精馏塔
- 格式:doc
- 大小:828.00 KB
- 文档页数:18
关于精馏塔操作的知识精馏塔是化工生产中常用的设备,用于将混合物中的不同成分按照其沸点进行分离的一种方法。
在精馏塔中,通过加热混合物并将其蒸发,然后再冷凝回液体形式,从而实现不同成分的分离。
精馏塔是一个非常重要的设备,广泛应用于石油化工、化学工业、制药、食品工业等领域。
精馏塔的操作过程一般包括物料的进料、加热、分馏和冷凝等步骤。
不同的物料在精馏塔中会根据其沸点的不同被分离出来,可以得到纯净的产品或分离出不同部分的产品。
在精馏塔的操作中,需要注意以下几个方面的知识:一、精馏塔的结构和工作原理精馏塔一般由塔体、填料、冷凝器、除液泵等部分组成。
在精馏塔中,填料的作用是增加塔内的表面积,促进气液两相的充分接触,从而提高分馏效率。
冷凝器则用于将蒸发的气体冷凝成液体,形成产品。
精馏塔的工作原理是通过将混合物加热至其中成分的沸点,使其蒸发成气体,然后再冷却冷凝成液体,实现不同成分的分离。
二、操作前的准备工作在进行精馏塔操作前,需要进行一些准备工作。
首先要检查精馏塔的设备和仪器是否正常运转,检查各种阀门、管道和连接件是否密封无漏。
其次检查填料是否完整,冷却水是否正常供应等。
还需要根据操作手册和工艺要求设置好操作参数,如加热温度、进料速度等。
三、加热操作加热是精馏塔操作的重要环节,需要控制加热温度和速度。
加热温度应该根据混合物中各成分的沸点来设定,从而确保被分离的成分能够达到沸点并蒸发出来。
加热速度也需要适当控制,过快的加热会导致压力升高,影响操作的稳定性。
四、分馏操作在精馏塔中,分馏是将混合物中的不同成分分离出来的过程。
在进行分馏操作时,需要根据混合物的成分和物性来确定操作参数,如进料速度、塔体高度、冷凝温度等。
对于待分离的成分,需要关注其沸点、比重等特性,掌握好分馏的时机和程度,确保分离效果。
五、冷却和收集操作在分馏后,需要将蒸馏出来的气体冷却成液体,并进行收集。
冷却器的选择和设置要合理,确保冷却效果良好。
冷却后的液体产品要进行检查,确认其质量和纯度是否符合要求,再进行储存或进一步处理。
精馏塔的原理和流程精馏塔是一种常见的化工设备,主要用于分离混合物中的不同组分。
它的原理是利用不同组分的沸点差异,通过加热和冷却的交替作用,将混合物中的各个组分逐一分离出来。
下面我们来详细了解一下精馏塔的原理和流程。
一、精馏塔的原理精馏塔的原理是基于沸点差异的。
在混合物中,不同组分的沸点不同,因此在加热的过程中,沸点较低的组分会先蒸发出来,而沸点较高的组分则会留在混合物中。
通过这种方式,我们可以将混合物中的各个组分逐一分离出来。
具体来说,精馏塔的原理可以分为以下几个步骤:1.加热:将混合物加热到一定温度,使其中沸点较低的组分开始蒸发。
2.蒸汽上升:蒸发出来的组分会形成蒸汽,向上升入精馏塔的塔体中。
3.冷却:在塔体中,蒸汽会遇到冷却器,被冷却后变成液体,这个过程叫做冷凝。
4.收集:冷凝后的液体会被收集起来,这个液体就是分离出来的组分。
5.重复:这个过程会一直重复,直到所有的组分都被分离出来。
二、精馏塔的流程精馏塔的流程可以分为以下几个步骤:1.进料:将混合物加入精馏塔的塔底。
2.加热:将混合物加热到一定温度,使其中沸点较低的组分开始蒸发。
3.蒸汽上升:蒸发出来的组分会形成蒸汽,向上升入精馏塔的塔体中。
4.冷却:在塔体中,蒸汽会遇到冷却器,被冷却后变成液体,这个过程叫做冷凝。
5.收集:冷凝后的液体会被收集起来,这个液体就是分离出来的组分。
6.排出:剩余的混合物会从塔底排出。
7.重复:这个过程会一直重复,直到所有的组分都被分离出来。
需要注意的是,精馏塔的流程是一个连续的过程,每个步骤都需要严格控制,才能保证分离效果。
此外,不同的混合物需要采用不同的操作条件,比如温度、压力、冷却器的位置等等,这些都需要根据具体情况进行调整。
三、精馏塔的应用精馏塔是一种非常常见的化工设备,广泛应用于石油化工、化学工业、制药工业等领域。
它可以用来分离各种混合物,比如石油中的不同馏分、化学品中的不同成分、药品中的不同成分等等。
精馏塔的种类一、引言在化工领域,精馏是一种常用的分离技术,可以用于分离液体混合物中的不同组分。
而精馏塔作为精馏过程中最核心的设备之一,具有不同的种类和结构。
本文将介绍精馏塔的种类、结构和应用领域。
二、按照结构分类1. 塔板精馏塔塔板精馏塔是最常见的一种精馏设备。
它由一系列塔板组成,每个塔板上都有一个孔,用于液体和气体的交换。
塔板通常由金属材料制成,如不锈钢。
塔板的数量可以根据需要进行调整,以实现不同的分离效果。
塔板精馏塔具有操作简单、投资成本低的优点,被广泛应用于石油、化工和食品等行业。
2. 填料精馏塔填料精馏塔不同于塔板精馏塔,它没有塔板,而是通过填料来实现液体和气体之间的传质传热。
填料可以是不同形状的颗粒或物块,如环状填料、网状填料和球状填料等。
填料精馏塔由于没有塔板的限制,可以实现更高的传质传热效率和更高的塔效。
填料精馏塔通常用于需要较高塔效的工艺,如精制石油产品的分离和超高纯度化学品的生产。
3. 除气塔除气塔是一种特殊的精馏塔,它主要用于除去液体中的气体。
除气塔通常由吸附剂填料构成,通过与气体中的气体相互作用来实现气体的分离。
除气塔被广泛应用于炼油、天然气处理和化学品生产等领域。
三、按照应用分类1. 石油精馏塔石油精馏塔主要用于石油加工行业中,用于将原油中的不同组分进行分离。
根据石油组分的不同,石油精馏塔可以实现蒸馏、重整、裂化和精制等不同的工艺。
石油精馏塔的设计和操作需要考虑原油的性质、产品要求和经济因素等多个因素。
2. 酒精精馏塔酒精精馏塔主要用于酒精和酒的生产过程中,用于将发酵产生的液体中的酒精进行分离。
酒精精馏塔通常采用填料结构,以实现高效的酒精分离。
酒精精馏塔还需要考虑产品的纯度、产量和能源消耗等因素。
3. 精细化工精馏塔精细化工精馏塔广泛应用于化学工业中,用于生产高纯度的化学品。
精细化工精馏塔通常采用填料结构和复杂的操作控制系统,以实现对微量杂质的高度分离。
精细化工精馏塔的设计和操作需要考虑产品的要求、设备的安全性和可靠性等因素。
精馏塔的结构和工作原理精馏塔是一种化工设备,常用于分离液体混合物中不同成分的纯度,可用于提纯化合物、分离混合物中的杂质以及提取组分等。
其结构和工作原理是很重要的,下面将详细介绍。
一、结构精馏塔主要由塔壳、填料和塔盘三部分组成。
1.塔壳:塔壳是整个精馏塔的基础结构,可分为上壳体和下壳体两部分。
上壳体通常设置液位探测器和液位控制器,用于监测和控制塔内液位。
下壳体通常设计有入口和出口,用于将料液引入塔内。
2.填料:填料是塔内的填充物,主要作用是提供大量的表面积和接触面,增加塔内液体与气体之间的接触,从而促进物质的传质和传热。
常用的填料有环形填料、板式填料和筛板填料等。
3.塔盘:塔盘是一种平坦的圆盘结构,可分为穿孔板和筛板两种形式。
穿孔板上布满了数量不等的小孔,而筛板则由多个平行密排的矩形筛孔组成。
塔盘上形成的液膜和气泡共同作用,实现液体与气体的质量传递。
二、工作原理精馏塔的工作原理基于不同组分在不同温度下的沸点差异。
其分离过程主要包括蒸馏、冷凝、回流和分离四个步骤。
1.蒸馏:在塔底施加加热,使混合物中的易挥发组分汽化,形成蒸汽。
蒸汽上升到塔内,与下降的液体接触,并通过填料或塔盘上的小孔进入下一塔层。
2.冷凝:在塔顶设置冷凝器,冷却蒸汽,并将其转化为液体。
冷却过程中,蒸汽中的高沸点组分冷凝成液体,而低沸点组分保持挥发状态。
3.回流:冷凝后的液体通过回流管回流到塔顶,重新进入塔内。
回流液的作用是增加塔壁的液体,并通过填料或塔盘上的孔洞与上升的蒸汽混合。
4.分离:回流液与上升的蒸汽在塔内产生剪切力,使其彼此接触并进一步传质。
不同组分在塔内通过多次挥发和冷凝步骤的重复循环分离,逐渐提纯。
工作原理的关键在于塔内的物质传质和传热。
填料和塔盘提供了大量的表面积和接触面,使液体和气体之间能够充分接触。
高效的传质和传热能够促使组分之间相互转移,达到分离的目的。
总结:精馏塔的结构和工作原理是使得不同成分纯度提高的关键。
通过加热、冷凝和回流等步骤进行反复蒸发和冷凝,最终实现混合物中组分的分离。
精馏塔蒸馏塔的工作原理
精馏塔是一种用于液体混合物分离的设备,通常用于化工工业中。
其工作原理基于液体混合物中各组分的沸点差异,通过加热液体混合物并使其部分蒸发,然后再冷凝回收蒸汽的方式实现分离。
1. 精馏塔的结构
精馏塔通常由塔体、进料口、冷凝器、蒸发器、提取装置等部分组成。
塔体内通常填充着填料,以增加接触面积,有利于组分间的质量传递。
2. 工作原理
1.进料与蒸汽相接触:混合物通过进料口进入精馏塔,在塔体内与升
腾蒸汽接触,升腾蒸汽来自底部的蒸发器。
2.蒸馏过程:液体混合物在与热蒸汽接触时部分蒸发,其中易挥发性
组分在较低的温度下蒸发,升至塔体上部。
3.凝结分离:上升的蒸汽接触到冷凝器外壳表面,降温后重新变成液
态,在冷凝器内壁凝结成液体状态,随后由下部排出。
4.组分收集:经过蒸馏后的液体在提取装置中进行收集、分离,从而
得到不同组分的纯净产物。
3. 应用领域
精馏塔广泛应用于石油、化工、制药等领域,用于提取纯净溶剂、分离液体混合物、精炼原料等。
其在工业生产中发挥着重要的分离作用,提高了产品的纯度和质量。
总结
精馏塔蒸馏塔通过利用液体混合物中组分的沸点差异,实现了液体混合物的高效分离和提取。
在工业生产中扮演着重要角色,促进了产品质量的提高和生产效率的增加。
精馏塔和蒸馏塔的优缺点
精馏塔和蒸馏塔是化工领域常见的分离设备。
两者都是利用物质在不同温度下汽液相平衡的原理进行分离的。
下面将分别介绍精馏塔和蒸馏塔的优缺点。
精馏塔的优点
1.高效分离:精馏塔能够通过多级馏分来实现高效的分离过程,可以
得到高纯度的产品。
2.适用范围广:精馏塔适用于液体和气体的分离,适用于多种不同的
工艺和物料。
3.操作稳定:精馏塔在工业生产中有成熟的操作技术和经验,操作相
对稳定可靠。
4.节能环保:精馏塔可以通过优化设计和操作来实现能源的节约,对
环境友好。
精馏塔的缺点
1.能耗较高:精馏塔需要消耗大量的能源来维持分馏过程,存在一定
的能耗问题。
2.设备成本高:精馏塔设备复杂,安装维护成本较高,投资大。
3.对原料要求高:精馏塔对原料的质量要求较高,需要较纯净的原料
才能实现高效的分离。
蒸馏塔的优点
1.适用性强:蒸馏塔适用于各种溶剂和多种物质的分离,应用范围广
泛。
2.制备简单:蒸馏塔结构相对简单,制备过程也较简单。
3.维护方便:蒸馏塔的维护比较方便,易于清洗和维护,减少停机时
间。
蒸馏塔的缺点
1.分离效率较低:部分情况下,蒸馏塔的分离效率不如精馏塔,无法
获得高纯度的产品。
2.对操作要求高:蒸馏塔在操作过程中需要细致的控制温度和压力,
操作复杂。
3.产率较低:蒸馏塔在部分情况下产率不如精馏塔,无法快速得到大
批产品。
综上所述,精馏塔和蒸馏塔各有其优缺点,在实际应用中需要根据具体情况来选择合适的分离设备,以满足生产需求和经济效益。
精馏塔和蒸馏塔的区别在哪里
两者是化工工艺中常见的装置,分别用于液体混合物的分离和提纯,虽然它们
都是利用蒸馏原理进行操作,但在结构和工作原理上存在一些显著的区别。
1. 结构和外观
•精馏塔:
–通常较高,结构复杂。
–内部配有反流板或填料,用于增加表面积以实现分离。
–通常有多个进出口,用于加入原料和收集纯净产物。
•蒸馏塔:
–外形一般较低,结构相对简单。
–可能没有反流板或填料,直接使用冷凝管道实现气液分离。
–一般只有少数进出口,主要用于输入混合物和输出产品。
2. 分离原理
•精馏塔:
–通过多级反流,将液体在塔内不断提纯。
–利用各部位的温度差异,使不同成分按照沸点升高顺序分离。
•蒸馏塔:
–主要依靠塔内温度梯度带来的蒸气冷凝分离液体。
–一般不会进行多级分馏,仅实现初步分离。
3. 适用范围
•精馏塔:
–适用于需要高度纯净产物的生产需求。
–通常用于工业生产中的精细化工和食品饮料领域。
•蒸馏塔:
–多用于初步提炼,不要求极高纯度的场合。
–例如,用于原油分馏、酒精生产等大规模生产过程。
结论
尽管精馏塔和蒸馏塔都是利用蒸馏技术实现液体分离的装置,但在结构、工作
原理和应用范围上存在一定差异。
选择合适的塔型是根据生产需求的不同来决定的,以保证最终产物的质量和产能。
精馏塔的原理和流程一、引言精馏塔是一种常用于化工领域的分离设备,其具有高效且可控的分离性能。
本文将介绍精馏塔的原理和流程,包括其基本结构、工作原理、操作流程以及应用领域等。
二、精馏塔的基本结构精馏塔由塔身、填料层、留液器、塔盘等组成。
其中,塔身是塔的主要部分,填料层用于增加表面积和接触机会,留液器用于收集液体,塔盘用于改变气体和液体的流动方向。
三、精馏塔的工作原理精馏塔是利用物质在不同温度下蒸发和凝结的特性进行分离的。
其基本工作原理是通过对混合液体进行加热,使其蒸发产生蒸汽,蒸汽与冷凝介质接触后凝结为液体。
在塔内,液体从上方往下滴流,气体从下方往上冒泡,两相之间通过填料层或塔盘的接触进行质量传递和热量传递,从而实现不同物质的分离。
四、精馏塔的操作流程精馏塔的操作流程包括四个主要步骤:进料、加热、分离和收集。
具体操作如下:1. 进料首先将混合液体通过进料口进入精馏塔,进料的速度和方式需要根据具体情况进行调整。
2. 加热通过加热设备对塔内的混合液体进行加热。
加热温度需要根据待分离物质的沸点来确定,以确保液体能够蒸发。
3. 分离在塔内,混合液体被加热后产生蒸汽,蒸汽通过填料层或塔盘与下方的冷凝介质接触,凝结为液体。
在这个过程中,不同物质由于具有不同的挥发性和热稳定性,会在塔内产生不同程度的蒸发和凝结,实现物质的分离。
4. 收集经过分离的液体会被收集到留液器中,通过排液口进行排放。
收集的液体可以进一步处理或进行其他用途的利用。
五、精馏塔的应用领域精馏塔广泛应用于化工、石油、制药、食品等行业中,用于分离和提纯不同物质,以满足不同领域的需求。
1. 化工领域在化工生产中,精馏塔常用于各类化工原料的分离和纯化,例如分离石油产品、分离有机化合物、提纯合成氨等。
2. 石油领域精馏塔在石油炼制过程中起到至关重要的作用,可用于分离石油中的不同成分,如汽油、柴油、煤油、液化气等。
3. 制药领域在制药行业中,精馏塔用于药物的提取和纯化,可分离出目标药物并去除其他杂质物质。
精馏塔的种类1. 引言精馏塔是一种常用的化工设备,用于将混合物中的组分分离出来。
它利用不同组分在加热和冷却过程中的沸点差异,通过蒸馏将混合物分离成纯净的组分。
精馏塔广泛应用于石油化工、化学工程、制药等领域,具有重要的工业意义。
在实际应用中,根据操作条件、分离效果和生产需求的不同,精馏塔可以采用多种不同的结构和形式。
本文将详细介绍常见的几种精馏塔的种类,并对它们的特点进行比较和分析。
2. 塔板式精馏塔2.1 塔板式精馏塔的原理塔板式精馏塔是一种采用平行排列的水平板作为传质界面的精馏设备。
在塔内设置多个水平板,通过向上升流动物料提供阶梯式传质界面,使得蒸汽与液体之间进行充分接触和传质。
在每个水平板上设置孔洞或开槽,使得液体能够从一个板上自由流动到下一个板上,从而实现组分的分离。
2.2 塔板式精馏塔的种类2.2.1 空心塔板空心塔板是最简单常用的塔板式精馏塔。
它由一个孔洞较大的平面板和一个穿孔较小的中心管组成。
蒸汽从中心管进入塔板,通过孔洞向外扩散,与液体进行传质。
空心塔板适用于低压、低粘度和低液体流量的情况。
2.2.2 泡沫塔板泡沫塔板是一种具有高效传质性能的塔板式精馏塔。
它在平面板上设置了许多小孔,通过这些小孔进入的蒸汽形成泡沫,与液体充分接触和混合,提高传质效果。
泡沫塔板适用于高压、高粘度和高液体流量的情况。
2.2.3 雾化器雾化器是一种特殊的塔板式精馏塔,它将液体通过喷嘴雾化成细小的液滴,与蒸汽进行充分混合和传质。
雾化器适用于需要高效传质和较大液体处理量的情况,如石油化工领域的大型精馏塔。
2.3 塔板式精馏塔的特点塔板式精馏塔具有以下特点:•结构简单、易于操作和维护;•分离效果好,能够实现高纯度的组分分离;•可以根据需要调整板间液体流量,适应不同的操作条件;•适用于多种物料和工艺要求。
3. 填料式精馏塔3.1 填料式精馏塔的原理填料式精馏塔是一种利用填料提供大量传质界面的精馏设备。
在填料层中,液体通过填料表面形成薄膜,并与下降的蒸汽进行接触和传质。
精馏塔的必要条件
精馏塔的必要条件:
精馏塔是一种用于气体和液体混合物分离的设备,其工作的基本原理是通过提高混合物的温度差异来实现气液分离。
为了实现这种分离,精馏塔具有一些关键的特征和条件:
1、气液充分接触:精馏塔内部装有多层塔板或其他结构,这些结构提供了气液之间充分的相互接触,这是精馏过程的基础。
2、气液相平衡:在精馏塔中,气液两相达到平衡的状态是分离过程的关键。
当气相中的轻组分相对于液相中的轻组分浓度更高时,就会发生传质过程,即精馏现象。
3、回流系统:精馏塔需要有回流系统,这包括塔顶的液相回流以及塔底的气相回流(通常由重沸器或过热水蒸汽汽提引起)。
这些回流有助于维持气液之间的动态平衡,从而持续地进行传热和传质过程。
4、安全与控制系统:精馏塔应配备必要的安全设施,如安全阀、压力表、温度表等,以及适当的指示仪表,以保证操作的可靠性和安全性。
5、设计和材料:精馏塔的设计和材质应当符合相关规范和技术标准,并且通过验收合格。
6、操作规程:精馏塔的操作应由经过专业培训的人员执行,遵循严格的操作规程,并保持对设备状态的定期检查。
7、维护与检修:精馏塔的维护和检修应当按照既定程序进行,确保所有活动均有记录,并由具备相应技术和操作技能的人员执行。
综上所述,精馏塔的工作不仅依赖于气液充分接触和气液相平衡的基本条件,还涉及到回流系统的设计、安全和控制的考虑,以及在操作和维护方面的严格规定。
第一章精馏塔简介1.1精馏塔概念精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
相平衡:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。
系统中相数的多少与物质的数量无关。
如水和冰混合在一起,水为液相,冰为固相。
一般情况下,物料在精馏塔内是气、液两相。
在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。
平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。
比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。
塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。
但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。
饱和蒸汽压:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。
众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。
如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。
但是,当温度一定时,气相压力最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。
露点:把气体混合物在压力不变的条件下降温冷却,当冷却到某一温度时,产生的第一个微小的液滴,此温度叫做该混合物在指定压力下的露点温度,简称露点。
处于露点温度下的气体称为饱和气体。
从精馏塔顶蒸出的气体温度,就是处在露点温度下。
值得注意的是:第一个野地不是纯组分,塔时露点温度下与气相平衡的液相,其组成有相平衡关系决定。
精馏塔实现精馏的三个必备条件
精馏塔是一种常用于化工工艺中的设备,它能够通过分馏将混
合物中的组分分离开来。
要实现高效的精馏过程,精馏塔必须满
足以下三个必备条件:
1. 充分的接触:精馏过程中,混合物与精馏塔内部的填料或塔
板之间需要充分接触以实现有效的传质和传热。
这样可以使液体
相和气体相之间的传质和传热效率最大化,从而提高分馏效果。
2. 充足的塔板或填料:精馏塔内部通常设置有多个塔板或填料层,其目的是增加物料在塔内停留的时间,以便更好地实现分离。
塔板或填料的设计应该合理,使得气液两相之间的接触面积最大化,从而提高分离效果。
3. 适当的沸点差:精馏过程依赖于不同组分的沸点差异来实现
分离。
因此,精馏塔实现精馏的第三个必备条件是要有适当的沸
点差。
沸点差异较大的混合物更容易分离,而沸点差异较小的混
合物则需要更高效的精馏操作或者使用多级精馏来实现分离。
精馏塔要实现精馏的三个必备条件包括充分的接触、充足的塔
板或填料以及适当的沸点差。
这些条件的满足将有助于提高精馏
效率,实现混合物中组分的有效分离。
第一章精馏塔简介1.1精馏塔概念精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
相平衡:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。
系统中相数的多少与物质的数量无关。
如水和冰混合在一起,水为液相,冰为固相。
一般情况下,物料在精馏塔内是气、液两相。
在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。
平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。
比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。
塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。
但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。
饱和蒸汽压:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。
众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。
如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。
但是,当温度一定时,气相压力最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。
露点:把气体混合物在压力不变的条件下降温冷却,当冷却到某一温度时,产生的第一个微小的液滴,此温度叫做该混合物在指定压力下的露点温度,简称露点。
处于露点温度下的气体称为饱和气体。
从精馏塔顶蒸出的气体温度,就是处在露点温度下。
值得注意的是:第一个野地不是纯组分,塔时露点温度下与气相平衡的液相,其组成有相平衡关系决定。
精馏塔的结构和工作原理精馏塔是一种常见的化工设备,用于分离混合物中的组分。
它的结构和工作原理如下:1.结构:精馏塔通常由以下几个主要组成部分构成:(1)塔底:负责接收和收集分离出来的不同组分。
(2)提馏区(塔顶):负责收集排出纯净组分。
(3)填料或板式结构:用于增加表面积,提供更好的质量传递和相互作用。
(4)塔体:连接塔底和塔顶的中间部分,容纳填料或板式结构。
(5)进料装置:将混合物引入塔体中,通常位于塔底。
2.工作原理:精馏塔的工作原理基于混合物中组分的不同挥发性。
一般情况下,混合物在加热的情况下会产生蒸汽,而不同组分的沸点不同,会导致组分分别从液相转变为蒸汽相。
精馏塔利用这种差异,通过在塔体内垂直的填料或板结构上产生密布的流动相(液相)和气相(蒸汽相),以便组分之间进行质量传递和分离。
工作过程通常包括以下几个步骤:(1)混合物进料:混合物通过进料装置进入塔底,然后分布到填料层或板式结构上。
(2)传质过程:填料或板式结构提供了大量的表面积,增加了相互作用的机会。
液相通过重力作用向下流动,而蒸汽相通过从塔底加热而上上升。
在填料或板式结构上,液相和蒸汽相之间通过质量传递来实现组分的分离。
(3)蒸汽和液相重复分离:由于不同组分的挥发性差异,随着气相向上移动和液相向下移动,组分逐渐分离。
较挥发性高的组分随蒸汽相在塔顶收集,而较挥发性低的组分则在液相中向塔底流动。
(4)蒸汽收集:收集到的蒸汽经过冷凝器冷却,变回液态,在塔顶处收集纯净组分。
(5)液相收集:未被蒸发的液相从塔底收集,其中可能还含有一些未完全分离的组分或杂质。
精馏塔的高效工作依赖于填料或板式结构的设计和选用、适当的温度和压力控制、以及塔体内液相和气相的合理流态等。
不同类型的精馏塔,如板塔、填料塔、反应塔等,在结构和工作原理上有一些区别,但基本原理是相似的。
这种分离技术广泛应用于石油化工、化学工程、食品和药品工业等领域,以实现混合物的提纯和组分的分离。
1.概述本设计为分离乙醇-水混合物,采用筛板式精馏塔。
1.1本设计在生产上的实用意义乙醇的结构简式为C2H5OH,俗称酒精,它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。
乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。
乙醇的用途很广,可用乙醇来制造醋酸、饮料、香精、染料、染料等,是农药、医药、橡胶、塑料、人造纤维、洗涤剂等的制造原料。
医疗上也常用体积分数为70%——75%的乙醇作消毒剂等。
工业上一般用淀粉发酵法或乙烯直接水化法制取乙醇。
1.发酵法制乙醇是在酿酒的基础上发展起来的,在相当长的历史时期内,曾是生产乙醇的唯一工业方法。
发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。
这些物质经一定的预处理后,经水解(用废蜜糖作原料不经这一步)、发酵,即可制得乙醇。
2.乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应,生产乙醇:CH2═CH2 + H─OH→C2H5OH(该反应分两步进行,第一步是与醋酸汞等汞盐在水-四氢呋喃溶液中生成有机汞化合物,而后用硼氢化钠还原)。
若想要获得不同浓度的乙醇,可以采取精馏这种方法。
譬如,75%的乙醇可以用蒸馏的方法蒸馏到95.5%,此后形成恒沸物,不能提高纯度。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的。
互溶液体混合物的分离有多种方法,精馏是其中最常用的一种。
精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,精馏操作其基本原理是利用互溶液体混合物相对挥发度的不同,实现各组分分离的单元操作,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
1.2 流程、设备及操作条件的确定流程可由以下5个方面来确定。
(一)加料方式加料分两种方式:泵加料和高位槽加料。
高位槽加料通过控制液位高度,可以得到稳定流量,但要求搭建塔台,增加基础建设费用;泵加料属于强制进料方式,本次加料可选泵加料,泵和自动调节装置配合控制进料。
(二)加料状态进料方式一般有冷液进料,泡点进料,气液混合物进料,露点进料,加热蒸汽进料五种。
泡点进料对塔操作方便,不受季节温度影响。
由于泡点进料时塔的制造比较方便,而其他进料方式对设备的要求高,设计起来难度相对加大,所以采用泡点进料。
(三)冷凝方式选全凝器,塔顶出来的气体温度不高。
冷凝后回流液和产品温度不高,无需再次冷凝,且本次分离是为了分离乙醇和水,制造设备较为简单,为节省资金,选全凝器。
(四)回流方式宜采用重力回流,对于小型塔,冷凝液由重力作用回流如塔。
优点:回流冷凝器无需支撑结构;缺点:回流控制较难安装,但强制回流需用泵,安装费用、点耗费用大,故不用强制回流,塔顶上升蒸汽采用冷凝回流入塔内。
(五)加热方式采用间接加热,因为塔釜设了再沸器,故采用间接加热。
(六)换热器选用管壳式换热器。
只有在工艺物料的特征性或工艺条件特殊时才考虑选用其他形式。
本设计是对双组分混合液进行分离的精馏操作。
典型的精馏设备是连续精馏装置,包括精馏塔、再沸器、冷凝器等。
精馏操作可在常压、减压和加压条件下进行,操作压强常取决于冷凝温度。
精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔顶,其余馏出液是塔顶产品。
位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。
进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。
在整个精馏塔中,汽液两相逆流接触,进行相际传质。
液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。
对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。
进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。
两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。
当使 n 组分混合液较完全地分离而取得n 个高纯度单组分产品时,须有n-1个塔。
精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。
回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。
汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。
塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。
塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的传质设备,它可以使气液或液液两相之间进行紧密接触,达到相际传质及传热的目的。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两种。
工业上对塔设备的主要要求有:1生产能力大2传质、传热效率高3气流的摩擦阻力小4操作稳定、适应性强、操作弹性大5结构简单、材料耗用量少6制造安装容易,操作维修方便,此外不易堵塞、耐腐蚀等。
筛板精馏塔是化学工业中常用的传质设备之一,也是本设计采用的设备。
它具有结构简单、造价低;板上液面落差小,气体压降低,生产能力较大;气体分散均匀,传质效率高的优点。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上的液层,进行传质与传热。
在正常操作状况下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
气体在压差推动下,均匀分布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆贮有一定的液体,气体穿过板上液层时两相接触进行传质。
在生成的气相中,混合物的组成将发生改变,相对挥发度大的轻相在气相中得到富集,而相对挥发度小的重相则在液相中富集,从而达到分离提纯的目的。
整个过程熵增为负,需外界提供能量。
2.塔的工艺计算及塔板结构参数计算2.1物料衡算原料液:乙醇——水溶液原料乙醇含量:质量分率x F =26.5% 原料处理量:质量流量F=9.9t/h产品要求:摩尔分率:x D = 0.83, x W = 0.10进料 F 精馏塔塔顶产物D 塔釜产物W操作压力: 1 atm将料液流率的单位由质量流量换算成摩尔流量:F=46%5.26*9900+18%5.73*9900=461.3kmol.h ^(-1)Xf=18/%5.7346/%5.2646/%5.26+=0.124对精馏塔做全塔物料衡算,得到以下两式:F=D+WF*xF=D*xD+W*xW 解得 D=15.2kmol.h^(-1) W=446.1kmol.h^(-1) 2.2进料热状况的选择 进料状况 iF 范围 q 值 q 线斜率q/(q-1) 精馏段、提馏段的液、汽流率关系 过冷液体 iF<iL >1 1-∞ L ´>L+F V ´>V 饱和液体 iF=iL 1 ∞(垂直线) L ´=L+F V ´=V 汽液混合物 iV>iF>iL 0-1 -∞-0 L ´>L V ´<V 饱和蒸汽 iV=iF 0 0(水平线) L ´=L V ´=V+F 过热蒸汽iF>iV<00-1L ´<L V ´<V-F进料方式一般有冷液进料,泡点进料,气液混合物进料,露点进料,加热蒸汽进料五种。
泡点进料对塔操作方便,不受季节温度影响。
由于泡点进料时塔的制造比较方便,而其他进料方式对设备的要求高,设计起来难度相对加大,所以采用泡点进料。
2.3回流比选择由乙醇-水的气液平衡数据,绘出X-Y 图常压下乙醇-水的气液平衡与温度关系(mol/%) 温度t/℃ 10095.589.086.785.384.182.782.381.5气相乙醇 0 0.1700 0.3891 0.4375 0.4704 0.5089 0.5445 0.5580 0.5826液相乙醇 0 0.0190 0.0721 0.0966 0.1238 0.1661 0.2337 0.2608 0.3273温度t/℃ 80.7 79.8 79.7 79.3 78.74 78.41 78.15 78.3 气相乙醇 0.6122 0.6564 0.6599 0.6841 0.7385 0.7815 0.8943 0.942 液相乙醇0.39650.50790.51980.57320.67630.74720.89430.95q=1,泡点进料,故q 线过Xf 与X 轴垂直,与平衡线的交点纵坐标即为Xq=Xf 由下图得 Xq=0.124 Yq=0.468 最小回流比:Rmin=qq qD x y y x --=1.052根据实际精馏的费用,最适回流比应是最小回流比的1.5倍。
操作回流比:R=1.5Rmin=1.578 2.4理论塔板数的计算 精馏段操作线方程为:y n+1=1+R R x n +1+R xD =0.612x n +0.322 提馏段操作线方程为:y n+1=DR F RD x n )1()(++-D R D F x w )1()(+-(因q=1)故y n+1=12.384xn-1.138根据常压下得乙醇-水的X-Y 图,又因为泡点进料,所以q=1,即q 为一直线。
在平衡线与操作线之间画阶梯,可得理论塔板数N 1=19;在平衡线与提馏段之间画阶梯,可得理论塔板数N 2=1,故总理论塔板数N T =21(包括再沸器)。
2.5塔的各项参数(1)温度:利用常压下乙醇-水气液平衡组成(摩尔)与温度的关系可求得t F ,t D ,t W t F :)(100)(100112121x x T t x x T T F F --=--→t F =84.13℃ tD :)(100)(100334343x x T t x x T T D D --=--→t D =78.26℃ tW:)(100)(100556565x x T tw x x T T w --=--→t w =76.32℃ 得:全塔平均温度()57.79332.7626.7813.84=÷++=m t ℃精馏段平均温度:=+=21DF t t t 81.20℃ 提馏段平均温度:=+=22WF t t t 80.23℃ (2)密度: 已知:混合液密度:BBA A L p a p a p +=1(a 为质量分数,M 为平均相对分子质量) 混合气密度:oL Tp MTop p 4.22=塔顶温度:t D =78.26℃气相组成y D :)(100)(100333434y y T t y y T T D D --=--→y D =84.66% 进料温度:t F =84.13℃ 气相组成yF :)(100)(100112121F Fy y t T y y T T --=--→y F =49.16%塔底温度:t w =76.32℃ 气相组成yW :)(100)(100556565w wy y t T y y T T --=--→y W =89.46% 精馏段:液相组成x 1:x 1=2FD x x +=0.477 气相组成y 1:y 1=2FD y y +=0.6691所以ML1=46x 1+18(1-x 1)=31.36kg/kmolM V1=46y 1+18(1-y 1)=36.73kg/kmol 提馏段:液相组成x 2:x 2=2FW x x +=0.112 气相组成y 2: y 2=2F w y y +=0.6931所以ML2=46x 2+18(1-x 2)=21.14kg/kmol MV2=46y 2+18(1-y 2)=37.41kg/kmol由不同温度下乙醇和水的密度(单位kg/m 3) 温度/℃ 乙醇的密度p c 水的密度p w 80 735 971.8 85 730 968.6 90 724 965.3 95 720 961.85 100716958.4求得在1t 与2t 下的乙醇密度:1t =81.20℃735-8020.8173573080851乙ρ-=--→ρ乙1=733.8kg/m 38.971-8020.818.9716.96880851水ρ-=--→ρ水1=971.03kg/m 3 2t =80.23℃735-8023.8073573080852乙ρ-=--→ρ乙2=734.77kg/m 38.971-8023.808.9716.96880852水ρ-=--→ρ水2=971.65kg/m 3 在精馏段,1t =81.20℃ 液相密度:[]03.97169977.018.733)477.01(1846477.0/46477.011-+-⨯+⨯⨯=L ρ→ρL1=791.88kg/m 3 气相密度:)20.8115.273(4.2215.27373.361+⨯⨯=V ρ=1.264kg/m 3在提馏段,2t =80.23℃ 液相密度:[]65.97124375.0177.734)112.01(1846112.0/46112.012-+-⨯+⨯⨯=L ρ →ρL2=900.85kg/m 3 气相密度:)23.8015.273(4.2215.27341.372+⨯⨯=V ρ=1.291kg/m 3(3)混合液体表面张力:二元有机物水溶液表面张力可用下列各式计算:(1)精馏段1t =81.20℃ 温度/℃ 70 80 90 100 乙醇表面张力/10-3N/m 2 18 17.15 16.2 15.2 水表面张力10-3N/m 264.362.660.758.8===03.97118w w p m Vm 18.537cm 3/mol ===8.73346o o p m Vo 62.687cm 3/mol 乙醇表面张力:乙醇σ--=--2.1615.172.1620.81908090→σ乙醇=17.036(10-3N/m 2)水的表面张力:水σ--=--7.6020.81906.627.608090→σ水=62.372(10-3N/m 2)()[])(21)()(2o o w w o o w o o o w w o o w w o w V x V x V x V x V x V x V x V x +∧-=+=∧ϕϕ==0.07938 x o =0.477 xw=1-0.477=0.523 B=lg (ow ϕϕ2∧)=lg0.07938=-1.1003 Q=⎥⎦⎤⎢⎣⎡∧-∧⎪⎭⎫⎝⎛⨯3/23/2441.0w w o o V q V T q σσ =)3/2537.18372.6223/2687.62036.17(15.27320.812441.0∧⨯-∧⨯+⨯=-0.7528A=B+Q=-1.1003+(-0.7528)=-1.8531 A=lg )2(sosw ϕϕ∧ φsw+φso=1 则φsw=0.1116 φso=0.8884σm ¼=φsw σ¼w +φso σo¼=0.1116×62.372¼+0.8884×17.036¼=2.1185则σm=20.1425(2)提馏段2t =80.23℃==''='65.97118w w p m m V 18.525cm 3/mol ==''='77.73446o o p m o V 62.6cm 3/mol 乙醇的表面张力:乙醇σ'--=--2.1615.172.1623.80908090→σ´乙醇=17.128(10-3N/m 2)水的表面张力:水σ'--=--7.6023.80906.627.608090→σ´水=62.556(10-3N/m 2)()[])(21)()(2o o w w o o w o o o w w o o w w o w V x V x V x V x V x V x V x V x ''+''''∧''-=''+''''''='∧'ϕϕ=1.645 B=lg (ow ϕϕ'∧'2)==0.2162 Q=⎥⎦⎤⎢⎣⎡∧''-∧''⎪⎭⎫⎝⎛⨯3/23/2441.0w w o o V q V T q σσ=-0.7561 A ´=B ´+Q ´=0.2162-0.7561=-0.5399 A=lg )2(sosw ϕϕ'∧' φ´sw+φ´so=1φ´sw=0.412 φ´so=0.588σ´m ¼=φsw σ´¼w +φso σ´o ¼=0.412×62.556¼+0.588×17.128¼=2.3549 则σ´m=30.7532(4)混合物的粘度 tm=79.57℃查化工原理课本上册书附录十得:水的黏度μ=0.3584mpa.s ,乙醇的黏度μ=0.395mpa.s所以()=⨯-+⨯=3584.0129.01395.0129.0f μ0.3631 全塔液体平均粘度()=÷++=33631.0395.03584.0m μ0.3722 (5)相对挥发度精馏段挥发度:x A =0.477 y A =0.6691 x B =0.523 y B =0.3309=⨯⨯==477.03309.0523.06691.0A B B A x y x y α 2.2171 提馏段挥发度:x ´A=0.112 y ´A=0.6931 x ´B=0.888 y ´B=0.3069=⨯⨯=''''='112.03069.0888.06931.0A B B A x y x y α=17.9058 (6)气液相体积流量计算根据x-y 图得:Rmin=1.052 R=1.5Rmin=1.578 精馏段:L=RD=1.578×15.2=23.986kmol/hV=(R+1)D=(1.578+1)×15.2=39.186kmol/h已知:=1L M 31.36kg/kmol,=1V M 36.73kg/kmol,ρL1=791.88kg/m 3,ρV1=1.264kg/m 3 质量流量:L 1=1L M L=31.36×23.986=752.2kg/h V 1=1V M V=36.73×39.186=1439.3kg/h 体积流量:L s1=11L L ρ=88.7912.752=0.9499m 3/h V s1===264.13.143911V V ρ1138.687m 3/h提馏段:q=1=⨯+=+='3.4611986.23qF L L 485.286kmol/h()=-+='F q V V 139.186kmol/h已知:2L M =21.14kg/kmol,2V M =37.41kg/kmol,ρL2=900.85kg/m 3,ρV2=1.291kg/m 3 质量流量:L 2=2L M L ´=21.14×485.286=10258.946kg/h V 2=2V M V ´=37.41×39.186=1465.948kg/h 体积流量:L s2===85.900946.1025822L L ρ11.388m 3/hVs 2===291.1948.146522V V ρ1135.514m 3/h2.6塔径、板间距的确定 塔径初步设计:(1)精馏段:u=安全系数×max u ,安全系数=0.6-0.8)20(,20max LV V L C C p p p Cu σ=-=0.2横坐标数值:⎪⎭⎫ ⎝⎛⨯=∧⎪⎪⎭⎫ ⎝⎛⨯264.188.791687.11389499.02/11111V L s s p p V L 1/2=0.02088 取板间距H T =0.45m ,板上液层高度h L =0.06m (板间距可自选,板上液层高度常压下一般选0.05-0.06m ),则H T -h L =0.45-0.06=0.39m 查史密期关联图,得C 20=0.073,则)20(20LC C σ=0.2=)201425.20(073.0⨯0.2=0.0731 umax=264.1264.188.7910731.0-=-V V L p p p C=1.8282m/s 取安全系数为0.7,则空塔气速为=⨯==8282.17.0max 7.01u u 1.2797m/s D 1==⨯⨯=2797.114.33600/687.11384411u V s π0.5611m A T =425611.014.342∧⨯=∧D π=0.2471m 2空塔气速:u ´=2471.03600/687.1138=T A Vs =1.2801m/s (2)提馏段:⎪⎭⎫ ⎝⎛⨯=∧⎪⎪⎭⎫ ⎝⎛⨯291.185.900514.1135388.112/12222V L s s p p V L 1/2=0.2649H ´T =0.45m,h ´L =0.06m,H ´T -h ´L =0.39m 查史密期关联图得C 20=0.075)20(20LC C σ''='0.2=0.075×(207532.30)0.2=0.0817 291.1291.185.9000817.0max -⨯='u =2.1566max 27.0u u '==1.5096m/sD 2==⨯⨯=5096.114.33600/514.11354422u V s π0.5159m A ´T =425159.014.342∧⨯=∧D π0.2089m 2空塔气速:u ´2=1.5099m/s 可取塔径D=0.5m 2.7塔板参数计算 1.溢流装置计算因塔径D<2.2m,可选用单溢流弓形降液管,采用凹形受液盘。