高一数学必修一知识点必考难点总结5篇分享
- 格式:docx
- 大小:14.77 KB
- 文档页数:6
高一数学必修一知识点总结归纳五篇精选对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
下面就是本文库给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax +bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数。
高一数学必修一知识点总结41、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。
(2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。
人教版高一数学必修一精选知识点总结5篇高一数学在整个高中数学中占有特别重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点13.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特殊地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑴当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α肯定存在,但是斜率k不肯定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,假如它们平行,那么它们的斜率相等;反之,假如它们的斜率相等,那么它们平行,即留意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即假如k1=k2,那么肯定有L1⑴L22、两条直线都有斜率,假如它们相互垂直,那么它们的斜率互为负倒数;反之,假如它们的斜率互为负倒数,那么它们相互垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
高一数学必修一知识点梳理五篇分享学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。
下面就是给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高一数学必修一知识点总结2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
高一数学必修一知识点总结归纳精选5篇分享学习高一数学知识点的时候需要讲究方法和技巧,更要学会对高一数学知识点进行归纳整理。
高一数学必修一知识点总结1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
k分别为正和负(2和-2)时的函数图像。
当K0时,反比例函数图像经过一,三象限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点总结2一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
人教版高一数学必修一重点知识点总结5篇学习高一数学知识点的时候需要讲究方法和技巧,更要学会对高一数学知识点进行归纳整理。
人教版高一数学必修一知识点1指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数。
人教版高一数学必修一知识点2空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α2.2.直线、平面平行的判定及其性质2.2.1直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:aαbβ=a∥αa∥b2.2.2平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:aβbβa∩b=Pβ∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。
2.2.3—2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
高一数学必修一知识点难点高一数学必修一知识点难点上学期间,说起知识点,应该没有人不熟悉吧?知识点也可以通俗的理解为重要的内容。
掌握知识点是我们提高成绩的关键!以下是店铺收集整理的高一数学必修一知识点难点,仅供参考,希望能够帮助到大家。
高一数学必修一知识点难点篇1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
人教版高一数学必修一知识点总结5篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在化学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。
人教版高一数学必修一知识点1一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N_.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∈B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=AAB;②A∈B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∈B=IAB。
5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∈A=A,A∈?=A,A∈B=B∈A;③Cu(A∈B)=CuA∩CuB,Cu(A∩B)=CuA∈CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
关于高一数学必修一知识点必背难点总结通用(九篇)关于高一数学必修一知识点必背难点总结通用一数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a 版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.五、教学重点和难点1.教学重点理解并掌握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六、教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。
人教版高一数学必修一难点总结5篇高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依靠学校时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培育自己主动猎取学问、巩固学问的力量,制定学习方案,养成自主学习的好习惯。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点1直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3三个公理:(1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为B∈L=LαA∈αB∈α公理1作用:推断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=有且只有一个平面α,使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β=α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线相互平行。
符号表示为:设a、b、c是三条直线a∈b强调:公理4实质上是说平行具有传递性,在平面、空间这共性质都适用。
公理4作用:推断空间两条直线平行的依据。
3等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4留意点:①a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a∈b;④两条直线相互垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的"数学"。
可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。
而数学作为一个研究"数"的学科,代数学也是数学最重要的组成部分之一。
几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。
从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。
而其后更发展出更加精微的微积分。
西方最原始math(数学)应用之一,奇普现时数学已包括多个分支。
创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。
结构,就是以初始概念和公理出发的演绎系统。
他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。
高一数学必修一知识点总结1一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
高一数学必修一知识点5篇分享高一数学必修一知识点1集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A.B两集合中元素都相同.反之:集合A不包含于集合B,记作.如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C.A是C的子集,同时A也是C的真子集.2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)3.不含任何元素的集合叫做空集,记为Φ.Φ是任何集合的子集.4.有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集.如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集.例:集合共有个子集.(_年高考第4题,简单)练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来.解析:集合A有3个元素,所以有23=8个子集.分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}.集合B有4个元素,所以有24-2=_个非空真子集.具体的子集自己写出来.此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的.一定要养成自己的逻辑习惯.如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了.高一数学必修一知识点21.柱.锥.台.球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱.几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分.分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体.几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体.几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2.空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右).俯视图(从上向下)注:正视图反映了物体上下.左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右.前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下.前后的位置关系,即反映了物体的高度和宽度.3.空间几何体的直观图——斜二测画法斜二测画法特点:①原来与_轴平行的线段仍然与_平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.高一数学必修一知识点3集合集合具有某种特定性质的事物的总体.这里的〝事物〞可以是人,物品,也可以是数学元素.例如:1.分散的人或事物聚集到一起;使聚集:紧急~.2.数学名词.一组具有某种共同性质的数学元素:有理数的~.3.口号等等.集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论.康托(Cantor,G.F.P.,_45年—__年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域.集合,在数学上是一个基础概念.什么叫基础概念?基础概念是不能用其他概念加以定义的概念.集合的概念,可通过直观.公理的方法来下〝定义〞.集合集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合.组成一集合的那些对象称为这一集合的元素(或简称为元).元素与集合的关系元素与集合的关系有〝属于〞与〝不属于〞两种.集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ.空集是任何集合的子集,是任何非空集的真子集.任何集合是它本身的子集.子集,真子集都具有传递性.『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B.若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B.中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准.所有男人的集合是所有人的集合的真子集.』集合的几种运算法则并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作〝A并B〞(或〝B并A〞),即A∪B={_|_∈A,或_∈B}交集:以属于A且属于B的元差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作〝A交B〞(或〝B交A〞),即A∩B={_|_∈A,且_∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}.那么因为A和B中都有1,5,所以A∩B={1,5}.再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有.那么说A∪B={1,2,3,5}.图中的阴影部分就是A∩B.有趣的是;例如在1到1_中不是3,5,7的整倍数的数有多少个.结果是3,5,7每项减集合1再相乘.48个.对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N_是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合.差:以属于A而不属于B的元素为元素的集合称为A与B的差(集).记作:A\B={_│_∈A,_不属于B}.注:空集包含于任何集合,但不能说〝空集属于任何集合〞.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={_|_∈U,且_不属于A}空集也被认为是有限集合.例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集.CuA={3,4}.在信息技术当中,常常把CuA写成_A.集合元素的性质1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如〝个子高的同学〞〝很小的数〞都不能构成集合.这个性质主要用于判断一个集合是否能形成集合.2.独立性:集合中的元素的个数.集合本身的个数必须为自然数.3.互异性:集合中任意两个元素都是不同的对象.如写成{1,1,2},等同于{1,2}.互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素.4.无序性:{a,b,c}{c,b,a}是同一个集合.5.纯粹性:所谓集合的纯粹性,用个例子来表示.集合A={_|_ 2},集合A 中所有的元素都要符合_ 2,这就是集合纯粹性.6.完备性:仍用上面的例子,所有符合_ 2的数都在集合A中,这就是集合完备性.完备性与纯粹性是遥相呼应的. 高一数学必修一知识点4反比例函数形如y=k/_(k为常数且k≠0)的函数,叫做反比例函数.自变量_的取值范围是不等于0的一切实数.反比例函数图像性质:反比例函数的图像为双曲线.由于反比例函数属于奇函数,有f(-_)=-f(_),图像关于原点对称.另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点.两个垂足及原点所围成的矩形面积是定值,为∣k∣.上面给出了k分别为正和负(2和-2)时的函数图像.当K 0时,反比例函数图像经过一,三象限,是减函数当K 0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交.知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|.2.对于双曲线y=k/_,若在分母上加减任意一个实数(即y=k/(_±m)m为常数),就相当于将双曲线图象向左或右平移一个单位.(加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点51. 函数的奇偶性(1)若f(_)是偶函数,那么f(_)=f(-_) ;(2)若f(_)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(_)±f(-_)=0或(f(_)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(_)]的定义域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定义域为[a,b],求f(_)的定义域,相当于_∈[a,b]时,求g(_)的值域(即 f(_)的定义域);研究函数的问题一定要注意定义域优先的原则.(2)复合函数的单调性由〝同增异减〞判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(_,y)=0,关于y=_+a(y=-_+a)的对称曲线C2的方程为f(y-a,_+a)=0(或f(-y+a,-_+a)=0);(4)曲线C1:f(_,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-_,2b-y)=0;(5)若函数y=f(_)对_∈R时,f(a+_)=f(a-_)恒成立,则y=f(_)图像关于直线_=a对称;(6)函数y=f(_-a)与y=f(b-_)的图像关于直线_= 对称;4.函数的周期性(1)y=f(_)对_∈R时,f(_ +a)=f(_-a) 或f(_-2a )=f(_)(a 0)恒成立,则y=f(_)是周期为2a的周期函数;(2)若y=f(_)是偶函数,其图像又关于直线_=a对称,则f(_)是周期为2︱a︱的周期函数;(3)若y=f(_)奇函数,其图像又关于直线_=a对称,则f(_)是周期为4︱a︱的周期函数;(4)若y=f(_)关于点(a,0),(b,0)对称,则f(_)是周期为2 的周期函数;(5)y=f(_)的图象关于直线_=a,_=b(a≠b)对称,则函数y=f(_)是周期为 2 的周期函数;(6)y=f(_)对_∈R时,f(_+a)=-f(_)(或f(_+a)= ,则y=f(_)是周期为2 的周期函数;5.方程k=f(_)有解k∈D(D为f(_)的值域);6.a≥f(_) 恒成立a≥[f(_)]ma_,; a≤f(_) 恒成立a≤[f(_)]min;7.(1) (a 0,a≠1,b 0,n∈R+); (2) l og a N= ( a 0,a≠1,b 0,b≠1);(3) l og a b的符号由口诀〝同正异负〞记忆; (4) a l og a N= N ( a 0,a≠1,N 8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性._.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(_)与y=f-1(_)互为反函数,设f(_)的定义域为A,值域为B,则有f[f--1(_)]=_(_∈B),f--1[f(_)]=_(_∈A)._.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用〝两看法〞:一看开口方向;二看对称轴与所给区间的相对位置关系;_. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题_. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;高一数学必修一知识点精选5篇分享。
人教版高一数学必修一知识点难点总结分享第1篇集合有以下性质若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A ∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
人教版高一数学必修一精选知识点归纳5篇人教版高一数学必修一知识点1幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a 为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域幂函数性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制****于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
高一数学必修一知识点易错点归纳5篇精选高一数学必修一知识点易错点归纳5篇精选奋斗也就是我们平常所说的努力。
那种不怕苦,不怕累的精神在学习中也是需要的。
看到了一道有意思的题,就不惜一切代价攻克它。
为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。
高一数学必修一知识点1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
k分别为正和负(2和-2)时的函数图像。
当K0时,反比例函数图像经过一,三象限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点2二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax’2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x’2的图像,可以看出,二次函数的图像是一条抛物线。
人教版高一数学必修一知识点总结5篇人教版高一数学必修一知识点1一.知识归纳:1.集合的有关概念.1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似.②集合中的元素具有确定性(a?A和a?A,二者必居其一).互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合).③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法.描述法和图文法3)集合的分类:有限集,无限集,空集.4)常用数集:N,Z,Q,R,N_.子集.交集.并集.补集.空集.全集等概念.1)子集:若对_∈A都有_∈B,则AB(或AB);2)真子集:AB且存在_0∈B但_0A;记为AB(或,且)3)交集:A∩B={_|_∈A且_∈B}4)并集:A∪B={_|_∈A或_∈B}5)补集:CUA={_|_A但_∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素.集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与.?的区别;(2)与的区别;(3)与的区别.4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB.5.交.并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集.人教版高一数学必修一知识点2一.集合一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.?注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.函数零点的求法:○1(代数法)求方程的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数.(1)△ 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△ 0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三.平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点.方向.长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则.已知两个从同一点O出发的两个向量OA.OB,以OA.OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA.OB的和,这种计算法则叫做向量加法的平行四边形法则.对于零向量和任意向量a,有:0+a=a+0=a.|a+b|≤|a|+|b|.向量的加法满足所有的加法运算定律.减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量.(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b).数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ 0时,λa的方向和a的方向相同,当λ 0时,λa的方向和a的方向相反,当λ=0时,λa=0.设λ.μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a).向量的加法运算.减法运算.数乘运算统称线性运算.向量的数量积已知两个非零向量a.b,那么|a||b|c osθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.零向量与任意向量的数量积为0.a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.两个向量的数量积等于它们对应坐标的乘积的和.四.三角函数1.善于用〝1〝巧解题2.三角问题的非三角化解题策略3.三角函数有界性求最值解题方法4.三角函数向量综合题例析5.三角函数中的数学思想方法人教版高一数学必修一知识点3【集合与函数概念】一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.注意:常用数集及其记法:_非负整数集(即自然数集)记作:N正整数集:N_N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三.集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).人教版高一数学必修一知识点4集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法.注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_(R|_-3 2},{_|_-3 2}语言描述法:例:{不是直角三角形的三角形}Venn图:4.集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{_|_2=-5}集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A(A②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)③如果A(B,B(C,那么A(C④如果A(B同时B(A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.有n个元素的集合,含有2n个子集,2n-1个真子集人教版高一数学必修一知识点5一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.?注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.?有n个元素的集合,含有2n个子集,2n-1个真子集三.集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=_2-2_+1,_R},N={_|_≥0},则M与N的关系是.4.设集合A=,B=,若AB,则的取值范围是5.50名学生做的物理.化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A={_|_2+2_-8=0},B={_|_2-5_+6=0},C={_|_2-m_+m2-_=0},若B∩C≠Φ,A∩C=Φ,求m的值二.函数的有关概念1.函数的概念:设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作:y=f(_),_∈A.其中,_叫做自变量,_的取值范围A叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)|_∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数_的集合称为函数的定义域.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数.对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本_页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(_),(_∈A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_∈A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_.y为坐标的点(_,y),均在C上.(2)画法A.描点法:B.图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间.闭区间.半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A.B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射.记作f:A→B6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数.(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(_)(_∈A),则y=f[g(_)]=F(_)(_∈A)称为f.g的复合函数.二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(_)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量_1,_2,当_1如果对于区间D上的任意两个自变量的值_1,_2,当_1f(_2),那么就说f(_)在这个区间上是减函数.区间D称为y=f(_)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:○1任取_1,_2∈D,且_1○2作差f(_1)-f(_2);○3变形(通常是因式分解和配方);○4定号(即判断差f(_1)-f(_2)的正负);○5下结论(指出函数f(_)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:〝同增异减〞注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.(2).奇函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=—f(_),那么f(_)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-_)与f(_)的关系;○3作出相应结论:若f(-_)=f(_)或f(-_)-f(_)=0,则f(_)是偶函数;若f(-_)=-f(_)或f(-_)+f(_)=0,则f(_)是奇函数.(2)由f(-_)±f(_)=0或f(_)/f(-_)=±1来判定;(3)利用定理,或借助函数的图象判定.9.函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的(小)值○2利用图象求函数的(小)值○3利用函数单调性的判断函数的(小)值:如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有值f(b);如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);例题:1.求下列函数的定义域:⑴⑵2.设函数的定义域为,则函数的定义域为__3.若函数的定义域为,则函数的定义域是4.函数,若,则=6.已知函数,求函数,的解析式7.已知函数满足,则=.8.设是R上的奇函数,且当时,,则当时=在R上的解析式为9.求下列函数的单调区间:⑴(2)10.判断函数的单调性并证明你的结论._.设函数判断它的奇偶性并且求证人教版高一数学必修一知识点总结5篇。
高一数学必修一知识点梳理5篇最新高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,若是学习动力比较足或是受到了一些积极的影响或刺激,分数也会大幅度上涨。
下面就是给大家带来的高一数学必修一知识点,希望对大家有所帮助!高一数学必修一知识点11、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高一数学必修一知识点2幂函数定义:形如y-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学必修一知识点总结分享(精选6篇)高一数学必修一知识点总结分享(精选6篇)在现实学习生活中,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的高一数学必修一知识点总结分享(精选6篇),欢迎阅读与收藏。
高一数学必修一知识点总结分享篇1本节主要包括函数的模型、函数的应用等知识点。
主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:(1)阅读并且理解题意。
(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。
常见考法:本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。
多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
【典型例题】例1:(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。
(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。
如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。
y=100+100×0。
36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元。
例2:某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。
高一数学必修一知识点必考难点总结5篇分享
高一数学必修一知识点1
集合有以下性质
若A包含于B,则A∩B=A,A∪B=B
集合的表示方法
集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的
元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当
于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法
是用一个等式来表示的,例如:A={…}的形式。
等号左边是大写的
拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的
数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的
方法叫做列举法。
{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大
括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元
素的一般形式,P为这个集合的元素的共同属性)如:小于π的正
实数组成的集合表示为:{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称
非负整数集(或自然数集),记作N;不包括0的自然数集合,记作
N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集
内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称
作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-
)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;
负实数记作R-)(6)复数集合计作C集合的运算:集合交换律
A∩B=B∩AA∪B=B∪A集合结合律
(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律
A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根
律集合
Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研
究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A
的元素个数记为card(A)。
例如A={a,b,c},则
card(A)=3card(A∪B)=card(A)+card(B)-
card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德国数学家,集合
论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用
方式。
集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求补律
A∪CuA=UA∩CuA=Φ设A为集合,把A的全部子集构成的集合叫做A
的幂集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示复数集C
实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-
有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q
高一数学必修一知识点2
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线
y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
高一数学必修一知识点3
一:集合的含义与表示
1、集合的含义:集合为一些确定的、不同的东西的全体,人们
能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确
定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
3、集合的表示:{…}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}
b、描述法:
①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x-3>2},{x|x-3>2}
②语言描述法:例:{不是直角三角形的三角形}
③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a?A
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+
整数集Z
有理数集Q
实数集R
6、集合间的基本关系
(1).“包含”关系(1)—子集
定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
高一数学必修一知识点4
交集、并集、补集
这个是高考的重点,但是一般题目较简单。
1.交集:
由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.
如集合A={1,2,3},集合B={2,3,4},则A∩B={2,3}。
例:已知集合则(11年高考第1题,简单)
练习:
(2014北京)已知集合,则()
答案:C
解析:,所以{0,2}
2、并集
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B
的并集。
记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.
如集合A={1,2,3},集合B={2,3,4},则A∪B={1,2,3,4}.
例:已知集合,,则.(12年高考第1题,简单)
答案:{1,2,4,6}
3、全集与补集
(1)补集:设S是一个集合,A是S的一个子集,由S中所有不
属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
高一数学必修一知识点5
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线
y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数。