列管式换热器的设计与选用.
- 格式:ppt
- 大小:343.00 KB
- 文档页数:19
第一部分列管式换热器选型设计计算一.列管式换热器设计过程中的常见问题换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。
当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。
1.流体流动空间的选择原则(1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。
(2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。
(4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。
(5)有毒流体宜走管内,使泄漏机会较少。
(6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。
(8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。
2.流体流速的选择根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。
可见应全面分析权衡比较适宜的流速。
(1)所选流速要尽量使流体湍流,有利传热。
(2)所选流速应使管长或程数恰当。
管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。
(3)粘度大的流体,流速应小些,可按滞流处理。
(4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。
在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。
3.管子规格及排列情况(1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。
列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。
这些参数将在后续的计算中使用。
第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。
常见的型号包括固定管板式、弹性管板式、钢套铜管式等。
第三步:计算表面积根据流体的热传导计算表面积。
换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。
根据这个公式,可以计算出所需的表面积。
第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。
根据流体的流速和换热需求,计算出每根管子的长度和直径。
第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。
管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。
第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。
常见的材质有不锈钢、碳钢、铜等。
通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。
第七步:校核换热器的强度对换热器的强度进行校核。
根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。
第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。
包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。
上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。
首先,需要计算流体的传热系数。
传热系数的计算包括对流传热系数和管内传热系数两部分。
对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。
对于管内传热系数,可以使用流体的性质和流速等参数进行计算。
其次,根据传热系数和管子的尺寸,计算管子的传热面积。
管子的传热面积可以根据管子的长度和直径进行计算。
然后,根据热传导定律,计算换热器的传热量。
化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。
设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。
设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。
然后确定换热器的尺寸,其中包括管径和管长。
2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。
3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。
假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。
4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。
5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。
实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。
假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。
2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。
3. 根据所选换热器材料,计算换热器的尺寸和管径。
假设管壁温度近似等于流体温度。
4. 根据热平衡原理,计算出口温度。
假设热平衡条件满足,即水的热量损失等于油的热量增加。
5. 根据所选材料和尺寸,计算换热效率。
假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。
总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。
根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。
设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。
列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
列管式换热器的选型和计算选择和计算列管式换热器时,需要考虑以下几个重要因素:工艺要求、流体性质、传热面积、传热系数、压降和尺寸等。
1.工艺要求:首先需要了解工艺要求,确定换热器的工作条件,如需求的热交换量、流体进出口温度、换热器操作压力等。
2.流体性质:对于液体流体,需要知道其流量、密度、比热容和粘度等参数;对于气体流体,需要知道其流量、密度、比热容、粘度以及含湿量等参数。
此外,还需要了解流体的腐蚀性和脏污程度等因素。
3.传热面积:传热面积是换热器设计的关键,它决定了换热效果的好坏。
通常,换热面积越大,传热效率越高。
传热面积的计算需要根据需要传热的热流量、热交换的温差以及换热器的传热系数来确定。
4.传热系数:传热系数是描述换热器传热性能的重要参数,它是指单位时间内单位面积的传热量与温度差的比值。
传热系数受到流体流速、流体性质、传热表面形式和腐蚀程度等因素的影响。
一般来说,传热系数越大,传热效果越好。
5.压降:换热器的设计还要考虑流体在管内和管外的压降。
流体在管内的压降与流速、管道尺寸、流体性质和管道长度等因素有关。
流体在管外的压降主要受到流体通过管束时的速度和管束间距的影响。
合理控制压降,可以保证换热过程的均衡和稳定。
6.尺寸:选择合适的换热器尺寸,需要考虑到实际安装场地的限制。
一般来说,尺寸越小,安装成本越低,但传热面积较小,传热效果也相应较差。
因此,在满足工艺要求的前提下,尽量选择较大的换热器尺寸。
换热器选型时,可以参考换热器厂家提供的产品目录和工程经验,综合考虑上述因素,选择符合要求的型号。
选定后,可以使用传热计算软件进行详细的热力学计算,确定换热器的几何尺寸,进一步优化设计。
总之,换热器的选型和计算是一个比较复杂的过程,需要综合考虑各种因素,并利用适当的工具进行计算和分析。
只有选择合适的换热器,才能满足工艺要求,提高换热效率,并确保系统的可靠运行。
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
列管式换热器的选用与设计原则与列管式换热器的设计计算换热器的设计即是通过传热过程计算确定经济合理的传热面积以及换热器的结构尺寸,以完成生产工艺中所要求的传热任务。
换热器的选用也是根据生产任务,计算所需的传热面积,选择合适的换热器。
由于参与换热流体特性的不同,换热设备结构特点的差异,因此为了适应生产工艺的实际需要,设计或选用换热器时需要考虑多方面的因素,进行一系列的选择,并通过比较才能设计或选用出经济上合理和技术上可行的换热器。
本节将以列管式换热器为例,说明换热器选用或设计时需要考虑的问题。
一、流体通道的选择流体通道的选择可参考以下原则进行:1.不洁净和易结垢的流体宜走管程,以便于清洗管子;2.腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀,而且管内也便于检修和清洗;3.高压流体宜走管程,以免壳体受压,并且可节省壳体金属的消耗量;4.饱和蒸汽宜走壳程,以便于及时排出冷凝液,且蒸汽较洁净,不易污染壳程;5.被冷却的流体宜走壳程,可利用壳体散热,增强冷却效果;6.有毒流体宜走管程,以减少流体泄漏;7.粘度较大或流量较小的流体宜走壳程,因流体在有折流板的壳程流动时,由于流体流向和流速不断改变,在很低的雷诺数(Re<100)下即可达到湍流,可提高对流传热系数。
但是有时在动力设备允许的条件下,将上述流体通入多管程中也可得到较高的对流传热系数。
在选择流体通道时,以上各点常常不能兼顾,在实际选择时应抓住主要矛盾。
如首先要考虑流体的压力、腐蚀性和清洗等要求,然后再校核对流传热系数和阻力系数等,以便作出合理的选择。
二、流体流速的选择换热器中流体流速的增加,可使对流传热系数增加,有利于减少污垢在管子表面沉积的可能性,即降低污垢热阻,使总传热系数增大。
然而流速的增加又使流体流动阻力增大,动力消耗增大。
因此,适宜的流体流速需通过技术经济核算来确定。
充分利用系统动力设备的允许压降来提高流速是换热器设计的一个重要原则。
在选择流体流速时,除了经济核算以外,还应考虑换热器结构上的要求。
列管式换热器设计方案和选用设计方案和选用列管式换热器导论:设计方案:1.确定换热器的工作条件:在进行列管式换热器的设计时,首先需要确定换热器的工作条件,包括工作介质的流量、温度、压力等参数。
这些参数将对换热器的尺寸和换热效率等性能产生影响。
2.选择合适的管束类型:列管式换热器一般由多个管子组成的管束和螺纹固定在两个壳体上的结构组成,因此需要选择合适的管束类型。
常用的管束类型有单管、单排管束、多排管束、隔室管束等。
选择合适的管束类型可以提高换热效率,并满足不同的换热要求。
3.确定换热面积和管束长度:换热器的性能主要取决于换热面积和管束长度。
根据工作条件和换热要求,确定合适的换热面积和管束长度。
一般来说,换热面积越大,换热效果越好,但是也会增加成本和体积。
4.确定流体流动方式和传热方式:列管式换热器的流体流动方式包括顺流、逆流和交叉流等,传热方式包括对流传热和辐射传热等。
根据换热要求和经济性,选择合适的流动方式和传热方式。
5.确定壳程流动分配方式:壳程流动分配方式包括平行流动和逆流动等。
在设计中,需要根据换热要求和经济性选择合适的流动分配方式。
选用:1.根据工艺要求选择合适的材料:列管式换热器的材料对于其耐用性和可靠性有着重要影响。
根据介质的性质和工艺要求,选择合适的材料,如不锈钢、碳钢、铜等。
2.确定换热器的维护和清洗方式:列管式换热器由于结构复杂,清洗和维护较为困难。
因此,在选用时需要考虑清洗和维护的方便性,选择易于清洗和维护的设计。
3.考虑能量利用率和经济性:在选用列管式换热器时,还需要考虑能量利用率和经济性。
换热器的能量利用率越高,所需热交换面积就越小,经济性就越好。
因此,选择高效能量利用的换热器是非常重要的。
4.参考其他用户的反馈和评价:在选用列管式换热器时,可以参考其他用户对于不同品牌和型号的反馈和评价。
这些反馈和评价可以提供有关换热器性能和可靠性的宝贵信息。
总结:列管式换热器的设计方案和选用需要考虑多个因素,包括工作条件、管束类型、换热面积、管束长度、流体流动方式、传热方式、壳程流动分配方式、材料选择、维护和清洗方式以及能量利用率和经济性等。
果汁中列管式换热器的设计0753一.设计任务和设计条件设计换热器设备能力 150000kg/h的果汁,从80℃冷却到20℃,冷却介质采用循环水,压力位0.4MPa,循环水入口温度为10℃,出口温度26℃,试设计一台列管式换热器,完成生产任务。
二.确定设计方案1.选择换热器的类型由于热流体进口温度80℃出口温度20℃;冷流体进口温度10℃,出口温度为26℃,温差超过50度,使用固定管板式换热器会对仪器造成损坏,而U型管式便于壳程清洗,管程清洗较难。
该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
2.管程安排从两物流的操作压力看,应使果汁走管程,循环水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使果汁走管程,循环水走壳程。
三.确定物性数据定性温度:对于一般果汁高粘度流体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
故壳程果汁的定性温度为T=22080=50℃管程流体的定性温度为 t=1822610=+℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
对果汁来说,最可靠的无形数据是实测值。
若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。
果汁在50℃下的有关物性数据如下(来自生产中的实测值):密度 311050mkg =ρ 定压比热容 1p c =3.98kj/kg ℃热导率 1λ=0.61w/m粘度 s mpa .2.11=μ循环水在18℃ 下的物性数据:密度1ρ=998.2㎏/m 3 定压比热容 1p c =4.183kj/kg ℃热导率 1λ=0.5985 w/m ℃粘度 1μ=1.0042×10-3Pas四.估算传热面积1.热流量Q 1=111t c m p ∆=150000×3.98×(80-20)=35820000kj/h =9950kw2.平均传热温差 先按照纯逆流计算,得m t ∆=69.110202680ln )1020()2680(=-----k3.传热面积 由于管程压力较高,故可选取较大的K 值。