当前位置:文档之家› 数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用
数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用

一、知识整合

1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=21422

3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析

例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322

-=++

分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令

()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b

f f k a

-

=-<10(10)

k k -<<∈-同时成立,解得,故,

例2. 解不等式x x +>2 解:法一、常规解法:

原不等式等价于或()()I x x x x II x x ≥+≥+>???

?

?<+≥???

020

20202

解,得;解,得()()I x II x 0220≤<-≤<

综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=

+=+>=+

在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<

而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22

例3. 已知,则方程的实根个数为01<<=a a x x a |||log |()

A. 1个

B. 2个

C. 3个

D. 1个或2个或3个

分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==||

|log | 出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B )。

例4. 如果实数、满足,则

的最大值为x y x y y

x

()()-+=232

2

A B C D .

.

.

.12

33

32

3

分析:等式有明显的几何意义,它表坐标平面上的一个圆,()x y -+=2322

圆心为,,半径,如图,而

则表示圆上的点,与坐()()()20300

r y x y x x y ==-- 标原点,的连线的斜率。如此以来,该问题可转化为如下几何问题:动点()00A

在以,为圆心,以为半径的圆上移动,求直线的斜率的最大值,由图()203OA 可见,当∠在第一象限,且与圆相切时,的斜率最大,经简单计算,得最A OA

大值为°tg 603=

例5. 已知,满足

,求的最大值与最小值x y x y y x 22

1625

13+=- 分析:对于二元函数在限定条件

下求最值问题,常采用y x x y -+=31625

122

构造直线的截距的方法来求之。 令,则,y x b y x b -==+33

原问题转化为:在椭圆

上求一点,使过该点的直线斜率为,x y 22

1625

13+= 且在轴上的截距最大或最小,y

由图形知,当直线与椭圆

相切时,有最大截距与最小y x b x y =++=31625

122

截距。

y x b x y x bx b =++=????

??++-=3162511699616400022

22 由,得±,故的最大值为,最小值为。?==--01331313b y x 例6. 若集合,,集合,M x y x y N x y y x b ===??

?<

?

?==+()cos sin (){()|}330θθθπ

且≠,则的取值范围为

。M N b ?

分析:M x y x y y M =+=<≤{()|}(),,,显然,表示以,为圆心,2

2

90100 以3为半径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率k=1,纵截

距为,由图形易知,欲使≠,即是使直线与半圆有公共点,b M N y x b ?=+ 显然的最小逼近值为,最大值为,即b b --<≤332332

例7. 点是椭圆

上一点,它到其中一个焦点的距离为,为M x y F N 22

12516

12+= MF 1的中点,O 表示原点,则|ON|=( ) A B C D .

(32)

248

分析:①设椭圆另一焦点为F 2,(如图), 则,而||||MF MF a a 1225+== ||||MF MF 1228==,∴ 又注意到N 、O 各为MF 1、F 1F 2的中点, ∴ON 是△MF 1F 2的中位线, ∴×||||ON MF =

==121

2

842 ②若联想到第二定义,可以确定点M 的坐标,进而求MF 1中点的坐标,最后利用两点间的距离公式求出|ON|,但这样就增加了计算量,方法较之①显得有些复杂。

例8. 已知复数满足,求的模的最大值、最小值的范围。z z i z ||--=

222

分析:由于,有明显的几何意义,它表示复数对应的|||()|z i z i z --=-+2222

点到复数对应的点之间的距离,因此满足的复数对应点2+2i |()|z i z -+=222 Z z z ,在以,为圆心,半径为的圆上,如下图,而表示复数对应的()()||222 点到原点的距离,显然,当点、圆心、点三点共线时,取得最值,Z O Z C O z ||

||||min max z z ==232,,

∴的取值范围为,||[]z 232

例9. 求函数的值域。y x =

-cos 2

解法一(代数法):则得y x x y x y x =

+--=+sin cos cos sin 2

2

22, s i n

c o s s i n ()x y x y y x y -=--++=--221222,? ∴,而sin()|sin()|x y y x +=

--++≤??221

12

∴,解不等式得

|

|--+≤--≤≤-+221

147347

3

2y y y ∴函数的值域为,[

]---+473473

解法二(几何法):y x x y y y x x =

+-=--sin cos 2

22

121

的形式类似于斜率公式 y x x P P x x =

+--s i n cos ()(cos sin )2

2

220表示过两点,,,的直线斜率

221P x y +=由于点在单位圆上,如图, 显然,k y k P A P B 00≤≤ 设过的圆的切线方程为P y k x 022+=-() 则有

,解得±||221

1473

2k k k ++==

-即,k k P A P B 0047347

3

=

--=

-+ ∴

--≤≤

-+47347

3

y ∴函数值域为,[]---+473473 例10. 求函数的最值。u t t =

++-246

分析:由于等号右端根号内同为的一次式,故作简单换元,无法t t t m 24+=

转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。 解:设,,则x t y t u x y =

+=-=+246

且,x y x y 2221604022+=≤≤≤≤()

所给函数化为以为参数的直线方程,它与椭圆在u y x u x y =-++=2

2

216 第一象限的部分(包括端点)有公共点,(如图)

u m i n =22

相切于第一象限时,u 取最大值 y x u

x y x ux u =-++=??

??-+-=22

22216

342160

解,得±,取?=0==u u 2626 ∴u m a x =26

三、总结提炼

数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。

四、强化训练

见优化设计。 【模拟试题】 一、选择题:

1. 方程lg sin x x =的实根的个数为( ) A. 1个

B. 2个

C. 3个

D. 4个

2. 函数y a x y x a ==+||与的图象恰有两个公共点,则实数a 的取值范围是( ) A. ()1,+∞

B. ()-11,

C. (][)-∞-+∞,,11

D. ()()-∞-+∞,,11

3. 设命题甲:03<

D. 不充分也不必要条件

4. 适合||z -=11且arg z =π

4

的复数z 的个数为( )

A. 0个

B. 1个

C. 2个

D. 4个

5. 若不等式x a x a +≥>()0的解集为{|}||x m x n m n a ≤≤-=,且,2则a 的值为( ) A. 1

B. 2

C. 3

D. 4

6. 已知复数z i z z z 121232=-=+,,则||||的最大值为( ) A.

102- B. 5

C. 210+

D. 222+

7. 若x ∈()12,时,不等式()log x x a -<12恒成立,则a 的取值范围为( ) A. (0,1)

B. (1,2)

C. (1,2]

D. [1,2]

8. 定义在R 上的函数y f x =-∞()()在,2上为增函数,且函数y f x =+()2的图象的对称轴为x =0,则( ) A. f f ()()-<13 B. f f ()()03> C. f f ()()-=-13

D. f f ()()23<

二、填空题:

9. 若复数z 满足||z =2,则||z i +-1的最大值为___________。

10. 若f x x bx c ()=++2

对任意实数t ,都有f t f t ()()22+=-,则f f ()()13、-、f ()4由小到大依次为

___________。

11. 若关于x 的方程x x m 245-+=||有四个不相等的实根,则实数m 的取值范围为___________。 12. 函数y x x x x =

-++-+2222613的最小值为___________。

13. 若直线y x m =-与曲线y x =-12有两个不同的交点,则实数m 的取值范围是___________。

三、解答题:

14. 若方程lg()lg()[]-+-=-x x m x 23303在,上有唯一解, 求m 的取值范围。

15. 若不等式412x x a x ->-()的解集为A ,且A x x ?<<{|}02,求a 的取值范围。 16. 设a a >01且≠,试求下述方程有解时k 的取值范围。 l o g()l o g ()a a x ak x a -=-2

2

2

【试题答案】

一、选择题 1. C

提示:画出y x y x ==sin lg ,在同一坐标系中的图象,即可。

2. D

提示:画出y a x y x a ==+||与的图象

情形1:a a a >>???

?>0

11

情形2:a a a <<-????<-0

1

1

3. A

4. C

提示:|Z -1|=1表示以(1,0)为圆心,以1为半径的圆,显然点Z 对应的复数满足条件arg z =

π

4

,另外,点O

对应的复数O ,因其辐角是多值,它也满足arg z =

4

,故满足条件的z 有两个。

5. B

提示:画出y x a y x =

+=的图象,依题意,m a n a =-=,,从而a a a a +=?=02或。

6. C

提示:由||z 22=可知,z 2对应的点在以(0,0)为圆心,以2为半径的圆上,

而|||()||()|z z z z z i 122123+=--=--+ 表示复数z i 23与-+对应的点的距离, 结合图形,易知,此距离的最大值为: ||PO r +=--+-+=+()()3010210222

7. C

提示:令y x y x a 12

21=-=()log ,,

若a>1,两函数图象如下图所示,显然当x ∈()12,时,

要使y y 12<,只需使log ()a a 22122≥-≤,即,综上可知 当12<≤a 时,不等式()log x x a -<12对x ∈()12,恒成立。

若01<

恒不成立。

可见应选C 8. A

提示:f(x+2)的图象是由f(x)的图象向左平移2个单位而得到的,又知f(x+2)的图象关于直线x=0(即y 轴)对称,故可推知,f(x)的图象关于直线x=2对称,由f(x)在(-∞,2)上为增函数,可知,f(x)在()2,+∞上为减函数,依此易比较函数值的大小。

二、填空题: 9. 22+

提示:|Z|=2表示以原点为原心,以2为半径的圆,即满足|Z|=2的复数Z 对应的点在圆O 上运动,(如下图),而|z+1

-i|=|z -(-1+i )|表示复数Z 与-1+i 对应的两点的距离。

由图形,易知,该距离的最大值为22+。 10. f f f ()()()143<<-

提示:由f t f t ()()22+=-知,f(x)的图象关于直线x=2对称,又f x x bx c ()=++2为二次函数,其图象是开口向上的抛物线,由f(x)的图象,易知f f f ()()()134、、-的大小。

11. m ∈()15,

提示:设y x x y m 12245=-+=||,画出两函数图象示意图,要使方程x x m 245-+=||有四个不相等实根,只需使15<

12. 最小值为13

提示:对x x x x 2

222211110-+=

-+=-+-2()()(),联想到两点的距离公式,它表示点(x ,1)到(1,

0)的距离,

x x x 222613313-+=-+-()()表示点(x ,1)到点(3,3)的距离,于是

y x x x x =-++-+2222613表示动点(x ,1)到两个定点(1,0)、(3,3)的距离之和,结合图形,

易得y min =13。 13. m ∈--(]21,

提示:y=x -m 表示倾角为45°,纵截距为-m 的直线方程,而y x =-12则表示以(0,0)为圆心,以1为半径的圆在x 轴上方的部分(包括圆与x 轴的交点),如下图所示,显然,欲使直线与半圆有两个不同交点,只需直线的纵截距-∈m [)12,,即m ∈--(]21,。

三、解答题:

14. 解:原方程等价于-+->->≤≤-+-=-???

??

???-+->≤<-+-=?????x x m x x x x m x

x x m x x x m

222230

30

03333003

43 令y x x y m 12243=-+-=,,在同一坐标系内,画出它们的图象,

其中注意03≤

原方程有唯一解,由下图可见,当m=1,或-≤≤30m 时,原方程有唯一解,因此m 的取值范围为[-3,0] {1}。

注:一般地,研究方程时,需先将其作等价变形,使之简化,再利用函数图象的直观性研究方程的解的情况。

15. 解:令y x x y a x y x x 12212414=

-=-=-,,其中()表示以(2,0)为圆心,以2为半径的圆在x 轴的

上方的部分(包括圆与x 轴的交点),如下图所示,y a x 21=-()表示过原点的直线系,不等式412x x a x ->-()的解即是两函数图象中半圆在直线上方的部分所对应的x 值。

由于不等式解集A x x ?<<{|}02 因此,只需要a a ->>112,∴ ∴a 的取值范围为(2,+∞)。

16. 解:将原方程化为:log ()log a a x ak x a -=-22,

∴x ak x a x ak x a -=

-->->222200,且,

令y x ak 1=-,它表示倾角为45°的直线系,y 10> 令y x a 222=

-,它表示焦点在x 轴上,顶点为(-a ,0)

(a ,0)的等轴双曲线在x 轴上方的部分,y 20> ∵原方程有解,

∴两个函数的图象有交点,由下图,知

->-<-

∴k 的取值范围为()()-∞-,,101

选校网 https://www.doczj.com/doc/067225359.html, 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 (按ctrl 点击打开)

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

数形结合思想在小学数学中的应用完整版

数形结合思想在小学数 学中的应用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 班级:2013级初等教育理科1班 目录

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显着提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。 数形结合思想的涵义 数、形是一个数学事物两个方面的基本属性。数形结合思想的实质是数字与

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

高一数学学习方法:数学解题思维和解题技巧_名师指点

高一数学学习方法:数学解题思维和解题技巧_名师指点 高中数学学习,方法很重要,今天,学习方法网小编为大家整理了高一数学学习方法,供大家参考!更多内容尽请关注学习方法网! 高一数学学习方法:数学解题思维和解题技巧 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用 摘要 数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。 数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。数量关系如果能有效地结合图形,往往会使抽象问题直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。 关键词:数形结合思想方法应用解题

第一章 绪论 数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系[1]。在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中的应用范围和数形结合思想在解题中的实际应用做了浅显成述。

第二章数形结合思想的概述和历史演进 2.1数形结合思想的概述 数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面[1]。以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。 2.2数形结合思想的历史演进 随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的《几何原本》,再到从笛卡尔创立平面直角坐标系到近、现代数学研究,数形结合一直伴随其行。在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。 数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。1637年,笛卡尔在其《几何学》中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线[2]。笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对) P与平面上的点 x , (y 一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。于是就可以用代数方法来研究几何图形的性质,把几何研究转换成对应的代数的研究。

高考数学思想方法汇总(80页)

高考数学思想方法 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言

美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题.而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法.高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法.我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光. 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等. 数学思想方法与数学基础知识相比较,它有较高的地位和层次.数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记.而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用. 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段.数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得. 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”. 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想.最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷. 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现.再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范.巩固性题组旨在检查学习的效果,起到巩固的作用.每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识. 第一章高中数学解题基本方法 一、配方法

初中数学中的数形结合思想

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。 二、由形思数数形结合。解决这类问题的关键是运用数的精确性来阐明形的某些属性;将图形信息转化为代数信息,利用数(量)特征将图形问题转化为代数问题来解决。这类问题在初中数学中运用的也比较多,如: 1.用数(量)表示角的大小和线段的大小,用数(量)的大小比较角的大小

数形结合思想在高中数学教学中的应用

数形结合思想在高中数学教学中的应用 更新时间:2018-9-25 19:11:00 浏览量:1250 【摘要】数形结合思想是一种重要的数学思想,在高中数学教学中,必须要注重对这种思想的应用,培养学生的数形结合意识,从而提高学生的知识能力。针对这种情况,文章对数形结合思想在高中数学教学中的应用进行了相应的分析和探讨。 【关键词】数形结合思想;高中数学教学;应用 数形结合思想在高中数学教学中的应用,有利于提高学生的数学知识能力,培养学生的思维能力和解题能力,提升学生的学习效果。但是在当前高中数学教学过程中,对于数形结合思想的实际教学应用尚有不足,因此需要注重强化数形结合思想在教学中的应用,采取有效的应用措施,从而提升教学质量和效果。 一、高中数学数形结合教学的现状 (一)数形结合教学意识不足 当前在我国高中数学教学过程中,数形结合的教学思想还没有得到充分应用,对于相应思想的教学运用尚有不足。随着我国课程教学改革工作的不断推进,传统的应试教学观念已经逐渐被人们所摒弃,在高中数学教学中越来越注重对学生数学能力和思维能力的培养。但是在实际教学中,大部分教师还停留在传统的教学模式上,只重视对学生数学基础和应试能力的培养,忽视了数形结合教学思想在教学中的应用。在这种教学观念的影响下,

学生的综合素质发展受到了一定的限制,教学过程忽视了对学生的数学思维能力和数形结合意识的培养,使得教学效果受到了一定的影响。并且在教学过程中,由于教师过于注重学生的成绩,导致学生在学习中逐渐出现了高分低能的现象,不利于学生未来的发展。 (二)传统教学模式的制约 传统的教学模式是影响高中数学教学发展的一个重要因素,同时也限制了数形结合思想在高中教学中的应用。在高中数学教学中,传统的教学模式大都采用填鸭式、满堂灌的教学方式,由教师主导整个课堂教学活动,向学生进行知识的灌输。在这种教学模式下,学生只能被动地接受教师的知识灌输。数形结合教学思想分散在教学之中,没有形成一定的教学规模,导致学生的数形结合意识较弱。并且严重忽视了学生的学习主体性以及学生之间的个体差异,导致学生的学习积极性和学习兴趣逐渐下降,甚至会影响到学生的学习质量和效率。 二、数形结合思想在高中数学教学中的应用分析 在高中几何数学中,可以通过观察图形,建立“数”与“形”的对应关系,找到解决问题的方法。也可以通过几何图形将数量的关系形象地展示出来,在图形上分析数量之间的关系,进而解决问题。几何图形和数量關系是相辅相成的,数量可以在图形上展示出来,也可以用数量关系来表达图形联系。例如:在例1的教学中,直接将数量关系转化成式子不容易,但是教师

高中数学解题四大思想方法

思想方法一、函数与方程思想 姓名: 方法1 构造函数关系,利用函数性质解题 班别: 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使2 43x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

高中数学解题思想方法技巧:西瓜开门 滚到成功

第2 西瓜开门 滚到成功 ●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”. 数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号. ●典例示范 [题1] (2006年赣卷第5题) 对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1) [分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目. 其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论. [解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件. (ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件. 综合(i),(ii),本题的正确答案为C. [插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0. [再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想. [解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1). 满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C. [插语] 在这类 f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4 ,(x-1)3 4 ,自然要麻烦些. 由此看到,特殊化就是简单化. [再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题. 由于函数与图象相联,因此数形结合思想也容易想到. [解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合 条件. (右图水平直线) (ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1)

初中数学中的数形结合思想

初中数学中的数形结合思想 “数缺形欠直观,形缺数难入微”,数形结合是解决数学问题最重要的数学思想方法之一.数形结合思想通过“以数助形,以形解数”,使复杂问题简单化,抽象问题具体化,它是数学的规律性和灵活性的有机结合. 一、以数助形 例1如图1,在平面直角坐标系中,A(1,1),B(5,1),C(1,4)是三角形ABC的三个顶点,求BC的长. 这一题经过转化后实质上就是求平面上两点之间的距离.而在本题中△ABC是直角三角形,所以利用勾股定理可BC=AB2+AC2=5. 这个问题实质上是利用数形结合的思想来推导在具体点的坐标下的两点之间的距离公式.利用同样的思想可以推导出平面上两点之间的距离公式:平面上点P1(x1,y1),P2(x2,y2),则P1P2=(x1-x2)2+(y1-y2)2. 例2在直角坐标系中,已知直线l经过点(4,0),与两坐标轴围成的直角三角形的面积等于8,若一个二次函数的图象经过直线l与两坐标轴的交点,以x=3为对称轴,且开口向下,求这个二次函数的解析式,并求最大值. 分析如果不画出图象,本题很难理解.由三角形的面积来

确定点B的坐标时,就需要把几何问题化为代数问题,确定OB的长度后,由绝对值的双值性来决定点B的纵坐标. 设直线l与x轴交点A(4,0),与y轴交点坐标B(0,m), 则OA=4,OB=|m|. 如由图,S△AOB=12OA?OB=12×4|m|=8, 所以|m|=4.因此,B(0,4)或B′(0,-4). 由二次函数图象的对称轴为x=3,可知点A的对称点A′(2,0),则图象经过A、A′、B,或A、A′、B′. 设抛物线的解析式为y=a(x-2)(x-4). 把点B或B′坐标代入,得a=12或a=-12. 因为开口向下,所以,a=12不符合题意. 故y=-12(x-2)(x-4),即y=-12(x-3)2+12, 所以当x=3时,y最大=12. 二、以形助数 例3已知a、b均为正数,且a+b=2,求W=a2+4+b2+1的最小值. 在本题中由求解式子的特点可以联想到构造直角三角 形利用勾股定理进行处理.如图作线段ED,在ED上截取EP,DP,过点E作AC⊥ED,且使得AE=2,过点D作DB⊥ED,且使得DB=1.这种构图后可以得到两个直角三角形,所以可以使用勾股定理得到AP=a2+4,BP=(2-a)2+1,所以本题中

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

高中数学解题思维策略

高中数学解题思维策略文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第四讲 数学思维的开拓性 一、概述 数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。 “数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。 在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。 数学思维的开拓性主要体现在: (1)一题的多种解法 例如 已知复数z 满足1||=z ,求||i z -的最大值。 我们可以考虑用下面几种方法来解决: ①运用复数的代数形式; ②运用复数的三角形式; ③运用复数的几何意义; ④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-; ⑤运用复数的模与共轭复数的关系z z z ?=2||; ⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与r i z =-||有公共点时,r 的最大值。 (2)一题的多种解释 例如,函数式22 1ax y =可以有以下几种解释: ①可以看成自由落体公式.2 12gt s = ②可以看成动能公式.2 12mv E = ③可以看成热量公式.2 12RI Q = 又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:x tg x a b x x x x a b a a 2222sec ),(log )(log ,cos sin ,,log -?+,等等。 1. 思维训练实例 例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax 分析1 用比较法。本题只要证.0)(1≥+-by ax 为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。

[数学][高中数学解题思维与思想](课件)

[数学][高中数学解题思维与 思想] 《高中数学解题思维与思想》 导读 数学家G. 波利亚在《怎样解题》中说过:数学教 学的目的在于培养学生的思维能力,培养良好思维品质 的途径,是进行有效的训练,本策略结合数学教学的实 际情况,从以下四个方面进行讲解:...文档交流仅供参考... 一、数学思维的变通性 根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性 对一个问题从多方面考虑、对一个对象从多种角度 观察、对一个题目运用多种不同的解法。 什么”转变,从而培养他们的思维能力。

《思维与思想》的即时性、针对性、实用性,已在 教学实践中得到了全面验证。 一、高中数学解题思维策略 第一讲 数学思维的变通性 一、概念 数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:...文档交流 仅供参考... (1)善于观察 心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。...文档交流 仅供参考... 任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。...文档交流 仅供参考... 例如,求和) 1(1431321211+++?+?+?n n .

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

相关主题
文本预览
相关文档 最新文档