数形结合思想在解析几何中的应用
- 格式:ppt
- 大小:359.00 KB
- 文档页数:10
高中数学解析几何,数形结合。
二级结论学习笔记高考
一轮复习
知识点解析
一、高中数学解析几何:
1、椭圆定义:椭圆是由两个焦点和一个双曲线组成的,其最大截面与最小截面的比例称为离心率。
2、圆的定义:圆是一种特殊的椭圆,其最大截面等于最小截面,离心率为1.
3、正多边形的定义:正多边形是一种多边形,其边长相等,每一个内角都是同样的角度。
4、球的定义:球是一种立体图形,由一个圆心和一个半径组成,其表面上所有点距离圆心的距离都是相同的。
5、四棱锥的定义:四棱锥是一种立体图形,其底面是一个正方形,顶面是一个平行四边形,它有四条侧面,每一条侧面都是平行四边形。
6、三棱柱的定义:三棱柱是一种立体图形,其底面是一个正方形,顶面是一个平行六边形,它有三条侧面,每一条侧面都是平行三角形。
二、数形结合:
1、三角形内角和:三角形的内角和是180度。
2、圆的周长:圆的周长等于2πR,R为圆的半径。
3、正多边形的外角和:正多边形的外角和是180度减去(多边形的边数-2)乘以180度。
4、椭圆的面积:椭圆的面积等于πab,其中a、b分别为椭圆的长轴和短轴。
5、球的表面积:球的表面积等于4πR2,其中R是球的半径。
6、四棱锥的体积:四棱锥的体积等于1/3a2h,其中a为四。
数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
高考解析几何中线段比值问题
在高考解析几何中,线段比值问题是比较常见的一类问题。
这类问题通常涉及到直线、圆、椭圆、双曲线等几何图形,以及点、线段之间的位置关系和长度计算。
以下是一些解决线段比值问题的方法和思路:
1. 利用坐标表示线段长度:在解析几何中,可以通过坐标来表示点的位置,进而计算线段的长度。
对于线段比值问题,可以将线段的两个端点坐标求出,然后利用两点间距离公式计算出线段长度,再进行比值计算。
2. 利用几何性质:解析几何中的几何图形具有一些特殊的性质,例如圆的性质、椭圆的性质、双曲线的性质等。
在解决线段比值问题时,可以利用这些性质来简化计算,例如利用圆的切线性质、椭圆的定义等。
3. 建立函数关系式:对于一些复杂的线段比值问题,可以通过建立函数关系式来解决。
例如,可以设出线段长度的变量,然后根据题目条件列出方程,进而求出线段比值。
4. 利用三角形相似或全等:在一些情况下,可以通过判断线段所在的三角形是否相似或全等来解决线段比值问题。
如果两个三角形相似或全等,则它们对应边的比值相等。
5. 数形结合:在解决线段比值问题时,要注重数形结合,将几何图形与代数计算相结合,通过画图、观察等方法帮助理解和解决问题。
需要注意的是,具体的解题方法会因题目不同而有所差异,需要根据具体情况选择合适的方法。
同时,在解题过程中要注意对题目的条件和要求进行仔细分析,避免出现错误。
解析几何11种方法解析几何是数学的一个重要分支,它使用代数方法来研究几何对象。
以下是11种解析几何的方法:1.坐标法:这是解析几何中最基本的方法,通过引入坐标系,将几何问题转化为代数问题,进而通过代数运算解决几何问题。
2.参数法:当某些几何量(如距离、角度等)不容易直接求出时,可以引入参数,将问题转化为参数的求解问题。
3.向量法:向量是解析几何中的重要工具,它可以表示点、方向、速度等几何概念,通过向量的运算可以方便地解决许多几何问题。
4.极坐标法:在平面几何中,除了直角坐标系外,还可以使用极坐标系。
通过极坐标,可以方便地表示点和线的方程,并解决相关问题。
5.复数法:复数在解析几何中也有广泛应用,例如在解决圆的方程时,可以通过复数的方法简化计算。
6.三角法:在解析几何中,三角函数是重要的工具,它可以用来表示角度、长度等几何量,并解决相关问题。
7.面积法:在解决几何问题时,有时可以通过计算面积来找到解决方案,例如在解决三角形问题时。
8.解析法:通过解析几何的方法,可以将几何问题转化为代数问题,进而通过代数运算解决几何问题。
9.代数法:代数法是解析几何中的一种重要方法,通过代数运算和代数方程的求解,可以解决许多几何问题。
10.对称法:在解析几何中,有时可以通过观察图形的对称性来找到解决方案,例如在解决关于对称点、对称线的问题时。
11.数形结合法:数形结合是解析几何中的一种重要思想,通过将代数与几何相结合,可以更方便地解决许多问题。
以上就是解析几何的11种方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体的问题选择合适的方法来解决。
数学中的数形结合数形结合是数学中的一个重要概念,它指的是数学与几何之间的联系。
数学是一门抽象的学科,而几何则是一门具有可视化特征的学科。
将数学和几何结合起来,不仅可以更加深入地理解数学知识,也可以更加直观地观察几何形状和变换。
本文将从数形结合的概念、历史背景、现实应用以及教学方法四个方面进行浅谈。
一、数形结合的概念数形结合,顾名思义,指的是数学与几何之间的联系。
具体来说,就是将数学中的概念和方法运用到几何学中来,探究几何形状与数学方法之间的内在联系。
在数形结合中,数学主要运用代数和解析几何的方法,而几何主要运用几何变换和几何图形的构造等方法。
这种结合可以帮助我们更全面、深入地理解数学和几何的本质,从而更好地应用它们来解决现实问题。
二、数形结合的历史背景数形结合的历史可以追溯到古希腊时期。
古希腊著名数学家毕达哥拉斯就被誉为“数学之父”,他提出了著名的“毕达哥拉斯定理”,即勾股定理。
勾股定理是数形结合的典型例子,将几何图形的勾股三角形与代数里的平方和相联系,奠定了代数与几何之间的基础关系。
此后,一系列数学家如欧几里得、阿基米德、阿波罗尼乌斯、帕斯卡等,都在数学和几何领域做出了重要的贡献,并不断将数学和几何结合起来,探究数学和几何之间的奥妙。
三、数形结合的现实应用数形结合不仅在理论研究上有重要作用,在现实应用中也有广泛的应用。
数形结合被广泛运用于自然科学、工程技术、金融经济等领域。
例如,在自然科学中,物理学家会运用数学方法来模拟具体的实验,从而推导出更深刻的物理规律。
在工程技术领域,数形结合可以帮助人们更好地利用研究数据,设计出更加准确、高效的工程模型。
在金融经济领域,数形结合可以使用代数和几何建立金融模型,预测市场趋势,分析投资风险等等。
因此,数形结合在现实生活中起到了重要的作用。
四、数形结合的教学方法数形结合作为一个重要的数学概念,也应该在数学的教学中得到重视。
在教学中,应该尽量使用具体的实例,结合图形、图像来讲解数学的概念,以增加学生对数学知识的理解和记忆。
“解析几何”中常用的数学思想方法数学思想是数学的灵魂,是将知识转化为能力的桥梁,也是解决问题的思维策略.《解析几何》内容中蕴含着丰富的数学思想,例谈如下:1.数形结合的思想数形结合是研究曲线与方程的最重要的思想方法.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.例1.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM =,试建立适当的坐标系,并求动点 P 的轨迹方程.思路分析:本题是解析几何中求轨迹方程问题,由题意建立坐标系,写出相关点的坐标,由几何关系式:PM=PN 2,即 PM2=2PN2,结合图形由勾股定理转化为:)1(212221-=-PO PO ,设P(x ,y ),由距离公式写出代数关系式,化简整理得出所求轨迹方程解:以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0),由已知:PM=PN 2,即PM2=2PN2,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x ,y )则(x +2)2+y 2-1=2[(x -2)2+y 2-1],即33)6(22=+-y x综上所述,所求轨迹方程为:33)6(22=+-y x (或031222=+-+x y x ). 2.分类讨论的思想所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
例2.在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程; (Ⅱ)求折痕的长的最大值。
论解析几何的作用与意义众所周知,近代数学的第一个里程碑是解析几何的诞生。
这也是因应了时代发展的需要。
文艺复兴使得科技文明获得新生,近代科学技术的发展使运动变化的研究成为自然科学的中心问题,由此而迫切需要一种新的数学工具。
这样,数学就再一次“扮演了先行者、奠基者的角色”,“而其中影响无比深远者首推坐标解析几何和微积分,它们奠定了对于各种各样自然现象作深刻的数理分析的基本工具。
”1.作为“方法论”的坐标法思想解析几何的创建是为了科学发展的需要,同时,从数学内部来看,也是出于对数学方法的追求。
认识清楚这一点,对于我们理解解析几何的基本思想特别重要。
这可以从追溯Descartes和Fermat在创立解析几何时的心路历程看出这种追求。
(1)Descartes的坐标法思想Descartes1596年3月31日出生于法国拉埃耶一个古老的贵族家庭。
他从小体弱多病,但非常好学,勤于思考,他不仅在数学上做出了重要的开创性贡献,而且在哲学、生物学、物理学等众多领域都做出了杰出贡献。
他是机械自然观的第一个系统表述者,被誉为近代哲学的开创者。
正如克莱因指出的,“Descartes 是第一个杰出的近代哲学家,是近代生物学的奠基人,是第一流的物理学家,但只偶然地是个数学家。
”他以大哲学家的眼光审视数学,认为数学立足于公理上的证明是无懈可击的,而且是任何权威所不能左右的。
数学提供了获得必然结果以及有效地证明其结果的方法。
数学方法“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而它是所有其他知识工具的源泉……所有那些目的在于研究顺序和度量的科学,都和数学有关。
”他研究数学,目的是想寻找一种能在一切领域里建立真理的方法。
他认为,逻辑本身对任何创造性的人类目标都贫乏而毫无用处;哲学、伦理学、道德学中的证明,与数学相比,花哨而虚假。
那么应当如何发现呢?这就是:通过“控制下的实验”并对实验结果应用严格的数学推理。
Descartes认为,以往的几何、代数研究都存在很大缺陷:欧氏几何中没有那种普遍适用的证明方法,几乎每一个证明都需要某种新的、技巧性很强的想法;代数的方法具有一般性,其推理程序也是机械化的,但它完全受法则和公式的控制,以至于“成为一种充满混杂与晦暗、故意用来阻碍思想的艺术,而不像用来改进思想的科学”。
解析几何题的解题法宝—数形结合作者:衡飞来源:《中学课程辅导·教学研究》2017年第17期摘要:数形结合思想是中学到高等数学解题中极其重要的解题方法,数形结合思想是解决解析几何题的法宝,数学问题的解决中起着关键作用。
数形结合思想是提高学生分析问题、解决问题的能力,美国著名数学教育家波利亚说过:“掌握数学就意味着要善于解题。
”只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。
中、高考试题十分重视对于数学思想方法的考查,其解答过程都蕴含着重要的数学思想方法。
因此本文中我主要从2017年数学高考题第15题的三种解法入手,展示数形结合的主要解题方法与妙解。
关键词:数形结合;思想方法2017年全国高考数学卷(Ι)第15题15已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为.解法一:如图所示,作AP⊥MN,因为圆A与双曲线C的一条渐近线交于M、N两点,则MN为双曲线的渐近线y=bax上的点,且A(a,0),|AM|=|AN|=b,而AP⊥MN,所以∠PAN=30°,点A(a,0)到直线y=bax的距离|AP|=|b|1+b2a2,在Rt△PAN中,cos∠PAN=|PA||NA|,代入计算得a2=3b2,即a=3b,由c2=a2+b2得c=2b,所以e=ca=2b3b=233.【考点】双曲线的简单几何性质双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.以上是网上给的解析答案,笔者仍然利用数形结合的思想给出另外两种解法。
解法二:双曲线C:x2a2-y2b2=1 (a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。