精选-高考数学二轮复习专题四概率与统计规范答题示范练习
- 格式:doc
- 大小:65.38 KB
- 文档页数:4
专题四概率与统计规范答题示范【典例】 (12分)(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y 的数学期望达到最大值?[信息提取]❶看到求X的分布列,想到依据题目中的信息确定X的取值及相应概率;❷看到求Y的数学期望达到最大值,想到利用数学期望公式,列出关于进货量n的函数关系式,由函数的单调性求解.[规范解答](1)由题意知,X所有的可能取值为200,300,500,1分由表格数据知,(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n,若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.……………………………………………………8分当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.……………………………………………………10分所以n=300时,Y的数学期望达到最大值,最大值为520元.……………………………………………………12分[高考状元满分心得]❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.如第(1)问中,写出X所有可能取值得分,第(2)问中分当300≤n≤500时和200≤n<300时进行分析才能得满分.❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问应写出求分布列的过程,第(2)问应写出不同范围内Y的数学期望.[解题程序]第一步:确定随机变量的取值;第二步:求每一个可能值的概率,列出随机变量的分布列;第三步:根据题目所要解决的问题,确定自变量及其取值范围;第四步:确定利润Y与进货量的函数关系;第五步:求出利润的数学期望E(Y)与进货量n的关系;第六步:利用函数的性质,求E(Y)的最大值;第七步:反思回顾、查看关键点、易错点和答题规范.【巩固提升】某大型水果超市每天以10元/千克的价格从水果基地购进若干A水果,然后以15元/千克的价格出售,若有剩余,则将剩余的水果以8元/千克的价格退回水果基地,为了确定进货数量,该超市记录了A水果最近50天的日需求量(单位:千克),整理得下表:以50天记录的各日需求量的频率代替各日需求量的概率.(1)若该超市一天购进A水果150千克,记超市当天A水果获得的利润为X(单位:元),求X的分布列及其数学期望;(2)若该超市计划一天购进A水果150千克或160千克,请以当天A水果获得的利润的期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,剩余的水果以7元/千克的价格退回水果基地,又该选哪一个?解(1)若A水果日需求量为140千克,则X=140×(15-10)-(150-140)×(10-8)=680(元),且P(X=680)=550=0.1. 若A水果日需求量不小于150千克,则X=150×(15-10)=750(元),且P(X=750)=1-0.1=0.9.故X的分布列为E(X)=680×0.1+750×0.9=743(元).(2)设该超市一天购进A水果160千克,当天的利润为Y(单位:元),则Y的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800,Y的分布列为E(Y)=660×0.1+730×0.2+800×0.7=772(元).因为772>743,所以该超市应购进160千克.若剩余的水果以7元/千克的价格退回水果基地,同理可得X,Y的分布列分别为因为670×0.1+750×0.9<640×0.1+720×0.2+800×0.7,所以该超市还是应购进160千克.。
高考解答题的审题与答题示范(四)
概率与统计类解答题
[解题助思·快速切入]
[思维流程]——概率与统计问题重在“辨”——辨析、辨型
[审题方法]——审图表、审数据
题目中的图表、数据包含着问题的基本信息,也往往暗示着解决问题的目标和方向.在
审题时,认真观察分析图表、数据的特征的规律,常常可以找到解决问题的思路和方法.[满分示例·规范答题]
典例
(本题满分12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4
元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根
据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低
于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果
最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六
月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40) 天数21636257 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进
货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
审题
路线
确定X的取值→计算与X值对应的概率→列出X的分布列→求出数学期望
标准答案阅卷现场
(1)由题意知,X所有可能取值为200,300,
500.①
由表格数据知辨表
第(1)问第(2)问
得①②③④⑤⑥⑦⑧。
高三数学(理)二轮专题复习习题:专题四概率与统计规范答题示范含解析【典例】 (12分)(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?[信息提取]❶看到求X的分布列,想到依据题目中的信息确定X的取值及相应概率;❷看到求Y的数学期望达到最大值,想到利用数学期望公式,列出关于进货量n的函数关系式,由函数的单调性求解.[规范解答](1)由题意知,X所有的可能取值为200,300,500,1分由表格数据知,(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n,若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.……………………………………………………8分当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.……………………………………………………10分所以n=300时,Y的数学期望达到最大值,最大值为520元.。
第三讲 概率与统计1.(2019·福州四校联考)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A ,B ,C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款方式付款的客户进行统计分析,得到柱状图如图所示.已知从A ,B ,C 三种分期付款销售中,该经销商每销售此品牌汽车1辆所获得的利润分别是1万元、2万元、3万元.现甲、乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率估计1位客户采用相应分期付款方式的概率.(1)求甲、乙两人采用不同分期付款方式的概率;(2)记X (单位:万元)为该汽车经销商从甲、乙两人购车中所获得的利润,求X 的分布列与期望.解析:(1)设“采用A 种分期付款方式购车”为事件A ,“采用B 种分期付款方式购车”为事件B ,“采用C 种分期付款方式购车”为事件C ,由柱状图得,P (A )=35100=0.35,P (B )=45100=0.45,P (C )=20100=0.2, ∴甲、乙两人采用不同分期付款方式的概率P =1-[P (A )·P (A )+P (B )·P (B )+P (C )·P (C )]=0.635.(2)由题意知,X 的所有可能取值为2,3,4,5,6,P (X =2)=P (A )P (A )=0.35×0.35=0.122 5,P (X =3)=P (A )P (B )+P (B )P (A )=0.35×0.45+0.45×0.35=0.315,P (X =4)=P (A )P (C )+P (B )P (B )+P (C )P (A )=0.35×0.2+0.45×0.45+0.2×0.35=0.342 5,P (X =5)=P (B )P (C )+P (C )P (B )=0.45×0.2+0.2×0.45=0.18, P (X =6)=P (C )P (C )=0.2×0.2=0.04.∴X 的分布列为E (X )=0.122 5×2+0.315×3+0.342 5×4+0.18×5+0.04×6=3.7.2.(2019·山西八校联考)某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (万元)和销售量y (万元)的数据如下:(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99 x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好;(3)已知利润z 与x ,y 的关系为z =200y -x .根据(2)的结果回答下列问题: ①广告费x =20时,销售量及利润的预报值是多少? ②广告费x 为何值时,利润的预报值最大?(精确到0.01) 参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x .参考数据:5≈2.24.解析:(1)∵x =8,y =4.2,∑i =17x i y i =279.4,∑i =17x 2i =708,∴b ^=∑i =17x i y i -7xy∑i =17x 2i -7x 2=279.4-7×8×4.2708-7×82=0.17,a ^=y -b ^x =4.2-0.17×8=2.84,∴y 关于x 的线性回归方程为y ^=0.17x +2.84.(2)∵0.75<0.88且R 2越大,反映残差平方和越小,模型的拟合效果越好, ∴选用y ^=1.63+0.99x 更好. (3)由(2)知,①当x =20时,销售量的预报值y ^=1.63+0.9920≈6.07(万台), 利润的预报值z =200×6.07-20≈1 193.04(万元).②z =200(1.63+0.99 x )-x =-x +198x +326=-(x )2+198x +326=-(x -99)2+10 127,∴当x =99,即x =9 801时,利润的预报值最大, 故广告费为9 801万元时,利润的预报值最大.3.(2019·湖南郴州模拟)某公司想了解对某产品投入的宣传费用对该产品的营业额的影响.下面是以往公司对该产品的宣传费用x (单位:万元)和产品营业额y (单位:万元)的统计折线图.(1)根据折线图可以判断,可用线性回归模型拟合宣传费用x 与产品营业额y 的关系,请用相关系数加以说明;(2)建立产品营业额y 关于宣传费用x 的回归方程;(3)若某段时间内产品利润z 与宣传费用x 和营业额y 的关系为z =x (y -1.01x -0.09)+50,应投入宣传费用多少万元才能使利润最大?并求最大利润.参考数据:∑i =17y i =37.28,∑i =17x i y i =160.68,∑i =17(y i -y)2=2.2,7≈2.65.参考公式:相关系数r =∑i =1n (x i -x )(y i -y)∑i =1n(x i -x )2∑i =1n(y i -y)2=∑i =1nx i y i -n xy∑i =1n(x i -x )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(x i -x )(y i -y)∑i =1n(x i -x)2=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x .解析:(1)由折线图中数据和参考数据得x =4,∑i =17(x i -x )2=28,r =160.68-4×37.2828×2.2≈0.99,因为y 与x 的相关系数近似为0.99,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)因为y =i =17y i7≈5.33,b ^=160.68-4×37.2828≈0.41,a ^≈5.33-0.41×4=3.69,所以y 关于x 的回归方程为y ^=0.41x +3.69.(3)由z =x (y -1.01x -0.09)+50=-0.6x 2+3.6x +50,可得x =3时,z max =55.4.所以投入宣传费用3万元时,可获得最大利润55.4万元.4.(2019·辽宁五校联考)某校高三年级有500名学生,一次考试的英语成绩服从正态分布N (100,17.52),数学成绩的频率分布直方图如下:(1)如果成绩高于135分的为特别优秀,则本次考试英语、数学成绩特别优秀的学生大约各多少人?(2)试问本次考试英语和数学的平均成绩哪个较高,并说明理由.(3)如果英语和数学两科成绩都特别优秀的共有6人,从(1)中的这些学生中随机抽取3人,设3人中两科成绩都特别优秀的有ξ人,求ξ的分布列和数学期望.参考公式及数据:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.68,P (μ-2σ<X ≤μ+2σ)=0.96,P (μ-3σ<X ≤μ+3σ)=0.99.解析:(1)因为英语成绩服从正态分布N (100,17.52),所以英语成绩特别优秀的概率P 1=P (X ≥135)=(1-0.96)×12=0.02,由频率估计概率,得数学成绩特别优秀的概率P 2=0.001 6×20×34=0.024,所以英语成绩特别优秀的学生大约有500×0.02=10(人), 数学成绩特别优秀的学生大约有500×0.024=12(人). (2)本次考试英语的平均成绩为100分,数学的平均成绩为60×0.16+80×0.168+100×0.48+120×0.16+140×0.032=94.72(分),因为94.72<100,所以本次考试英语的平均成绩较高.(3)英语和数学成绩都特别优秀的有6人,则单科成绩特别优秀的有10人,ξ可取的值有0,1,2,3,所以P (ξ=0)=C 310C 316=314,P (ξ=1)=C 210C 16C 316=2756,P (ξ=2)=C 110C 26C 316=1556,P (ξ=3)=C 36C 316=128,故ξ的分布列为E (ξ)=0×314+1×2756+2×56+3×28=8.。
四统计概率(B)1.(2018·张家口质检)2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取12人参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取了多少人?②若从这12人中随机选取3人到校广播站作冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X,写出X 的分布列,并求E(X).2.(2018·宁夏吴忠一模)观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与(2)利用(1)中的线性回归方程,分析气温从-5 ℃至 20 ℃时生长速度的变化情况,如果某月的平均气温是2 ℃时,预测这月大约能生长多少.附:回归直线的斜率和截距的最小二乘法估计公式分别为==,=-.3.(2018·宿州一模)为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.24.(2018·贵阳模拟)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图,(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 7,则P(μ-2σ<Z<μ+2σ)=0.954 5.1.解:(1)因为K2==7.5>6.635,所以有99%的把握认为收看开幕式与性别有关.(2)①根据分层抽样方法抽得男生×12=9人,女生×12=3人,所以选取的12人中,男生有9人,女生有3人.②由题意可知,X的可能取值有0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,所以E(X)=0×+1×+2×+3×=.2.解:(1)由题可知==8,==6,t i y i=-10+0+30+48+84+120+200=472,=25+0+36+64+144+225+400=894,则==≈0.305,=-≈6-0.305×8=3.56,于是生长速度y关于温度t的线性回归方程为y=0.305t+3.56.(2)利用(1)的线性回归方程可以发现,月平均气温从-5 ℃至20 ℃时该植物生长速度逐渐增加,如果某月的平均气温是2 ℃时,预测这月大约能生长3.56+0.305×2=4.17毫米.3.解:(1)抽取的男性市民为120人,持支持态度的为200×75%=150人,所以K2==≈11.11>10.828,所以在犯错误的概率不超过0.1%的前提下,可以认为性别与支持与否有关.(2)抽取的5人中抽到的男性的人数为5×=4,女性的人数为5×=1.则从5人中随机选取2人,其中恰好为1男1女的概率为P==.4.解:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230× 0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+ 12.2)=0.682 7.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 7,依题意知X~B(100,0.682 7),所以E(X)=100×0.682 7=68.27.。
专题四概率与统计规范答题示范
【典例】 (12分)(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
[信息提取]
❶看到求X的分布列,想到依据题目中的信息确定X的取值及相应概率;
❷看到求Y的数学期望达到最大值,想到利用数学期望公式,列出关于进货量n的函数关系式,由函数的单调性求解.
[规范解答]
(1)由题意知,X所有的可能取值为200,300,500,1分
由表格数据知,
(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,
若最高气温不低于25,则Y=6n-4n=2n,
若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.
……………………………………………………8分当200≤n<300时,
若最高气温不低于20,则Y=6n-4n=2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.
……………………………………………………10分所以n=300时,Y的数学期望达到最大值,最大值为520元.
……………………………………………………12分[高考状元满分心得]
❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全.如第(1)问中,写出X所有可能取值得分,第(2)问中分当300≤n≤500时和200≤n<300时进行分析才能得满分.
❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问应写出求分布列的过程,第(2)问应写出不同范围内Y的数学期望. [解题程序]
第一步:确定随机变量的取值;
第二步:求每一个可能值的概率,列出随机变量的分布列;
第三步:根据题目所要解决的问题,确定自变量及其取值范围;
第四步:确定利润Y与进货量的函数关系;
第五步:求出利润的数学期望E(Y)与进货量n的关系;
第六步:利用函数的性质,求E(Y)的最大值;
第七步:反思回顾、查看关键点、易错点和答题规范.
【巩固提升】某大型水果超市每天以10元/千克的价格从水果基地购进若干A水果,然后以15元/千克的价格出售,若有剩余,则将剩余的水果以8元/千克的价格退回水果基地,为
了确定进货数量,该超市记录了A水果最近50天的日需求量(单位:千克),整理得下表:
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进A水果150千克,记超市当天A水果获得的利润为X(单位:元),求X 的分布列及其数学期望;
(2)若该超市计划一天购进A水果150千克或160千克,请以当天A水果获得的利润的期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,剩余的水果以7元/千克的价格退回水果基地,又该选哪一个?
解(1)若A水果日需求量为140千克,
则X=140×(15-10)-(150-140)×(10-8)=680(元),且P(X=680)=5
50
=0.1. 若A水果日需求量不小于150千克,
则X=150×(15-10)=750(元),且P(X=750)=1-0.1=0.9.
故X的分布列为
E(X)=680×0.1+750×0.9=743(元).
(2)设该超市一天购进A水果160千克,当天的利润为Y(单位:元),
则Y的可能取值为140×5-20×2,150×5-10×2,160×5,
即660,730,800,
Y的分布列为
E(Y)=660×0.1+730×0.2+800×0.7=772(元).
因为772>743,所以该超市应购进160千克.
若剩余的水果以7元/千克的价格退回水果基地,同理可得X,Y的分布列分别为。