天线基本原理及一般选型原则
- 格式:ppt
- 大小:2.25 MB
- 文档页数:92
完整版天线基本原理天线是一种将电磁场能量转换成电信号或者将电信号转换成电磁场能量的无线通信线路组件。
它是无线通信系统的重要组成部分,通过接收和发射电磁波,将信息传递至接收器或者环境中。
1.天线的基本原理天线的基本原理是根据远离电流源的点的法向辐射电场的方向来确定。
当电流通过导线时,会在其周围产生电磁场。
这个电磁场包含自电场和磁场两部分。
2.天线的结构天线的常见结构包括金属导线、金属片和金属网格等。
导线型天线广泛应用于各种通信系统中,如普通天线、微带天线、螺旋天线等。
导线型天线通常由金属材料制造,包括铜、铝和银等。
导线的长度和形状会影响天线的工作频率和辐射模式。
3.天线的工作原理天线的工作原理可以简单描述为接收和发射电磁场能量。
当电磁波到达天线时,它们会在导线上引起电磁感应现象,导致电子在导线中运动,进而形成感应电流和电磁场。
接收天线将电磁波转化为电信号,通过连接到接收器或接收电路的导线将信号传递给接收器,然后接收器将其转化为有用的信息。
发射天线接收到电信号后,将其转化为电磁波,并通过导线发射出去。
4.天线的工作频率和辐射模式天线的工作频率是天线接收和发射电磁信号的频率范围。
不同类型的天线对应不同的工作频率范围。
天线的长度和形状会影响天线的共振频率。
天线的辐射模式是指天线在不同方向上的辐射能力,它受到天线的结构和工作频率的影响。
辐射模式通常用辐射图来表示,辐射图描述了天线在各个方向上的辐射能力。
5.天线的增益和效率天线的增益是指天线在一些方向上辐射能量的能力,与参考天线(理想天线)相比较。
增益越大,则天线在特定方向上的辐射能力越好。
天线的效率是指天线将输入能量转换为输出能量的比率。
天线的效率受到天线材料、结构和工作频率的影响。
提高天线效率的方法包括减少导线损耗、减少表面反射损耗等。
6.天线的常见类型常见的天线类型包括偶极子天线、螺旋天线、微带天线、天线阵列等。
偶极子天线是最常见和最简单的天线,它由两个导线构成,用于发射和接收电磁波。
HUAWEI TECHNOLOGIES CO., LTD.Internal HUAWEI Confidentiall学习完此课程,您将会:[掌握天线的作用、基本原理、常见分类、主要技术指标,从而指导如何进行典型场景下的天线选型。
1.1天线的作用1.2天线工作原理1.3天线工作带宽1.4天线极化1.1天线作用l把从导线上传下来的电信号做为无线电波发射到空间l收集无线电波并产生电信号天线的位置和作用基站天馈系统示意图1.2天线工作原理1.3天线工作带宽1.4天线极化1.2天线工作原理l导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关;l当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。
通常将上述能产生显著辐射的直导线称为振子。
1.2天线工作原理l 两臂长度相等的振子叫做对称振子l 每臂长度为四分之一波长,称为半波振子l 全长与波长相等的振子,称为全波对称振子l 将振子折合起来的,称为折合振子1.2天线工作原理1.2天线工作原理1.3天线工作带宽1.4天线极化1.3天线工作带宽l无论是发射天线还是接收天线,它们总是在一定的频率范围内工作的。
通常,工作在中心频率时天线所能输送的功率最大,偏离中心频率时它所输送的功率都将减小,据此可定义天线的频率带宽。
l天线工作带宽有几种不同的定义:[一种是指天线增益下降3dB时的频带宽度;[一种是指在规定的驻波比下天线的工作频带宽度;l在移动通信系统中天线工作带宽是按后一种定义的。
具体的说,就是当天线的输入驻波比≤1.5时,天线的工作带宽。
1.2天线工作原理1.3天线工作带宽1.4天线极化1.4天线极化l天线的极化方向:天线辐射的电磁场的电场方向垂直极化水平极化+ 45度倾斜的极化- 45度倾斜的极化双极化天线l两个天线为一个整体l传输两个独立的波V/H (垂直/水平)倾斜 (+/- 45°)极化损失l当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失,例如:当用圆极化天线接收任一线极化波,或用线极化天线接收任一圆极化波时,都要产生3dB的极化损失,即只能接收到来波的一半能量;l当接收天线的极化方向与来波的极化方向完全正交时,接收天线也就完全接收不到来波的能量,这时称来波与接收天线极化是隔离的。
天线原理、性能参数以及分类天线的原理要分两部分来说,⼀是发射天线,⼀是接收天线。
发射天线简单说,就是通过⼀根叫做“天线”的电极将天线与地之间形成的⾼频电场变成电磁波,从⽽能发射出去并传波到远⽅。
接收天线简单说,就是通过⼀根叫做“天线”的电极将空中传来的电磁波感应为电场,⽣成⾼频信号电压,送到接收机进⾏信号处理。
天线的性能参数1、⼯作频段(Frequency Range)⼯作频段:⽆论天线还是其他通信产品,总是在⼀定的频率范围(频带宽度)内⼯作,其取决于指标的要求。
通常情况下,满⾜指标要求的频率范围即可为天线的⼯作频率。
⼯作频段的宽度称为⼯作带宽,⼀般全向天线的⼯作带宽能达到中⼼频率的3-5%,定向天线的⼯作带宽能达到中⼼频率的5-10%。
2、输⼊阻抗(Input Impedance)输⼊阻抗:天线输⼊端信号电压与信号电流之⽐,称为天线的输⼊阻抗。
⼀般移动通信天线的输⼊阻抗为50Ω。
输⼊阻抗与天线的结构、尺⼨以及⼯作波长有关,在要求的⼯作频率范围内,使输⼊阻抗的虚部很⼩且实部相当接近50Ω,这是天线能与馈线处于良好的阻抗匹配所必须。
3、电压驻波⽐(VSWR)电压驻波⽐:天线的电压驻波⽐是把天线作为⽆耗传输线的负载时,在沿传输线产⽣的电压驻波图形上,其最⼤值与最⼩值之⽐。
驻波⽐的产⽣,是由于⼊射波能量传输到天线输⼊端并未被全部吸收(辐射)产⽣的反射波迭加⽽形成的。
VSWR越⼤,反射越⼤,匹配越差。
在移动通信系统中,⼀般要求驻波⽐⼩于1.5。
4、隔离度(Isolation)隔离度代表馈送到双极化天线⼀个端⼝(⼀种极化)的信号在另外⼀个端⼝(另⼀种极化)中出现信号的⽐例。
5、三阶互调(Third Order Inter modulation)三阶互调信号:是指两个信号在⼀个线性系统中,由于⾮线性因素存在使⼀个信号的⼆次谐波与另⼀个信号的基波产⽣差拍(混频)后的寄⽣信号。
互调现象就是由频带外的两个或多个载波频率混频后落在频带内的新的频率分量,造成系统性能下降的现象6、功率容量(Power Capacity)功率容量:天线的功率容量是指按规定的条件在规定的时间周期内可连续地加到天线上⽽⼜不致降低其性能的最⼤连续射频功率。
天线设计知识点天线是现代通信系统中至关重要的组成部分,在无线通信、卫星通信、雷达、电视广播等领域都发挥着重要作用。
本文将介绍一些天线设计的知识点,包括天线的基本原理、设计要素、常见类型以及未来的发展方向。
一、天线的基本原理天线是将电磁波从传输线转换为自由空间辐射或从自由空间接收的装置。
它根据麦克斯韦方程组的基本原理工作,其中包括电场分布、磁场分布、辐射功率等。
根据天线的不同工作频率和应用,可以选择不同的天线类型。
二、天线设计的要素1. 频率范围:天线设计需要根据工作频率范围选择合适的天线类型。
常见的频率范围包括超高频(UHF)、高频(HF)、甚高频(VHF)等。
2. 增益:天线的增益是指天线辐射能量的强度,通常用分贝(dB)表示。
增益越高,天线的信号传输和接收效果越好。
3. 方向性:天线的方向性决定了其辐射和接收信号的方向,分为全向性和定向性。
全向性天线能够在各个方向上辐射和接收信号,而定向性天线只能在特定方向上有效。
4. 阻抗匹配:天线的输入阻抗需要与传输线或接收设备的阻抗匹配,以最大限度地传输或接收信号。
三、常见天线类型1. 线性天线:包括半波振子天线、全波振子天线等,常用于无线通信和电视广播。
2. 偶极子天线:适用于频率范围较高的应用,如超高频和高频通信。
3. 短偶极子天线:在尺寸有限的情况下实现宽带响应,常用于无线局域网(WLAN)和蓝牙通信等。
4. 槽天线:利用金属槽的辐射特性,适用于宽频带和高增益的应用,如雷达和卫星通信。
5. 贴片天线:体积小、重量轻,适用于小型电子设备中的无线通信。
6. 阵列天线:由多个单个天线组成,通过相位控制实现指向性辐射。
世、天线设计的未来发展方向1. 小型化:随着电子设备越来越小型化,天线也需要适应更小尺寸的应用场景。
2. 宽频带:天线对不同频段的适应能力将成为未来的发展趋势。
3. 多功能集成:天线将不仅仅用于无线通信,还将融合其他功能,如传感、定位等。
4. 自适应天线:根据环境和工作条件的变化,天线可以自动调整辐射特性,提高通信质量。
天线工作原理、分类、频宽、方向基本知识(1)天线工作原理及作用是什么答:天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。
发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。
(2)天线有多少种类?答:天线品种繁多,主要有下列几种分类方式:按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas)按工作频段可划分为超长波、长波、中波、短波、超短波和微波;按其方向可划分为全向和定向天线;(3)如何选择天线?答:天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。
具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。
选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。
因此,用户在选择天线时最好向厂家联系咨询。
(4)什么是天线的增益?答:增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。
增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。
(5)什么是电压驻波比?答:天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。
电压驻波比 1.0 1.1 1.2 1.5 2.0 3.0 反射功率% 0 0.2 0.8 4.0 11.1 25.0 传输功率% 100 99.8 99.2 96 88.9 75.0(6)什么是天线的方向性?答:天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。
引言概述:天线是无线通信系统中至关重要的组成部分,它的设计直接影响到无线信号的传输效果和通信质量。
本文将介绍天线设计的主要知识点,包括天线的基本原理、天线参数的选择和调试方法、常见的天线类型及其特点、天线设计的局限性以及新兴的天线设计技术。
正文内容:一、天线的基本原理1.1辐射原理1.2辐射功率和效率1.3反射和折射现象1.4天线的辐射场型二、天线参数的选择和调试方法2.1工作频率的选择2.2天线增益的衡量2.3驻波比和输入阻抗的匹配2.4天线方向性的调节方法2.5天线效率的优化三、常见的天线类型及其特点3.1线性天线3.1.1偶极子天线3.1.2螺旋天线3.1.3带状天线3.2矩形天线3.2.1长线天线3.2.2切角天线3.2.3槽天线3.3常用宽带天线3.3.1偶极子带宽天线3.3.2螺旋带宽天线3.3.3钻孔带宽天线四、天线设计的局限性4.1空间限制4.2材料特性4.3多路径效应4.4天线与环境的互动4.5干扰与干扰抑制五、新兴的天线设计技术5.1智能天线设计5.2多天线阵列设计5.3天线与射频芯片的集成设计5.4毫米波天线设计5.5天线在物联网和5G通信中的应用总结:天线设计是无线通信系统中至关重要的一项技术。
本文介绍了天线设计的主要知识点,包括天线的基本原理、天线参数的选择和调试方法、常见的天线类型及其特点、天线设计的局限性以及新兴的天线设计技术。
了解这些知识点有助于工程师更好地设计和优化天线,提高无线通信系统的性能和可靠性。
未来随着无线通信技术的不断发展,天线设计将面临新的挑战和机遇,需不断研究和创新,以满足不断增长的通信需求。
天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。
天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。
其基本原理基于电磁波的传播和辐射。
二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。
2. 按照方向性:可分为全向和定向天线。
3. 按照增益:可分为无源和有源天线。
4. 按照结构:可分为线天线和面天线。
不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。
三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。
2. 方向图:表示天线接收和辐射电磁波的方向和强度。
3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。
4. 带宽:表示天线的工作频率范围。
5. 极化:表示电场矢量的方向,影响着天线的性能。
四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。
电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。
五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。
常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。
工艺方面,需要考虑天线的精度、防腐、防水等因素。
六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。
现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。
七、天线测量与调试天线的性能需要通过实际测量来评估。
测量内容包括阻抗、方向图、增益、极化等。
一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。
八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。
天线工作原理与主要参数天线是一种用于传输与接收无线电波的设备,广泛应用于无线通信、雷达、卫星通信等领域。
天线的工作原理及其主要参数对于无线通信的效果和性能具有重要影响。
一、天线工作原理天线的工作原理基于电磁场的相互作用,它将电能转换为无线电波或者将无线电波转换为电能。
具体地说,天线通过电流的流动形成一个辐射场,这个辐射场会使得电磁波以特定的形式从天线中发射出去,或者是将接收到的无线电波转换为电流。
天线主要通过以下两个过程实现工作原理:1.辐射:当电流通过天线时,它会在天线中产生一个辐射场,即电磁场。
这个辐射场会按照天线的几何形状和电流的强弱,以特定的形式从天线中发射出去。
这个过程是将电能转换为无线电波的过程。
2.接收:当无线电波通过天线时,它会激发天线中的电磁场,使其产生感应电流。
这个感应电流会被送到接收器中进一步处理,从而将无线电波转换为电能。
这个过程是将无线电波转换为电能的过程。
二、天线的主要参数天线的性能和特点可以通过以下主要参数来衡量和描述:1.频率:天线可以工作的频率范围。
不同频率的天线会有不同的结构和特性。
常见的频率包括低频、中频、高频、超高频和甚高频等。
2.增益:天线辐射或接收信号能力的衡量,是指天线辐射功率或接收灵敏度相对于参考天线(如全向辐射器)的相对值。
增益值越大,表明天线转换能力越好。
3.方向性:即天线辐射或接收信号的主导方向。
具有方向性的天线可以将信号辐射或接收更集中,提高通信距离和工作性能。
4.谐振频率:天线的共振频率,通常与操作频率相同。
在该频率下,天线性能最佳,将最大限度地转换信号。
5.阻抗:天线内部电流与电压之间的相对比例。
阻抗匹配对于电磁波的传输至关重要,它决定了天线与信号源或接收器之间的能量传输效率。
6.波束宽度:天线辐射或接收信号的有效立体角范围。
波束宽度越小,表明天线的方向性越强。
7.驻波比:反映天线传输线的阻抗匹配程度,即天线输入端的阻抗与信号源或接收器之间的阻抗之间的比值。
移动通信基站天线基本原理及选型原则讲义目录第一章天线的基本理论第二章分集技术第三章天线选型原则第一章天线的基本理论移动通信系统中,空间无线信号的接收和发射都是依靠基站天线来实现的。
因此,基站天线对移动通信网络来说,起着举足轻重的作用。
如果天线选择不好,或者天线的参数设置不当,都会直接影响到整个网络运行质量。
尤其在基站数量多,站距小,载频数量多的高话务量地区,天线选择及参数设置是否合适,对移动通信网络的干扰、覆盖率、接通率及全网服务质量有很大的影响。
一、天线主要的辐射单元•偶极子•喇叭•缝隙波导•印刷类(微带)二、阵列天线为了增强天线的方向性,提高天线的增益,得到所需要的辐射特性,把若干个相同的天线按一定的规律排列起来,并给予适当的激励,这样组成的天线系统称为天线阵。
组成天线阵的独立单元称为阵元或天线单元。
天线阵可分为线阵、面阵、立体阵以及共形阵。
三、天线的极化移动通信基站天线的极化主要有以下两种:1、垂直极化2、+45°/-45°交叉极化四、天线的方向图天线的辐射电磁场在固定距离上随空间角(θ,φ)分布的图形称为方向图,方向图是三维立体图。
工程上通常用两个相互垂直的主平面内的方向图表示(即E面和H面)。
E面是通过最大辐射方向并与电场矢量平行的平面,H面是通过最大辐射方向并与磁场矢量平行的平面。
常用天线的方向图覆盖示意图:五、天线方向图参数•零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。
•半功率点波瓣宽度:主瓣最大值两边场强等于最大场强的0.707倍的两辐射方向之间的夹角。
•副瓣电平:副瓣最大值与主瓣最大值之比,通常用dB表示。
•后瓣:与主瓣相反方向上的副瓣。
•前后比:主瓣最大值和后瓣最大值之比(dB)。
六、天线的增益在相同输入功率、相同距离条件下、天线在最大辐射方向上的功率密度与无方向性天线在该方向上的功率密度之比定义为天线的增益G i(单位dBi),有时也以无耗半波振子的增益系数(1.64)作比较标准,记为G d(单位dBd)。
网规网优天线原理和选型原则拟制: WCDMA RNP 日期:2003-07-23审核: 日期:审核: 日期:批准: 日期:HUAWEI华为技术有限公司Huawei Technologies Co., Ltd.版权所有侵权必究All rights reserved目录1概述 (5)1.1天线分类 (5)1.2天线主要技术性能 (5)1.2.1工作频段 (5)1.2.2天线增益 (5)1.2.3天线方向图 (6)1.2.4波束宽度与增益之间的关系 (7)1.2.5极化方式 (9)1.2.6下倾(downtilt) (10)1.2.7电压驻波比(VSWR) (10)1.2.8端口隔离度 (11)1.2.9功率容量 (11)1.2.10天线输入接口 (11)1.2.11无源互调(PIM) (11)1.2.12天线尺寸和重量 (11)1.2.13风载荷 (11)1.2.14工作温度和湿度 (12)1.2.15雷电防护 (12)1.2.16三防能力 (12)2天线选型原则 (13)2.1天线工作频段的选择原则 (13)2.2天线增益的选择原则 (13)2.3天线波束宽度选择原则 (13)2.4极化方式的选择原则 (14)2.5下倾方式选择原则 (14)2.5.1机械下倾与电下倾的比较 (14)2.5.2预置下倾与零点填充的作用比较 (16)2.5.3倾角的规划和优化 (16)2.6前后比的选择原则 (17)2.7天线尺寸的选择原则 (17)2.8天线阻抗的选择原则 (17)2.9特殊场合的天线选择原则 (17)3各类应用场景下的基站天线选型 (19)3.1城区基站天线选型 (19)3.2郊区基站天线选型 (20)3.3农村基站天线选型 (20)3.4公路覆盖基站天线选型 (21)3.5山区覆盖基站天线选型 (22)3.6近海覆盖基站天线选型 (23)3.7隧道覆盖基站天线选型 (24)3.8室内覆盖基站天线选型 (24)图目录图1 dBi 与dBd 的关系 (6)图2 定向天线水平与垂直方向图 (7)图3 天线增益与波束宽度的关系 (9)图4 不同下倾角时水平方向图的变化情况 (15)图5 不同的下倾方式对后瓣的不同影响 (15)图6 “8”字形全向天线方向图(水平) (18)图7 心形全向天线方向图(水平) (18)关键词:WCDMA、基站、天线选型摘要:本文从网规角度阐述了天线的一些主要技术指标及在应用中的选型方法,并具体介绍在各种不同应用环境下的天线选型原则及建议。