转子不平衡的振动特征
- 格式:doc
- 大小:190.00 KB
- 文档页数:5
机械振动故障及其特征频谱15类常见的振动故障及其特征频谱:不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:◎振动主频率等于转子转速◎径向振动占优势◎振动相位稳定◎振动随转速平方变化◎振动相位偏移方向与测量方向成正比1、力偶不平衡力偶不平衡症状特征:◎同一轴上相位差180°◎存在1X转速频率而且占优势◎振动幅值随提高的转速的平方变化◎可能引起很大的轴向及径向振动幅值◎动平衡需要在两个修正面内修正2、悬臂转子不平衡悬臂转子不平衡症状特征:◎径向和轴向方向存在1X转速频率◎轴向方向读数同相位,但是径向方向读数可能不稳定◎悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正二、不对中1、角向不对中角向不对中症状特征:◎特征是轴向振动大◎联轴器两侧振动相位差180°◎典型地为1X和2X转速大的轴向振动◎通常不是1X,2X或3X转速频率占优势◎症状可指示联轴器故障2、平行不对中平行不对中症状特征:◎大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率◎2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状◎联轴器的设计可能影响振动频谱形状和幅值3、装斜的滚动轴承装斜的滚动轴承症状特征:◎振动症状类似于角向不对中◎试图重新对中联轴器或动平衡转子不能解决问题◎产生相位偏移约180°的侧面◎对侧面或顶部对底部的扭动运动三、偏心转子偏心转子症状特征:◎在转子中心连线方向上最大的1X转速频率振动◎相对相位差为0°或180°◎试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大四、弯曲轴弯曲轴症状特征:◎弯曲的轴产生大的轴向振动◎如果弯曲接近轴的跨度中心,则1X转速频率占优势◎如果弯曲接近轴的跨度两端,则2X转速频率占优势◎轴向方向的相位差趋向180°五、机械松动1、机械松动(A)机械松动(A)症状特征:◎机器底脚结构松动引起的◎基础变形将产生“软底脚”问题◎相位分析将揭示机器的底板部件之间垂直方向相位差约180°2、机械松动(B)机械松动(B)症状特征:◎由地脚螺栓松动引起的◎可能产生0.5X、1X、2X和3X转速频率振动时,由裂纹的结构或轴承座引起的3、机械松动(C)机械松动(C)症状特征:◎相位经常是不稳定的◎将产生许多谐波频率六、转子摩擦转子摩擦症状特征◎振动频谱类似于机械松动◎通常产生一系列可能激起自激振动的频率◎可能出现转速的亚谐波频率振动◎摩擦可能是部分圆周或整圆周的七、共振共振症状特征:◎当强迫振动频率与自振频率一致时,出现共振◎轴通过共振时,相位改变180°,系统处于共振状态时,将产生大幅值的振动八、皮带和皮带轮1、皮带共振皮带共振症状特征:◎如果皮带自振频率与驱动转速或被驱动转速频率一致,则可能出现大幅值的振动◎改变皮带张力可能改变皮带的自振频率2、皮带磨损、松动或不匹配皮带磨损、松动或不匹配症状特征:◎往往2X转速频率占优势◎振动幅值往往是不稳定的,有时是脉冲、频率或是驱动转速频率,或是被驱动转速频率◎齿形皮带磨损或不对中,将产生齿轮皮带频率大幅值的振动◎皮带振动频率低于驱动转速或被驱动转速频率3、偏心皮带轮偏心皮带轮症状特征:◎偏心或不平衡的皮带轮,将产生1x转速频率的大幅值的皮带轮振动◎在皮带一致方向上的振动幅值最大◎试图动平衡偏心皮带轮要谨慎4、皮带/皮带轮不对中皮带/皮带轮不对中症状特征:◎皮带轮不对中将产生1X转速频率的大幅值的轴向振动◎电动机上振动幅值最大的往往是风机转速频率九、流体动力激振1、叶片通过频率流体动力激振症状特征:◎如果叶片与壳体之间的间隙不均匀,叶片通过频率(BPF)振动的幅值可能很高◎如果摩擦环卡在轴上,可能产生高幅值的叶片通过频率(BPF)振动◎偏心的转子可能产生幅值过大的叶片通过频率(BPF)振动2、流体紊流流体紊流症状特征:◎在风机中,由于流道内气流的压力变化或速度变化,往往会出现气流紊流流动◎将产生随机的,可能在0到30赫兹频率范围的低频振动3、气穴气穴症状特征:◎气穴将产生随机的,叠加在叶片通过频率(BPF)上的高频宽带能量振动◎通常说明进口压力不当◎如果任凭气穴现象存在,将可能导致叶轮的叶片腐蚀和泵壳体腐蚀◎声音听起来像砂石经过泵的声音十、拍振拍振症状特征:◎拍振是两个频率非常接近的振动同相位和反相位合成的结果◎宽带谱将显示为一个尖峰上下,波动本身在宽带谱上存在两个尖峰的频率之差就是拍频十一、偏心转子◎电源频率FL(中国为50赫兹=3000转/分)◎极数P◎转子条通过频率Fb=转子条数*转子转速◎同步转速NS=2XFL/P◎滑差频率FS=同步转速-转子转速1、定子偏心、绝缘短路和铁芯松动定子偏心、绝缘短路和铁芯松动症状特征:◎定子问题产生高幅值的电源频率,二倍(2FL)电磁振动◎定子偏心产生不均匀的气隙,其振动的单向性非常明显◎软底脚可能导致定子偏心2、同步电动机同步电动机症状特征:◎同步电动机的定子线圈松动产生◎高幅值的线圈通过频率振动◎线圈通过频率两侧将伴随1X转速频率的边带3、电源相位故障电源相位故障症状特征:◎相位问题将引起二倍电源频率◎(2FL)伴有(1/3)FL的边带◎如果不修正电源故障,二倍电源频率(2FL)的电磁振动幅值可能超过25毫米/秒峰值◎如果电源接头局部故障只是偶尔接触故障4、偏心转子偏心转子症状特征:◎偏心转子产生旋转的、可变的气隙,它产生脉冲振动◎经常要求进行细化谱分析,以分离二倍电源频率(2F)与旋转转速的谐波频率5、转子断条转子断条症状特征:◎旋转转速及其谐波频率两侧伴随极通过频率(Fp)边带说明转子断条故障◎在转子条通过频率(RBPF)两侧,伴随二倍电源频率(2FL)边带说明转子条松动◎往往是转子条通过频率(RBPF)的二倍(2XRBPF)和三倍(3XRBPF)幅值很高,而转子条通过频率(RBPF)的基频(1XRBPF)的幅值很小十二、直流电机直流电动机故障症状特征:◎利用可控硅整流器频率(SCR)高于正常的幅值可检测直流电动机故障◎这些故障包括:绕组线圈断裂,保险丝和控制板故障,可产生1X 到5X电源频率的高幅值振动十三、齿轮故障正常状态频谱:◎正常状态频谱显示1X和2X转速频率和齿轮啮合频率GMF◎齿轮啮合频率GMF通常伴有旋转转速频率边带◎所有的振动尖峰的幅值都较低,没有自振频率1、齿载荷的影响齿载荷的影响症状特征:◎齿轮啮合频率往往对载荷很敏感◎高幅值的齿轮啮合频率GMF未必说明齿轮有故障◎每次分析都应该在最大载荷下进行2齿磨损齿磨损症状特征:◎激起自振频率同时伴有磨损齿轮的1X转速频率的边带说明齿磨损◎边带是比齿轮啮合频率GMF更好的磨损指示◎当齿轮的齿磨损时齿轮啮合频率的幅值可能不变3、齿轮偏心和侧隙游移齿轮偏心和侧隙游移症状特征:◎齿轮啮合频率GMF两侧较高幅值的边带说明,齿轮偏心侧隙游移和齿轮轴不平行◎有故障的齿轮将调制边带◎不正常的侧隙游移通常将激起齿轮自振频率振动4、齿轮不对中齿轮不对中症状特征:◎齿轮不对中总是激起二阶或更高阶的齿轮啮合频率的谐波频率,并伴有旋转转速频率边带◎齿轮啮合频率基频(1XGMF)的幅值较小,而2X和3X齿轮啮合频率的幅值较高◎为了捕捉至少2XGMF频率,设置足够高的最高分析频率Fmax很重要5、断齿/裂齿断齿/裂齿症状特征:◎断齿或裂齿将产生该齿轮的1X转速频率的高幅值的振动◎它将激起自振频率振动,并且在其两侧伴有旋转转速基频边带◎利用时域波形最佳指示断齿或裂齿故障◎两个脉冲之间的时间间隔就是1X转速的倒数6、齿磨损摆动的齿症状特征:◎摆动的齿轮的振动是低频振动,经常忽略它十四、滚动轴承1、滚动轴承故障发展的第一阶段滚动轴承故障发展的第一阶段症状特征:◎超声波频率范围(>250K赫兹)内的最早的指示,利用振动加速度包络技术(振动尖峰能量gSE)可最好地评定频谱2、滚动轴承故障发展的第二阶段滚动轴承故障发展的第二阶段症状特征:◎轻微的故障激起滚动轴承部件的自振频率振动◎故障频率出现在500-2000赫兹范围内◎在滚动轴承故障发展第二阶段的末端,在自振频率的左右两侧出现边带频率3、滚动轴承故障发展的第三阶段滚动轴承故障发展的第三阶段症状特征:◎出现滚动轴承故障频率及其谐波频率◎随着磨损严重出现故障频率的许多谐波频率,边带数也增多◎在此阶段,磨损可以用肉眼看见,并环绕轴承的圆周方向扩展4、滚动轴承故障发展的第四阶段滚动轴承故障发展的第四阶段症状特征:◎离散的滚动轴承故障频率消失,被噪声地平形式的宽带随机振动取代之◎朝此阶段末端发展,甚至影响1X转速频率的幅值◎事实上,高频噪声地平的幅值和总量幅值可能反而减小十五、滑动轴承1、油膜振荡不稳定性油膜振荡症状特征:◎如果机器在2X转子临界转速下运转,可能出现油膜振荡◎当转子升速到转子第二阶临界转速时,油膜涡动接近转子临界转速,过大的振动将使油膜不能支承轴◎油膜振荡频率将锁定在转子的临界转速。
1 轴承座振动转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。
造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。
转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。
动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。
其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动;滚动轴承异常引起的振动轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。
其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。
滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。
这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。
|轴承座基础刚度不够引起的振动基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。
旋转机械产生振动的原因1.转子不平衡:转子是旋转机械的核心部件之一,如果在制造或装配过程中转子的质量分布不均匀,或者转子的质量中心与转轴的几何中心不一致,就会导致转子不平衡,产生振动。
2.转子偏心:转子在运行过程中,由于受到各种力的作用,会产生偏心现象。
例如,由于轴承老化或磨损,导致转子偏离理想中心位置,这样在旋转时会出现不规则的振动。
3.转轴弯曲:转轴在长期运行中可能会发生弯曲,这可能是由于过载、长期在偏心位置运行或轴材质不均匀等原因导致的。
当转轴弯曲时,会产生较大的离心力,从而导致旋转机械产生振动。
4.轴承异常:轴承是支撑旋转机械转子和传递负荷的重要组件。
当轴承存在异常时,如过早磨损或损坏,轴承回转不灵活,就会导致旋转机械产生振动。
5.转速不匀:旋转机械的转速不匀也是产生振动的原因之一、例如,在内燃机中,气缸的工作过程可能由于火花塞点火的时间、燃烧性能等因素的影响,导致固定转子的周期性加速和减速,从而产生振动。
6.故障松动:旋转机械的各种连接部件,如螺栓、齿轮、轴套等,如果松动或失效,就会导致机械系统不稳定,进而产生振动。
7.液动离心力:一些旋转机械中的工作流体(如离心泵等)在离心力作用下,会产生离心振动。
这种振动可以通过调整流体在机械内的流动方式或增加防振措施进行控制。
以上是旋转机械产生振动的主要原因。
为了减少或消除这些振动,需要采取相应的措施,例如:加强质量控制,保证转子的平衡性;定期检查和维护轴承,确保其正常工作;适当调整机械的结构和设计,降低振动产生的可能性;使用合适的润滑剂和制动装置,减少摩擦引起的振动等等。
常见的15种振动故障及其特征频谱以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:●振动主频率等于转子转速;●径向振动占优势;●振动相位稳定;●振动随转速平方变化;●振动相位偏移方向与测量方向成正比。
1、力偶不平衡●力偶不平衡症状特征:●同一轴上相位差180°;●存在1X转速频率而且占优势;●振动幅值随提高的转速的平方变化;●可能引起很大的轴向及径向振动幅值;●动平衡需要在两个修正面内修正。
2、悬臂转子不平衡●悬臂转子不平衡症状特征:●径向和轴向方向存在1X转速频率;●轴向方向读数同相位,但是径向方向读数可能不稳定;●悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:特征是轴向振动大;联轴器两侧振动相位差180°;典型地为1X和2X转速大的轴向振动;通常不是1X,2X或3X转速频率占优势;症状可指示联轴器故障。
2、平行不对中●平行不对中症状特征:●大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;●2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;●联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:振动症状类似于角向不对中;试图重新对中联轴器或动平衡转子不能解决问题;产生相位偏移约180°的侧面;对侧面或顶部对底部的扭动运动。
三、偏心转子●偏心转子症状特征:●在转子中心连线方向上最大的1X转速频率振动;●相对相位差为0°或180°;●试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴●弯曲轴症状特征:●弯曲的轴产生大的轴向振动;●如果弯曲接近轴的跨度中心,则1X转速频率占优势;●如果弯曲接近轴的跨度两端,则2X转速频率占优势;●轴向方向的相位差趋向180°。
振动故障特征1转子质量不平衡(1)转子的振动是一个与转速同频的强迫振动,振动幅值随转速按振动理论中的共振曲线规律变化,在临界转速处达到最大值。
因此,转子不平衡故障的突出表现为一倍频率振动幅值大。
同时,出现较小的高次谐波,整个频谱呈所谓的“枞树形”,如图。
(2)在一定的转速下,振动的幅值和相位基本上不随时间发生变化。
(3)轴心运动轨迹为圆型或椭圆型。
(4)动态下,轴线弯曲成空间曲线,并以转子转速绕静态轴心线旋转。
2 转子初始弯曲有初始弯曲的转子具有与质量不平衡转子相似的振动特征,所不同的是初弯转子在转速较低时振动较明显,趋于弯曲值。
在一定的转速下振动特征稳定,振幅和相位受机组参数影响不大,与升速时或带负荷的时间延续没有直接的关联,也不受启动方式的影响。
3转子热态不平衡(1)转子的振动频谱与质量不平衡时的振动频谱类似。
(2)振动的幅值和相位随负荷发生变化。
(3)在一定负荷下,振动的幅值和相位随时间发生变化。
(4)轴心运动轨迹与质量不平衡时的轴心运动轨迹类似。
4转子部件脱落转子部件脱落的主要特征有:(1)转子部件脱落后,转子的振动频谱与质量不平衡时的振动频谱类似。
(2)转子部件脱落的前后,振动的幅值和相位突然发生变化。
(3)部件脱落一段时间后,振动的幅值和相位趋于稳定。
(4)轴心运动轨迹与质量不平衡时的轴心运动轨迹类似。
5转子部件结垢特征分析主要特征:(1)转子的振动频谱与质量不平衡时的振动频谱类似。
(2)轴心运动轨迹与质量不平衡时的轴心运动轨迹类似。
(3)振动的幅值和相位随时间发生极为缓慢的变化,这种变化有时需要一个月甚至数个月才能发现明显的差别。
辅助特征:(4)机组的出力和效率逐渐下降。
(5)各监视段的压力随时间的变化而缓慢增加。
6动静碰磨故障发生动静碰磨故障转子振动特征有:(1)振动的时域波形特征当转子发生碰磨故障时,振动的时域波形发生畸变,出现削波现象。
另外,在振动信号中有奇异信号。
(2)振动的频谱特征由动、静部分碰磨而产生的振动,具有丰富的频谱特征。
转子刚度不对称引起的振动
转子刚度不对称是指旋转轴截面上两个相互垂直方向具有不同的刚度。
例如、电机转子绕组不均匀,轴上有局部地方洗削成平面,轴上开有键槽,轴局部内、外园偏心,或两段轴用平面联轴节连接,而联轴节圆周上的连接螺栓拧紧度不均匀等。
对于水平安装的转子,如果刚度不对称,就会出现两倍频振动以及副临界转速(即转速在临界转速的1/2处会出现一个振动峰值)。
如果转子系统的阻尼不足,在这两个临界转速之间工作就会产生不稳定振动。
1)由刚度不对称所引起的振动频率为两倍于转子旋转频率。
2)转子振幅随截面上两个方向刚度差的增加而增大;
3)转子截面刚度差引起的振动与不平衡无关,用提高动平衡精度的方法并
不能解决此类振动问题。
如果轴在两个方向上的刚度差严重时,只要有很小的质量偏心,就足以使共振幅值变得很大。
所以对高速轴的偏心度和园度要严格控制。
转子不平衡的振动特征转子不平衡是指转子在旋转过程中存在质量分布不均匀或者受力不平衡的情况,从而引起转子系统的振动。
转子不平衡会导致机械系统的失衡现象,对机械轴承、机械密封、传动系统等构件和设备都会产生不利的影响,严重时可能引发故障和事故。
因此,对转子不平衡的振动特征进行深入了解和分析是非常重要的。
旋转不平衡振动是指由于转子的质量在横向均匀分布所导致的振动。
在转速为n(rpm)的情况下,转子的旋转不平衡产生的激振力的频率为nf(Hz),其中f为不平衡的频率倍数,也称为不平衡频率。
旋转不平衡振动的主要特征有以下几个方面:1. 不平衡力的大小和方向都与转子的转速成正比。
不平衡力的大小与不平衡的质量、离心距以及转速之间的关系可以用公式F=mrω²表示,其中F为不平衡力,m为不平衡的质量,r为不平衡质量的离心距,ω为转速的角速度。
2. 旋转不平衡振动的频率与转速成正比,并且是转速的整数倍。
即f=nf1,其中f1为基频,n为1,2,3等整数。
3.旋转不平衡振动产生的激振力是周期性的,具有良好的周期性。
其激振力的幅值和方向在每个运动周期内都会随着转子的旋转发生变化,呈现出正弦波形。
4.旋转不平衡振动的激振力与位置无关。
不论转子处于何种位置,旋转不平衡产生的激振力都与转速成正比。
径向不平衡振动是指由于转子的质量在径向上不均匀分布所引起的振动。
径向不平衡振动的主要特征有以下几个方面:1.转子径向不平衡振动的频率与转速无关。
径向不平衡产生的振动频率不随转子转速的增加或减小而改变,而是与转子的结构特性有关。
2.径向不平衡振动的频谱特征与转子的自然频率相关。
当外力激励频率与转子的自然频率相等或接近时,会产生共振现象,振动幅值会显著增大,从而对机械系统产生不利影响。
3.转子径向不平衡振动的振幅呈现出特定的分布规律。
转子上的振动主要集中在质量不平衡最严重的部分,而在其他部分振幅较小。
4.转子径向不平衡振动的激振力与位置有关。
常见的15种转子振动故障特征频谱《压缩机》杂志原创文章根据ISO标准,由轴承支撑的旋转体称为转子。
转子多为动力机械和工作机械中的主要旋转部件。
典型的转子有透平机械转子、电机转子、各种泵的转子和透平压缩机的转子等。
一、不平衡不平衡故障症状特征:振动主频率等于转子转速;径向振动占优势;振动相位稳定;振动随转速平方变化;振动相位偏移方向与测量方向成正比。
1、力偶不平衡力偶不平衡症状特征:同一轴上相位差180°;存在1X转速频率而且占优势;振动幅值随提高的转速的平方变化;可能引起很大的轴向及径向振动幅值;动平衡需要在两个修正面内修正。
2、悬臂转子不平衡悬臂转子不平衡症状特征:径向和轴向方向存在1X转速频率;轴向方向读数同相位,但是径向方向读数可能不稳定;悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:特征是轴向振动大;联轴器两侧振动相位差180°;典型地为1X和2X转速大的轴向振动;通常不是1X,2X或3X转速频率占优势;症状可指示联轴器故障。
2、平行不对中平行不对中症状特征:大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:振动症状类似于角向不对中;试图重新对中联轴器或动平衡转子不能解决问题;产生相位偏移约180°的侧面;对侧面或顶部对底部的扭动运动。
三、偏心转子偏心转子症状特征:在转子中心连线方向上最大的1X转速频率振动;相对相位差为0°或180°;试图动平衡将使一个方向振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴弯曲轴症状特征:弯曲的轴产生大的轴向振动;如果弯曲接近轴的跨度中心,则1X转速频率占优势;如果弯曲接近轴的跨度两端,则2X转速频率占优势;轴向方向的相位差趋向180°。
电机动平衡问题阶次特征
电机动平衡问题通常涉及到转子的不平衡,其阶次特征是指不平衡引起的振动频率和其整数倍频率的特征。
在电机中,阶次通常与电机的转速和不平衡质量之间存在关系。
电机不平衡会导致转子在旋转过程中产生振动,这些振动可以通过频谱分析表示。
阶次特征通常包括以下几个方面:
一阶阶次:一阶阶次对应于电机的主转速,即电机的基本转速。
这是由于不平衡引起的振动频率。
倍频阶次:除了一阶阶次外,还会存在二阶、三阶等整数倍频率的振动。
这些倍频通常表示为2X、3X等,其中X是电机的主转速。
谐波阶次:除了基本频率及其整数倍频率外,还可能存在一些谐波频率,这些频率是基本频率的非整数倍。
在实际工程中,为了解决电机的不平衡问题,通常需要进行动平衡处理。
动平衡是通过在转子上添加校正质量,使得不平衡质量和其振动产生的力矩减小或消除,从而减小或消除振动。
通过谱分析和阶次分析,可以更准确地确定不平衡的阶次特征,以便有针对性地进行动平衡处理。
5
序号
敏感参数
转子不平衡的振动特征
转子不平衡的振动特征
序号
特征参量
故障特征
原始不平衡
渐变不平衡
突发不平衡
1
2
3
时域波形
正弦波 正弦波 正弦波 特征频率
1X 1X
1X 4
常伴频率 较小的高次谐波
较小的高次谐波
较小的高次谐波
振动稳定牲
稳定 逐渐增大 突发性增大后稳定
5
振动方向 径向 径向 径向
相位特征
稳定 渐变 突变后稳定 6
轴心轨迹 椭圆 椭圆 椭圆
进动方向
正进动 正进动 正进动 7
矢量区域
不变
渐变
突变后稳定
8
9
转子不平衡的振动敏感参数
振动随转速变化
振动随油温变化
振动随介质油温变
化
振动随压力变化
振动随流量变化
振动随负荷变化 其他识别方法
转子不平衡故障原因分析与治理措施。
转子不稳定和自激振动不稳定性和自激振动是旋转机器独特的问题,转子的动能可以导致转子结构的振动,达到损毁的程度。
通常,“不稳定性”和“自激振动”两个术语可互换使用,但是严格说,“不稳定”可能是一种“静态地”表现,没有伴随典型的振荡,重要的“静态不稳定”例子相对很少,最常见的是电机转子在径向磁场气隙内的不恢复倾向。
对一个工程良好的电机,支撑轴承应具有足够的刚度对抗磁场气隙的明显的负阻尼。
另一个静态不稳定的例子的是不承载分瓣轴承,对这种轴承类型的一些结构,存在一个最小载荷水平,低于此,轴颈不具有一个静态稳定的均衡位置。
动态不稳定或自激振动的显著不同点在于存在一个特征频率,它并不与旋转频率明显相关。
“无阻尼共振”代表一种零稳定性状态,在有限同频激励缺失情况下,其幅值是自维持,但不是自放大。
在旋转激励存在的情况下,振动幅值以一定的时间速率线性建立,它与激励的大小成正比。
理论上,如果激励的大小降为零,共振响应将消失。
而动态不稳定性表现为,一个特征振动倾向于其幅值按指数增长,而没有明显的同频激励。
一个不稳定振荡的幅值不断增长,只会被非线性机制所制约。
增长的振荡和衰减的振荡是一个非守恒的转子系统相反的行为表现,因此,一个非守恒系统振荡可量化其特征,可表示为不稳定系统的对数增长率,或稳定系统的对数衰减率。
稳定性为零的状态,区分有阻尼的行为状态与不稳定行为状态,称为稳定性阈值。
动态不稳定的原因有四种:•油膜轴承:在某些滑动轴承中存在交叉耦合效应,是剧烈不稳定现象的根源,它一般与接近转频的一半的频率振荡相联系。
轴颈的不稳定运动接近一个圆周涡动,与旋转同方向。
这种类型的不稳定倾向对静态负荷灵敏,有时称为“油膜涡动或油膜振荡”。
•叶轮力:一个叶轮的机械效率对顶部流体泄漏敏感,如果叶轮的横向运动占有泄漏流体间隙的较大的比例,那么产生的切向叶片力将沿叶轮边缘变化,得到的效果是在与叶轮位移垂直的方向上产生力,这等效于油膜轴承的交叉耦合刚度系数,其导致涡动不稳定。