下的关系: F = 2、303Фf I0 a b c ⑴ Фf-荧光过程的量子效率; a-荧光分子的吸收系数; I0-入射光强度; b-试液的吸收光程。 在I0 与b 不变时,2、303Фf I0 a b为常数,则⑴式可以表示为 F=Kc ⑵ ⑵即可作为荧光定量检测的依据。 图2 VB2的结构式

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

分子荧光分析法基本原理

分子荧光分析法基本原理 一. 分子荧光的发生过程 (一)分子的激发态——单线激发态和三线激发态 大多数分子含有偶数电子,在基态时,这些电子成对地存在于各个原子或分子轨道中,成对自旋,方向相反,电子净自旋等于零:S=?+(-?)=0,其多重性M=2S+1=1 (M 为磁量子数),因此,分子是抗(反)磁性的,其能级不受外界磁场影响而分裂,称“单线态”; 图1 单线基态(A)、单线激发态(B)和三线激发态(C) 当基态分子的一个成对电子吸收光辐射后,被激发跃迁到能量较高的轨道上,通常它的自旋方向不改变,即 ?S=0,则激发态仍是单线态,即“单线(重)激发态”; 如果电子在跃迁过程中,还伴随着自旋方向的改变,这时便具有两个自旋不配对的电子,电子净自旋不等于零,而等于1: S=1/2+1/2=1 其多重性: M=2S+1=3 即分子在磁场中受到影响而产生能级分裂,这种受激态称为“三线(重)激发态”; “三线激发态” 比“单线激发态” 能量稍低。但由于电子自旋方向的改变在光谱学上一般是禁阻的,即跃迁几率非常小,只相当于单线态→单线态过程的 10-6~10-7。 (二)分子去活化过程及荧光的发生: (一个分子的外层电子能级包括S0(基态)和各激发态S1,S2,…..,T1…..,每个电子能级又包括一系列能量非常接近的振动能级) 处于激发态的分子不稳定,在较短的时间内可通过不同途径释放多余的能量(辐射或非辐射跃迁)回到激态,这个过程称为“去活化过程”,这些途径为: 1. 振动弛豫:在溶液中,处于激发态的溶质分子与溶剂分子间发生碰撞,把一部分能量以热的形式迅速传递给溶剂分子(环境),在10-11~10-13 秒时间回到同一电子激发态的最低振动能级,这一过程称为振动弛豫。

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

SNP检测方法汇总

现在SNP的常用检测方法主要有:Taqman法、质谱法、芯片法、测序法。Taqman法:准确性高,适合于大样本、少位点,价格比较贵;质谱法:准确性高,适合于大样本、多位点(能检测25个位点);芯片法:准确性较低,适合于超多位点分析;测序法:非常准确,但是价格也非常的高,但是对于少样本、超多位点还是非常好的选择。 SNP检测方法汇总 分析SNP的方法有许多种,本文收集目前还在用的方法,按通量从高到低排列: 全基因组测序 这是最贵的方法,但也是看SNP最全的方法 大概一个人样本,花2万元 外显子组测序 外显子组测序,也可以得到较全面的SNP信息 大概一个人样本,花1.5万元 随着人全基因组测序的价格降到2万元左右,外显子组测序会很快退出市场 全基因组SNP芯片 原理,核酸杂交,荧光扫描

Illumina和Affymetrix都有很著名的全基因组SNP芯片,例如: Affymetrix: CytoScan,SNP 6.0, Illumina: 660,中华,450K等 SNP芯片,在2000~5000元每样本,还是比全基因组测序的2万元一个样本的价格要低质谱法 原理,精确测量PCR产物的分子量,就可以知道SNP位点上是A/C/G/T中的哪一个Sequenome MassArray法测中等通量的SNP位点是十分准确的 单个位点、单个样本的费用约2元人民币 无需预制芯片、预订荧光探针,只要合成常规的PCR引物就可以做实验了 如果测几十个点,到上百个点,是很方便的方法 SNPseq法 此方法为天昊公司所创,一次测几百个位点 原理: 用Goldgate法做出针对某些位点的多重PCR片段

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

荧光定量pcr法原理汇总

我们前面比较详细地介绍了荧光染料法做定量PCR的有关技术和产品,显然,作为定量PCR的初期阶段的荧光染料法还是有局限性的,比如,由于染料不能区分特异性PCR产物和引物二聚体等非特异产物,也不能区分不同探针,所以检测的特异性始终不如后来出现的探针法;需要在PCR后进行熔链曲线分析;也不能做多重PCR检测(Multiplex)。 上个世纪90年代原美国Perkin Elmer( PE)公司开发出了Taqman荧光探针定量技术,将定量PCR带入了更广阔的应用空间。Taqman探针法的出现是定量PCR技术的重要里程碑,之后在此基础上发展出了杂交探针法,以及荧光引物法,是对探针法的不断改进和简化。如果希望全面掌握定量PCR技术的研究人员就不能错过这些定量检测技术。 要提到荧光探针或者荧光引物,有一个基础概念需要首先明确,那就是荧光共振能量转移(fluorescence resonance energy transfer, FRET):一对合适的荧光物质可以构成一个能量供体 (donor) 和能量受体 (acceptor) 对, 其中供体的发射光谱与受体的吸收光谱重叠,当它们在空间上相互接近到一定距离(1—10 nm)时,激发供体而产生的荧光能量正好被附近的受体吸收,使得供体发射的荧光强度衰减,受体荧光分子的荧光强度增强。能量传递的效率和供体的发射光谱与受体的吸收光谱的重叠程度、供体与受体的跃迁偶极的相对取向、供体与受体之间的距离等有关。定量PCR所涉及的荧光探针和荧光引物的检测都这个FRET原理相关。 实时荧光PCR中另一个很重要的概念,即Ct值.C代表循环(Cycle),T代表阈值(Threshold).Ct值是指每个反应管内的荧光信号到达设定的阈值时所经历的循环数.。一般取PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光阈值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍。研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可做出标准曲线.因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 一:水解探针法 TaqMan技术

荧光光谱分析实验讲义

实验荧光光谱分析 一、实验目的与要求: 1. 了解荧光分光光度计的构造和各组成部分的作用; 2. 掌握荧光分光光度计的工作原理; 3. 掌握激发光谱、发射光谱及余辉衰减曲线的测试方法。 二、基本概念 1. 发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。 2. 激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效率。 3. 余辉衰减曲线 是指激发停止后发光强度随时间变化的曲线。横坐标为时间,纵坐标为发光强度(或相对发光强度)。 三、测试仪器 激发光谱、发射光谱及余辉衰减曲线的测试采用日本岛津RF-5301PC型荧光分光光度计。 从150W氙灯光源发出的紫外和可见光经过激发单色器分光后,再经分束器照到样品表面,样品受到该激发光照射后发出的荧光经发射单色器分光,再经荧光端光电倍增管倍增后由探测器接收。另有一个光电倍增管位于监测端,用以倍增激发单色器分出的经分束后的激发光。 光源发出的紫外-可见光或者红外光经过激发单色器分光后,照到荧光池中的被测样品上,样品受到该激发光照射后发出的荧光经发射单色器分光,由光电倍增管转换成相应电信号,再经放大器放大反馈进入A/D转换单元,将模拟电信号转换成相应数字信号,并通过显示器或打印机显示和记录被测样品谱图。 四、样品制备 液体试样

分子荧光的机理和荧光探针原理

1.3荧光分子探针识别机理 1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET) 典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。 图1-1 PET荧光探针的一般原理图LUMO 图1-2 PET荧光探针的前线轨道原理图 已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。de Silva研究小组利用类似于EDTA

PCR和定量PCR的引物和探针设计

引物和探针设计 – PCR 和定量PCR 基本原理 引物设计的重要因素 针对特殊应用的其他提示 引物的质量和纯度目录 1247

基本原理 引物是短的寡核苷酸,充当DNA复制的起始点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3'-羟基作为DNA合成的起始点。这个3'-羟基由相配的引物提供。引物在体内由RNA聚合酶(称为引物酶)生成。这些引物(在此为小RNA)由DNA聚合酶用作延长的起始点。在延长过程中,RNA引物降解并由DNA取代。 体外扩增反应,如聚合酶链反应(PCR)或逆转录(RT),需要引物。通过选择特异的引物序列,DNA 片段的所需区域可得到扩增。 对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 在开始引物设计之前,必须弄清以下几点: PCR的目的(例如定量检测、克隆、基因分型) PCR类型(定量PCR、RT-PCR、长片段PCR) 样品材料(基因组DNA、RNA、微小RNA) 可能的问题(例如假基因、SNP) 1

引物设计的重要因素 2 有一些不同的软件工具可用于引物设计和序列分析。它们能简化相配引物对的搜索,一般考虑以下标准。 最流行的软件为Primer 3(https://www.doczj.com/doc/3918816857.html,),它是大多数基于网络引物设计应用的基础。典型的引物长度为18-30个碱基。 短的引物(15个核苷酸以下)能非常高效地结合---但是它们的专一性不够。 非常长的引物能提高专一性,但是退火效率低,从而导致PCR 产物量低下。 应避免编码单一序列和重复序列的引物。 引物长度和专一性 引物的GC 含量应介于40%和60%之间。应避免聚-(dC )-或聚(dG )-区域,因为它们会降低退火反应的专一性。聚-(dA )-和聚(dT )-也应避免,因为这会生成不稳定的引物-模板复合物,从而降低扩增效率。 平衡GC含量,避免GC-和AT-富集区域 退火温度是基于引物的解链温度(Tm )计算。最常用的解链温度计算公式显示如下。“2+4”法则,亦称华莱士法则,对于极短的寡核苷酸(最多14个碱基)有效,该法则提出每个AT 对能将双链DNA 的解链温度提高2°C ,每个GC 对则能提高4°C 。 GC 法则(适用于长于13个碱基的序列)也是一种简单但同时相当不准确的方法。 两种法则都假设退火发生于以下标准条件下: 50 nM 引物、50 mM Na + 和pH 7.0。 “盐调整”法稍微准确一些,考虑到了反应缓冲液中的Na+离子浓度。 最复杂的方法称为“碱基堆积”法。这里的计算中包括了杂交期间的焓(H )和熵(S )。 计算出的解链温度可用于估算最佳退火温度。 但是,经常需要经验性地估算最佳温度。 所选引物的解链温度应允许退火温度介于55°C 和65°C 之间。一个引物对的两条引物都应具有相同或极相近的解链温度。 退火温度 Tm = 2 °C ? (A + T) + 4 °C ? (G + C) Tm = 64.9 °C + 41 °C ? (G + C -16.4)(A + T + G + C) Tm = 100.5 °C + 41 °C ? ? 16.6 ? log 10([Na + ]) C + G A + C + G + T 820A + C + G + T 提示

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank 和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

基因组学总结

Roche 454(GS FLX Titanium System)超高通量测序技术原理 2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序的先河。2007年又推出了性能更优的第二代基因组测序系统——Genome Sequencer FLX System。2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。 GS FLX 测序原理:GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA 聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来(图1)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。如果发生碱基配对,就会释放一个焦磷酸。这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。 测序实验流程: 1、文库制备:根据样品的种类和实验目的,将基因组DNA/cDNA片段化处理至400-800bp间,经末端修复与特异性接头连接等修饰后变性处理回收单链的DNA(sstDNA); 2、Emulsion PCR:特定比例的单链DNA文库被固定在特别设计的DNA捕获磁珠上,使大部分磁珠磁珠携带了一个独特的单链DNA片断。磁珠结合的文库被扩增试剂乳化,形成油包水的混合物,每个独特的片断在自己的微反应器里进行独立的扩增,而不受其他的竞争性或者污染性序列的影响。整个片段文库的扩增平行进行。扩增后产生了几百万个相同的拷贝。随后,乳液混合物被打破,扩增后仍结合在磁珠上的片段既可被回收纯化用于后续的测序实验; 3、测序反应:携带DNA的珠子与其他反应物混合物,随后放入PTP板中进行后继的测序。PTP孔的直径(29um)只能容纳一个珠子(20um)。然后将PTP板放置在GS FLX中,测序开始。每一个与模板链互补的核苷酸的添加都会产生化学发光的信号,并被CCD照相机所捕获; 4、数据分析:GS FLX系统在10小时的运行当中可获得100多万个读长,读取超过4-6亿个碱基信息,通过GS FLX系统提供两种不同的生物信息学工具对测序数据进行分析。 技术特点:? 速度快,一个测序反应耗时10个小时,获得4-6亿个碱基对。比传统的Sanger测序的方法快100倍;? 读长长,单个序列的读长更长,平均可达到450个碱基左右;? 通量高,每个反应可以得到超过100万个序列读长,成本大大降低;? 准确度高,读长超过400bp时,单一读长的准确性可以超过99%;? 一致性好,测序结果一致性超过99.99%;? 可以进行Pair-End测序研究;? 简便高效,不需要进行建库、克隆挑取、质粒提取等工作,一个人可以在一天内完成一个微生物物种的测序工作。 GS FLX系统的应用:自从2005年底GS 超高通量基因组测序系统问世以来,已经相继在世界上各大测序实验室成功落户。这项技术的第一个“试验品”就是来自有“DNA之父”之称的James D Waston,他向454公司提供了自己的血液样本。目前GS系统的用户在Nature,Science,PNAS等世界顶级的期刊杂志上已经发表了五十多篇的学术论文。(详细列表请查询https://https://www.doczj.com/doc/3918816857.html,/sis/sequencing/genome/index.jsp)。与GS 20系统相比较,硬件配置和软件系统方面的革新改进,使得GS FLX系统具有了广泛的应用:全基因组测序;多达120 Mb的未知基因组的测序;-生成基因组结构概图;-研究DNA序列的组织,分布和信息;-基因筛查:寻找新基因,定位和功能;-和其他基因组进行比较研究;全基因组进行从头鸟枪法测序,例如微生物基因,BAC和YAC克隆测序。比较基因组研究;-识别单碱基突变;-识别突变热点和保守区域;-识别插入或者缺失的基因;-断定基因型和表型之间的相关关系(比如,研究药物抗性的遗传基础);-基于基因测序变化进行毒性预测;-进行流行病学分析;-了解工业生产菌株和它们的亲代菌株序列上的差异作为进行工业生产菌株开发的遗传基础;-进行宏基因组(metagenomics)研究;-古代化石DNA 测序研究;利用配对末端方法(Pair-End Tag)将Contigs拼接成Scaffolds。转录组和基因调节研究;基于短Tags,ESTs, ChIP,或者GIS-PET序

HPV检测技术及市场概况(完整资料).doc

【最新整理,下载后即可编辑】 HPV检测技术及市场概况 一、杂交法(达安19种分型、凯普21种、亚能23种、透景 26种);实时荧光PCR(达安8种、上海之江13种高危分型、港龙生物(可定量);第二代杂交捕获法(HC2)等 二、已获SFDA批准注册HPV试剂盒(详见附件)

2012年,国家临检中心以凯普21分型产品作为全国医院评估的标准产品,以凯普为标准检验医院检测水平,凯普成为国内HPV检测行业的标准。中国宫颈癌防治工程唯一指定使用HPV检测产品。扩增控制和杂交控制的双重质控技术。 2. 中山大学达安基因股份有限公司 核酸诊断试剂是达安基因的主要产品,占营业收入的50%左右,市场份额在60%。达安基因具备荧光探针和核心酶体系自给的核心竞争优势。参股公司安必平主要提供以宫颈癌检查为主的病理诊断产品,提出“HPV DNA+液基细胞”一站式解决方案,在“两癌筛查”大背景下取得了快速增长,2010年贡献净利润约446万。 3. 凯杰生物工程(深圳)有限公司(QINGEN) 目前唯一经美国食品和药品监督管理局(FDA)、欧洲CE 和中国食品药品监督管理局(SFDA)共同认证的检测技术,传统金标准。

4.港龙生物技术(深圳)有限公司 采用基因芯片法,是市场中检测分型种类最多的试剂盒,26种,包括HPV16、18、31、33、35、39、45、51、52、56、58、 59、68、6、11、40、42、43、44、53、54、55、57、66、67、 73。 五、HPV临床应用情况 三级医院一般均已开展人乳头瘤病毒(HPV)检测,主要在检验科、病理科、妇产科进行,以北京地区医院为例: 中国医学科学院肿瘤医院,检验科 北京军区总医院,病理科 北京大学第一医院,妇产科宫颈病变诊治中心 六、物价参考

化学生物学总结

第 1 章多肽和蛋白质 【内容】 1. 蛋白质的定义:蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond) 相连形成的高分子含氮化合物。 2. 天然氨基酸的种类和构型: 存在自然界中的氨基酸有300余种,但组成人体蛋白 质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)。 氨基酸的分类: 3. 多肽合成原理: 多肽的合成就是形成肽键的过程,即一个氨基酸(AA)氨基亲核进攻另一个氨基酸被活化的羧基部分,形成肽键。氨基酸的活性基团必须进行保护。 4. 化学合成多肽方法:肽键形成步骤:制备部分保护的氨基酸,形成只有单一活性位

点的氨基酸衍生物;将氨基保护的氨基酸羧基部分活化,形成活性中间体,再与自由氨基反应形成酰胺键;脱除氨基酸的保护基。 5. 固相多肽合成步骤:步骤: ①多肽的C端氨基酸通过linker键连到树脂上; ②脱除氨基上的临时保护基; ③与下一个氨基酸缩合; ④反复进行脱保护和缩合两个步骤; ⑤脱除半永久性保护基; 6. 表达蛋白连接及其优点: 利用蛋白质剪接技术。硫酯是NCL和EPL的活性关键 基团,蛋白硫酯通过重组表达获得。利用蛋白剪接制备硫酯。优点:一、可在蛋白质中引入数量不限的非天然氨基酸;二、能实现大范围的蛋白修饰。 第2章核酸 【内容】 1.DNA复性和增色效应: DNA复性的定义:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。 增色效应:DNA变性时其溶液OD260增高的现象 2.核小体的组成和核苷酸的组成 核小体的组成:DNA:约200bp 组蛋白:H1 H2A H2B H3 H4 核苷酸的组成-------碱基、戊糖、磷酸 3.真核和原核生物rRNA的种类 真核生物5S rRNA,28S rRNA,5.8S rRNA,18S rRNA 原核生物5S rRNA,23S rRNA,16S rRNA 4.tRNA的二级结构和三级结构 tRNA的二级结构——三叶草形氨基酸臂DHU环反密码环额外环TΨC环 tRNA的三级结构——倒L形 tRNA的功能活化、搬运氨基酸到核糖体,参与蛋白质的翻译 5.核酸体外的合成方法(1)核酸的PCR合成技术:一种在体外选择性的将DNA 某个特定区域快速扩增的技术。2)核酸的固相合成技术。单体:核苷亚磷酰胺 原理:先将目标核酸链的3’端核苷固定在一个不溶性固相载体上,后沿3’-5’方向依次添加核苷酸至合成所需的长度,再将寡核苷酸链从固相载体上切下,并脱保护基。 6.核酸适体及其应用 核酸适体:一类有三维空间结构的单链核酸小分子,与特异靶分子相结合,对靶标分子识别有高度专一性和强亲和力,调节靶标分子的功能。 适体的应用:A.荧光修饰的适体用于药物分子的高通量筛选。B.本身可作为药物,

相关主题
文本预览
相关文档 最新文档