超滤系统工艺设计
- 格式:doc
- 大小:80.50 KB
- 文档页数:6
30T/H超滤水系统技术方案二零一一年七月一、 技术文件1、 水处理工艺流程(详见工艺流程)2、编制原则2.1针对用户原水水质进行特殊设计; 2.2综合考虑环境效益、经济效益;2.3全面规划、合理布局、降低投资和运行费用;2.4发展和推广高效节能、易管理、易操作的新工艺、新设备,并具有良好的自控水平。
3、设计范围及分工3.1 室内设备间的管道连接为供方范围,需方负责将水电引入室内; 3.2 所有与外界连接管道、电缆、排水沟等均按照建筑规范进行施工; 3.3 软水器水质化验药品及仪器的购买由供方提供清单及化验方法由用户自购; 3.4 电源(AC220V&AC380V )由用户引到系统配电箱前,电压波动应不大于10%。
3.5用户应按设计要求制作配套的纯水系统设备工作间及设备基础,设置排水沟及其它土建设施。
4、设计条件及出水水质超滤主机 生活水箱精密过滤器4.1 进水主要水质指标:(详细指标见附件:水质报告。
)4.2用户对出水要求:出水量:30吨/小时;出水压力:2公斤;出水温度:常温。
4.3水质检测:随机自带有电导率仪,出水电导率在线显示,各种仪表交付使用后应定期进行检测校正。
4.4设备最终产水量:30吨/小时@25℃;4.5系统总进水量:40m3/h;4.6控制方式:继电器控制。
5、供货范围内的设备技术规范及详细交货清单供方保证所提供的设备为全新的、先进的、成熟的、安全的、完整可靠的且出水水质能符合使用要求。
供方提供详细的供货清单,清单中依次说明型号、数量、产地、材质等内容。
对于整套系统设备运行和施工所必须的部件,即使供货范围中未详细例出,或数目不足,我公司在执行合同时补足。
除特殊注明外,所列数量均为一台机组所需。
提供随机备品备件并在后面列出。
系统应完整地配备包括本体内部管件、阀门、外部管道、连接件、检修平台、控制系统、进出口就地指示压力表、取样阀等,同时还配齐所有必需的支撑件和紧固件,包括螺栓、螺母和垫圈,以及随机供应备品备件等。
工艺技术方案〔一〕工程概述本工艺方案是依据用户要求,以系统运行牢靠、经济合理为原则,承受相关设计标准和标准,结合我公司多年工程阅历,以山泉水做为原水水源而编制的。
本系统承受“中空纤维”水处理工艺,该方案设计合理、运行稳定、产水的品质满足要求,并已在多项类似工程中得到应用及检验。
设备具有安装便利、使用便利、操作便利、维护便利;运行稳定、节能、环保、自动化程度高,经济有用等特点。
〔二〕设计遵循的标准、标准:1、国家标准《饮用自然山泉水》GB8537-20222. GB19298-2022《瓶〔桶〕装饮用水卫生标准》3、《给排水设计手册》第四册4、JB2932-86《水处理设备制造技术条件》5、JB/Z360-89《水处理设备技术条件》6、HCRJ025-2022《压力式滤料过滤器认定技术条件》7、JB2880-81《钢制焊接常压力容器技术条件》8、JB1157-1164《压力容器法兰标准》9、JB2536-80《压力容器油漆、包装和运输》10、JB/T9667-2022《水处理设备型号编制方法》〔三〕、设计根底资料:国家标准《饮用自然山泉水》GB8537-2022产水量: 1T/h;本系统由预处理、中空纤维过滤装置和杀菌灌装设备等组成。
〔四〕、工艺描述预处理:对原水进展前期处理,改善供水水质,使之到达要求,削减、延缓膜的污染、延长其寿命,它处理的对象主要是进水中的微生物、细菌、胶体、有机物、重金属离子、固体颗粒及游离氯等。
以满足反渗透装置进水的要求,保证反渗透装置能长期稳定运行。
它由砂滤器、炭滤器、加药器和保安过滤器组成。
砂滤器:滤除水中的泥沙、杂质、悬浮物、降低原水的 SDI(污染指数密度)值。
炭滤器:具有双重作用,一是吸附;二是过滤。
滤除自来水中的化学有机物、重金属、色度、异味、余氯等,改善口感。
保安过滤器,5 微米PPF 滤芯,拦截大于 5 微米的物体,延长膜的寿命。
〔五〕、设备技术标准:1 、原水箱:用水贮存原水,对后续用水量起到缓解的作用〔可选〕。
XX超滤项目UHS系统设计说明系统设计概述超滤膜系统设计采用旭化成公司的Microza UHS-620A 浸没式超滤膜组件,膜丝为采用热致相分离法制备的均质高维网状结构聚偏氟乙烯(PVDF),具有化学稳定性好(可耐有效氯5000mg/L)、机械强度高、产水水量稳定、产水水质稳定等优良特征。
超滤膜系统为全自动运行模式,包括过滤、液位下降过滤、反洗/气洗、排放、填充、EFM清洗、CIP清洗和在线完整性检测等运行程序,基本流程如图1所示。
整个超滤系统主要由进水泵、自清洗过滤器、膜池、过滤泵、反冲洗系统、化学清洗CIP/EFM 系统、在线膜完整性检测系统、仪表空压机系统、配套的手动/自动阀门、在线各类仪表和控制检测元器件、PLC计算机控制系统以及必要的设备附件组成。
图1 流程图Microza UHS-620A浸没式膜组件是旭化成专门针对高浊度原水所开发的产品,标准运行模式(如图2所示)为:{过滤(15~30min)→液面下降过滤(液位控制)→反洗/空气擦洗(60s)}n→排放→充填,大括号中的操作模式为一个小周期,通常运行1-5个小周期后,再将浸没槽中的水全部排放,由此形成一个大周期;UHS系统每1-7天进行1次低浓度化学清洗(EFM)过程,清洗时间为30~90min;每1-6月进行1次高浓度化学清洗(CIP)过程,清洗时间为6-8小时。
进水温度为0~40deg.C时,系统运行跨膜压差(TMP)通常在15~80kPa之间,EFM 清洗后TMP可下降20-40kPa,相应的通量恢复率可达60%-90%;当TMP达到60~80kPa时,系统就需进行CIP清洗,清洗后的TMP可下降至20~70kPa左右,相应的通量恢复率在95%以上。
图2 标准运行程序根据现场现有条件及进水水质,本项目UHS系统设计水温为5deg.C时的运行通量设计为94.0LMH,平均净产水通量为79.4LMH,系统回收率为96.8%。
设计每个小周期为1820s,其中过滤和液位下降过滤1760s,反洗/空气擦洗60s,每运行5个小周期,进行一次300s的排放和填充,即一个大周期的运行时间为157分钟,EFM(次氯酸钠)每天进行一次,CIP每3个月或当跨膜压差达到60kPa时进行一次。
超滤设计方案概述:超滤技术是一种常用的膜分离技术,通过使用微孔膜来分离溶质和溶剂。
本文将探讨超滤设计方案的关键要素和步骤,以确保系统的高效运行和满足特定需求。
1. 设计背景超滤技术广泛应用于水处理、废水处理、食品生产以及生物制药等行业。
在设计超滤系统之前,需要明确项目的背景和目标,例如处理的水的来源、水质要求、处理能力以及运行成本等。
2. 选择合适的超滤膜超滤膜的选择是超滤系统设计的重要一步。
考虑以下因素:- 分子量截留范围:根据处理要求确定分子量截留范围,选择合适的膜孔径;- 膜材料:根据处理液的性质,选择耐酸碱、耐热膜材料;- 膜通量:根据处理能力需求,平衡膜的截留能力与通量;- 膜的稳定性:确定膜的使用寿命和稳定性;- 经济性:综合考虑膜的价格和性能。
3. 确定超滤系统的工艺参数超滤系统设计需要考虑以下工艺参数:- 进水流量:根据处理要求和生产规模确定进水流量。
- 温度和pH值:根据处理液的性质,确定适宜的温度和pH值。
- 压力:确定适宜的操作压力,平衡膜的截留效果和通量。
- 截留效率:根据要求确定膜的截留效果。
- 清洗周期:根据膜的污染情况和使用寿命,确定合适的清洗周期。
- 设备布局:根据系统设计,确定设备布局和管道连接。
4. 设计超滤系统的操作模式超滤系统的操作模式通常分为批量式和连续式两种。
- 批量式:适用于对处理效果要求较高的场合,操作简单但处理能力有限。
- 连续式:适用于处理大量水的连续生产,操作复杂但处理能力高。
5. 设计超滤系统的配套设备超滤系统通常需要配套以下设备:- 进水泵和压力机组:用于提供进水压力和流量。
- 超滤膜组件:安装超滤膜的模块或滤膜,用于实现分离功能。
- 控制系统:用于监测和控制超滤系统的运行,包括压力、温度和流量等参数。
- 清洗系统:用于定期清洗超滤膜,保持其性能和寿命。
- 排放系统:处理超滤后的浓缩液或废水,确保环境污染最小化。
6. 安全和维护超滤系统的安全操作和定期维护对于系统的长期稳定运行至关重要。
工业给水中超滤系统典型设计(一)一、概述对典型补给水工程系统图进行规范和优化,膜项目按UF单元分常用品牌制定标准系统图,包括控制测点要求,以100T/H出力为例。
二、设计要求1、超滤膜常规进水条件∙水中非溶解性固体含量<5wt%∙颗粒粒度<100μm∙进水浊度<20NTU∙溶解质(盐、小分子)不在操作过程中产水沉积∙进水COD <20注:超滤预处理可根据水质不同,采用絮凝、沉降、气浮、砂滤、多介质过滤等方式。
2、超滤膜产水指标∙产水SDI15<<3∙固体悬浮物<0.5mg/L∙产水浊度<0.1NTU∙细菌去除率>6log病毒去除率>4log 注:根据具体水质产水品质有所不同,表格所列为最低要求。
3、超滤膜设计参数范围1) 设计参数工业给水中超滤系统典型设计(二)2)膜产品型号规格参数说明:NORIT卧式膜与此表所列立式膜参数相同,设计时考虑配置压力容器。
4、设计导则1)内压式由于表格太大,无法添加到里面,此后在添加2)外压式三、超滤工程设计实例(以NORIT膜为例)3.1、原水分析项目用途:反渗透预处理超滤产水量:Q=100m3/hr原水水质其他指标见下表表3-1 原水水质实例3.2、预处理的选择预处理条件根据具体水质选择,采用100μm预过滤器作为超滤保安滤器并采用死过滤的操作方式。
3.3、选择膜材料及膜组件型号参照膜元件参数表格进行选取,投标时根据标书要求选取合适膜元件进行设计。
3.4、膜透量和回收率的确定参考附表3-1中的数据,选择合适的超滤平均水透量。
此设计选用透量V=60L/m2•hr,设计问题温度25℃。
若设计温度不是25℃,都应当除以温度系数,温度校正系数见式(5-1)。
G=(1+0.0215)Δt(5-1)Δt=25-t3.5、水量和超滤膜堆计算3.5.1、设计产量的计算选定每30分钟(t1)一次反洗,反洗时间40 s (t2),反洗前后各一次正洗,正洗时间10s(t3)。
每次反洗正冲时间t 4以120s 计。
超滤系统工艺流程图超滤是以压力为推动力的膜分离技术之一。
以大分子与小分子分离为目的,膜孔径在20-1000A°之间。
中空纤维超滤器(膜)具有单位容器内充填密度高,占地面积小等优点。
以下是店铺为大家整理的关于超滤系统工艺流程图,给大家作为参考,欢迎阅读!超滤系统工艺流程图超滤系统的应用超滤膜的最小截留分子量为500道尔顿,在生物制药中可用来分离蛋白质、酶、核酸、多糖、多肽、抗生素、病毒等。
超滤的优点是没有相转移,无需添加任何强烈化学物质,可以在低温下操作,过滤速率较快,便于做无菌处理等。
所有这些都能使分离操作简化,避免了生物活性物质的活力损失和变性。
由于超滤技术有以上诸多优点,故常被用作:(1)大分子物质的脱盐和浓缩,以及大分子物质溶剂系统的交换平衡。
(2)大分子物质的分级分离。
(3)生化制剂或其他制剂的去热原处理。
超滤技术已成为制药工业、食品工业、电子工业以及环境保护诸领域中不可缺少的有力工具[2] 。
滤膜超滤技术的关键是膜。
膜有各种不同的类型和规格,可根据工作的需要来选用。
早期的膜是各向同性的均匀膜,即常用的微孔薄膜,其孔径通常是0.05mm 和0.025mm。
近几年来生产了一些各向异性的不对称超滤膜,其中一种各向异性扩散膜是由一层非常薄的、具有一定孔径的多孔"皮肤层"(厚约0.1mm~1.0mm),和一层相对厚得多的(约1mm)更易通渗的、作为支撑用的"海绵层"组成。
皮肤层决定了膜的选择性,而海绵层增加了机械强度。
由于皮肤层非常薄,因此高效、通透性好、流量大,且不易被溶质阻塞而导致流速下降。
常用的膜一般是由乙酸纤维或硝酸纤维或此二者的混合物制成。
近来为适应制药和食品工业上灭菌的需要,发展了非纤维型的各向膜,例如聚砜膜、聚砜酰胺膜和聚丙烯腈膜等。
这种膜在pH 1~14都是稳定的,且能在90℃下正常工作。
超滤膜通常是比较稳定的,若使用恰当,能连续用1~2年。
超滤膜化学清洗系统精细化设计总结近年来国内建成了较多大型市政给水厂超滤膜系统,超滤膜技术在市政供水行业中得到了越来越多的应用,为城镇居民提供安全优质的饮用水。
对于市政超滤膜系统,大家的关注点多在膜前预处理、以超滤膜为核心的组合工艺、超滤膜系统产水及反冲洗配置等生产主系统上,而超滤膜辅助化学清洗系统作为影响超滤膜能否可靠稳定运行的重要板块,也应该给予更多的关注。
在给水厂日常的生产运行中,超滤膜维护性清洗(CEB)和恢复性清洗(CIP)耗费了较多的生产管理时间,也是操作危险性最高的环节之一。
因此,完善可靠的辅助化学清洗系统设计是市政给水厂大型超滤膜系统设计中关键要点之一。
CEB也叫化学加强反洗,在反洗水中加入一定浓度的次氯酸钠溶液或者碱溶液,主要是为了控制微生物等对膜的污染。
CIP是采用一定浓度的酸、碱溶液进行化学清洗,彻底恢复超滤膜的性能。
大型水厂中,为减少工人操作强度,CEB 和CIP都设计为自动运行。
本文对压力式超滤膜和浸没式超滤膜辅助化学清洗系统的化学药剂种类、药剂储存使用、清洗方式、清洗剂的回用或循环利用、药剂车间布置、废液中和处置等设计细节进行总结,以期为今后给水厂超滤膜辅助化学清洗的工程设计和运营提供参考。
1、化学清洗药剂随着超滤膜面污染的累积,膜通量会持续下降。
日常反冲洗是去除污染物的一种途径,但是当污染物不再能够被反冲洗去除时,就需要进行化学清洗,在化学清洗后,膜通量/压力能够部分或者全部恢复。
不同超滤膜制造商对于自身膜的化学清洗要求不同,本文梳理市场上使用较多的3家国产超滤膜(均为PVDF材质)的化学清洗要求,同时调研长期运行2年以上的3座超滤膜给水厂实际化学清洗运行情况,如表1所示。
表中制造商要求是制造商根据自身膜的性能给的参考数值要求,实际运行数据是各水厂根据实际运行膜污染状况采取的经验做法。
由于不同超滤膜制造商的原材料配方、制膜工艺和装填密度存在差异,因此其对化学清洗药剂的要求差异较大。
超滤系统工艺设计超滤膜以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
超滤使用错流过滤技术,通过部分进水推向膜的净水侧,悬浮物、细菌和病毒保持悬浮状态,并不断从膜表面移除。
因为错流技术能够处理含高浓度悬浮物的给水,因此该技术通常可用于膜生物反应器,将微生物从被处理的污水中分离,微生物可回流至生化池,而透过液可以再生利用或排放。
超滤错流膜与二沉池相比的优点如下:(1)超滤错流膜对微生物形成一个绝对的屏障,可以阻止生物量流失,这不仅对净水有利,对保持生化池中的生物量、防止污泥膨胀也有利。
(2)超滤错流膜对悬浮物形成一个绝对的屏障,因为悬浮物吸附许多种类污染物(例如重金属、PAH、油脂等),因此膜的综合出水水质更好。
在排放越来越严格的今天,这是绝对有利的。
(3)如果透过液作为再生水回用,不需要过多的精力做进一步处理。
外置式错流式超滤膜组件特点如下:很高的污泥浓度(MLSS=1000~40000mg/l);进水条件变化的适应力强;水平(卧式)放置;紧凑、简洁式安装;工艺、安装简单;湍流,能有效控制滤饼层的生成;连续的浓水回流,一次过滤时间很长;构造坚固可靠,产水水质稳定;膜系统易于停机放置;维护保养简单;清洗简单,可以实现全自动运行;避免了传统沉淀池出现污泥膨胀和浮渣的问题。
4.5.1超滤膜选型设计计算根据超滤的影响因素和超滤膜组件特点可知:超滤的工作压力为0.1~0.6MPa,实际操作时应在极限通量附近进行,此时操作压力约为0.5~0.6MPa,超滤通量一般为1~100L/(m2·h),本设计经过实际测量试验得知超滤通量为J v=70 L/(m2·h)(实际参数)。
(1)超滤系统流量设计计算:超滤系统流量Q=原水流量Q d+深度处理回用水Q h 其中深度处理回用水Q h的设计详见深度处理设计,这里先给出数值Q h=50m3/h由此可知超滤系统流量Q=300m3/h+50m3/h=350m3/h=14.6m3/h(2)超滤膜设计计算:膜需要总面积S=Q/J v=14.6×1000L/h/70 L/(m2·h)=209m24.5.2超滤膜选型设计参数表4.5.3超滤构筑物设计参数表4.5.4超滤系统设备(1)供料泵(2)循环泵(3)清洗泵(4)清洗水箱(5)超滤膜(6)电磁流量计(7)电磁流量计(8)电磁流量计(9)pH计(10)压力传感器(11)压力传感器。
超滤系统方案(UF处理系统)申明:本方案仅作为参考目的,不作担保,用户有责任确认我们的产品对用户自己特殊用途的适应性。
1.项目概况1.1 水源:山泉水(地表水类型) 1.2 出水水量和水质参数 要求出水水量:10m ³/h 。
进水水质参数:无具体水质参数,按常规工艺处理设计。
1.3 超滤系统出水品质出水浊度≦0.1NTU ,悬浮物去除率≧99%,SDI ≦2。
2.工艺流程及工艺说明 2.1 工艺设计思路为了系统的稳定运行,采用如下设计处理思路:超滤预处理采用石英砂过滤器、活性炭过滤器、软化器(水质硬度高时选用)和5微米精密过滤器。
石英砂、活性炭滤器起到截留悬浮物除浊度和吸附异味、胶体、铁及余氯,软化器能够降低水质硬度。
而5微米精密过滤器则可以进一步截留悬浮物和防止大颗粒物进入超滤系统。
针对原水水质特性,超滤系统采用内压错流过滤,另外独立配置反洗系统和清洗系统。
通过定期的反洗和清洗,可防止超滤瞙丝上形成滤饼,保证超滤系统出水量稳定和出水水质稳定。
2.2 工艺流程2.3 超滤水量平衡原水池 石英砂过滤器5微米过滤器UF 系统紫外线杀菌5微米精密过滤器清洗泵清洗水箱反洗泵反洗泵增压泵进水:12.5m ³/hUF 系统产水:10m ³/h反洗:0.5m ³/h浓水:2m ³/h成品水箱石英砂过滤器软 化 器 臭氧反洗水3.系统设计参数3.1 供水系统设置2台供水泵,1备1用。
供水泵流量:13m³/h(选型时可适当增加一点余量)供水泵扬程:25m3.2 预处理系统1)石英砂过滤器,1台过滤能力:13m³/h过滤材质:石英砂过滤形式:压力式控制部分:手动/自动控制正、反洗2)活性炭过滤器,1台过滤能力:13m³/h过滤材质:活性炭过滤形式:压力式控制部分:手动/自动控制正、反洗3)精密过滤器,1台过滤能力:13m³/h过滤材质:PP棉过滤形式:压力式过滤精度:5微米3.3 超滤系统3.3.1 超滤设计参数1)膜组件图1 超滤膜组件进出水口2)膜组件参数:型号UFc200AM性能参数设计产水量m3/h 1.75设计产水通量L/m2/h 65膜材料PVC公称孔径μm 0.01μm 截留分子量Da 100,000 产水浊度NTU ≦0.1大肠杆菌去除率>99.9999% 病毒去除率>99.99%使用条件过滤方式内压错流过滤进水最高压力MPa 0.2运行压力MPa <0.15MPa 工作温度范围℃5~40 PH范围2~13尺寸重量有效膜面积m227组件外形尺寸mm Φ200×1480 膜丝内/外径mm 1.0/1.8 接口尺寸mm Ø503)清洗条件设计反洗反洗水源超滤自产水/水反洗频率60分钟一次(根据调试情况调整)反洗时间60s反洗流量设计产水量的2倍反洗动力反洗泵(反洗压力<0.MPa)反洗压力<0.2MPa加药反洗每次反洗的时候利用计量泵往反洗水中加入5~15ppmNaClO浓水口/正洗排放口/反洗上排口进水口/反洗下排口出水口/反洗进水口出水口/反洗进水口正洗正洗水源原水正洗频率每次开机先冲洗1分钟/每次反洗后正洗时间60s正洗流量原水泵流量正洗动力原水泵正洗压力<0.2MPa化学清洗清洗压力每隔2-3月一次或在相同运行条件下压差上升0.5bar以上清洗时间60-180分钟清洗药剂2%柠檬酸、0.1%NaOH+0.2%NaClO(有效氯计)清洗流量设计产水量的1-1.5倍3.3.2 超滤系统主体装置数量:1套出水量:10m³/h膜型号:邦膜牌UFc200AM(内压式)膜数量:6支/套3.4 反洗系统本项目设置1套反洗系统。
超滤技术手册版权归inge AG公司所有Flurstraße 1786926 Greifenberg (德国)Tel.: +49 (0) 8192 / 997 700Fax: +49 (0) 8192 / 997 999E-Mail: info@inge.ag目录1.超滤技术基本原理(UF) (3)1.1. 工艺 (3)1.1.1. 死端过滤模式 (4)1.1.2. 错流过滤模式 (4)1.1.3. 反向清洗模式清洗 (5)1.1.4. 正向冲洗模式清洗 (6)1.2. 化学清洗 (7)1.3. 隔除能力 (7)2.滤膜组合系统 (15)2.1. 滤膜组合技术 (16)2.1.1. 超滤和絮凝作用 (16)2.1.2. 超滤和活性碳 (16)2.1.3. 超滤和纳滤 (17)2.1.4. 超滤和反渗透 (17)2.2. 与传统的处理工艺相比较 (17)3.inge标准:最好的UF 技术 (18)3.1. 滤膜概念 (19)3.1.1. 模件示意图 (19)3.2. Dizzer的隔除能力 (21)3.2.1. 减少MS2噬菌体 (21)3.2.2. 减少隐子囊孢子 (21)3.2.3. 减少混浊度 (22)3.2.4. 减少SDI (23)3.2.5. 减少TOC (23)4.声明 (24)5.现场帮助和服务 (24)1超滤技术基本原理1.1工艺超滤,它属于滤膜过滤工艺,是一种压力驱动的过滤技术。
基本滤膜过滤工艺的示意图如图1所示。
图1: 基本滤膜过滤工艺示意图用泵将水压入膜件,由于滤膜的膜压差(TMP),进水得到过滤。
水中杂质由滤膜剔除(与其细孔尺寸有关),并留在进水中。
当被剔除杂质的浓度(它可以包括分子、原子或离子及胶体)变得太高时,一部分进水作为浓缩物被定期从系统中去除。
当杂质浓度太高时,胶体开始产生堵塞,或系统可在滤膜上产生结垢。
在滤膜表面产生的沉积层会改变其过滤性质和所需的过滤压力。
超滤设计方案范文超滤是一种常用的膜分离技术,广泛应用于水处理、生物制药、食品加工等领域。
超滤能够通过膜孔直径的选择,实现对溶质和溶剂的分离和浓缩。
下面将详细介绍超滤的设计方案。
1.设计目标:根据不同的应用需求,设计一个超滤系统,满足以下要求:-高分离效率:能够有效分离溶质和溶剂,满足产品质量要求;-高产量:能够快速处理大量溶液,提高生产效率;-低能耗:尽可能降低能耗,减少运行成本;-稳定性:系统运行稳定,故障率低。
2.超滤膜选择:-根据需要分离的溶质大小和目标浓度,选择合适的膜孔直径。
常见的超滤膜孔径为0.1-0.01微米。
-根据膜的材料选择,常见的膜材料有聚酯、聚醚砜、聚醚酯等。
根据溶液的特性和工艺要求,选择合适的膜材料。
3.超滤系统设计:-膜模块选择:根据预计的处理量和目标产量,选择合适的膜模块。
常见的膜模块有螺旋式、纳管式等。
根据具体情况选择合适的膜模块和数量。
-进料系统设计:设计一个稳定的进料系统,确保溶液能够均匀地进入超滤系统,并且能够保持一定的流速和压力。
-膜池设计:根据超滤膜的尺寸和数量,设计合适大小的膜池,确保膜能够充分利用并且易于清洗和维护。
-清洗系统设计:超滤膜需要定期进行清洗以去除污染物,设计一个适当的清洗系统,保证膜的寿命和性能稳定。
-控制系统设计:设计一个自动控制系统,监测和控制超滤过程中的压力、流量和温度等参数,确保系统的稳定运行。
4.能耗优化:-选择低阻力的膜材料,减少系统的操作压力,降低能耗。
-优化流体动力学设计,减少流体运动阻力,降低能耗。
-应用逆渗透与超滤的联合工艺,利用逆渗透膜的浓差驱动作用,减少能耗。
5.系统维护:-定期对膜进行清洗和维护,保持膜的性能稳定。
-监测和记录系统运行参数,及时发现故障并进行维修。
-培训运维人员,提高其技能水平,确保系统长期稳定运行。
通过以上的超滤设计方案,可以实现高效分离和浓缩溶质和溶剂,提高生产效率,达到节能减排的目的。
同时,合理的系统设计和维护策略,可以保证系统的稳定运行和长寿命。
超滤设备的处理方法及工艺流程介绍的资料下载超滤通常采用中空纤维膜,原水在中空纤维装置的外侧或内腔加压流动,姗J构成外压式与内压式。
超滤是动态过滤过程,被截留物质可随浓缩液而排除,不致堵塞膜表面。
在超滤过程中,由于被截留的杂质在膜表面上不断积累,会产生浓差极化现象,使膜的透水量下降。
合理地选择运行条件和清洗工艺,可完全控制超滤的浓差极化问题。
超滤设备的出力与操作温度有关,水的黏度随温度变化而变化,温度每升高1℃,透水量增加2. 15%。
超滤系统实例1.原水水质(见表4-20)2.超滤预处理超滤预处理步骤为:混凝→澄清→过滤及加氯杀菌处理后→超滤((UF)→反渗透(RO)系统。
原水中含有铁锈、菌藻残留物、固体颗粒及破碎矾花等杂质,为防止这些物质对超滤的机械污堵,超滤预处理包括粗滤和精滤两部分。
粗滤采用四套逆流高效纤维过滤器,直径3000mm,单套产水210t/h;精滤采用两套20µm缠绕式滤芯过滤器,单套产水160t/h及加氯杀菌处理。
该技术指导资料由莱特莱德大连超滤设备厂家提供3.逆流高效纤维过滤器的运行管理压差超过0. 2MPa或浊度超过2NTU时,过滤器退出运行进行气水洗。
另外,过滤器在运行过程中不得停运,以防滤层紊乱及搅动影响产水质量。
过滤器的日常清洗通过上进水下进气的方式对流冲洗,保持进气强度在60L/(s·m³)左右,使纤维束充分搅动,达到截留物彻底脱落的目的。
同时在运行之初,缓慢升压,废水外排,直到产水合格后并人系统。
高效过滤器长期运行后,由于菌藻类滋生繁殖、胶体与纤维束的静电吸引、有机物的污染等因素,造成运行周期短,截污能力下降,水气洗关后压降不明显,需要进行化学清洗。
清洗采用3 % NaOH、 0. 5 5 % NaCLO 混合液,加热到30℃,浸泡滤料24h后进行气水合洗,至pH≤8时结束,清洗后产水还原率可达98%以上,截污容量大于1 0kg/m³。
超滤系统工艺设计超滤系统工艺设计超滤膜以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
超滤使用错流过滤技术,通过部分进水推向膜的净水侧,悬浮物、细菌和病毒保持悬浮状态,并不断从膜表面移除。
因为错流技术能够处理含高浓度悬浮物的给水,因此该技术通常可用于膜生物反应器,将微生物从被处理的污水中分离,微生物可回流至生化池,而透过液可以再生利用或排放。
超滤错流膜与二沉池相比的优点如下:(1)超滤错流膜对微生物形成一个绝对的屏障,可以阻止生物量流失,这不仅对净水有利,对保持生化池中的生物量、防止污泥膨胀也有利。
(2)超滤错流膜对悬浮物形成一个绝对的屏障,因为悬浮物吸附许多种类污染物(例如重金属、PAH、油脂等),因此膜的综合出水水质更好。
在排放越来越严格的今天,这是绝对有利的。
(3)如果透过液作为再生水回用,不需要过多的精力做进一步处理。
外置式错流式超滤膜组件特点如下:很高的污泥浓度(MLSS=1000~40000mg/l);进水条件变化的适应力强;水平(卧式)放置;紧凑、简洁式安装;工艺、安装简单;湍流,能有效控制滤饼层的生成;连续的浓水回流,一次过滤时间很长;构造坚固可靠,产水水质稳定;膜系统易于停机放置;维护保养简单;清洗简单,可以实现全自动运行;避免了传统沉淀池出现污泥膨胀和浮渣的问题。
4.5.1超滤膜选型设计计算根据超滤的影响因素和超滤膜组件特点可知:超滤的工作压力为0.1~0.6MPa,实际操作时应在极限通量附近进行,此时操作压力约为0.5~0.6MPa,超滤通量一般为1~100L/(m2·h),本设计经过实际测量试验得知超滤通量为J v=70 L/(m2·h)(实际参数)。
超滤系统预处理工艺选择与设计详解超滤无法拦截去除水中的溶解性物质,因此如果需要利用超滤工艺对溶解态的污染物质进行拦截去除,则必须要在超滤的预处理工艺将其转化为悬浮形态或胶体形态。
如果水中的污染物质主要是微生物和颗粒性物质,则通常超滤前只需要很少的预处理措施,一般在超滤工艺的上游安装预过滤器(100μm-300μm)去除较大的颗粒物质等即可,比如采用自清洗过滤器、袋滤、滤芯或盘式过滤器等。
根据原水类型或超滤进水水质的波动等情况,超滤前也可选用其它预处理技术,比如凝聚/絮凝、澄清/沉淀、气浮或颗粒介质过滤等。
1、凝聚/絮凝通过在水中加入某些特定的溶解盐类,使水中的淤泥、粘土、胶体、悬浮物、微生物、NOM(通过吸附在其他颗粒中)等颗粒相互吸附结合形成颗粒聚集体(体),以便在后续工艺(如澄清、气浮或颗粒介质过滤等)中进行去除的一种物理和化学过程。
在凝聚过程中,将铝盐或铁盐等化学品添加到水中,通过快速搅拌(“快速混合”)使添加药剂在水中快速扩散,以减少颗粒物之间的排斥力(脱稳作用),使颗粒彼此吸附聚合。
相对应的是,絮凝过程属于低强度搅拌,以增加颗粒聚合的速度。
凝聚与絮凝可使用阳离子型、阴离子型或非离子型等药剂。
2、澄清/沉淀设置澄清/沉淀工艺用于降低凝聚/絮凝工艺后的颗粒或胶体物质浓度,或去除浑水中的可沉固体。
澄清/沉淀工艺不添加凝结剂。
该预处理一般用于平均浊度>30 NTU 或峰值浊度>50NTU 的进水,可得到浊度<2 NTU和SDI<6的澄清水。
澄清/沉淀池的水力停留时间一般为2-4小时。
该预处理的类型包括:(1)高效沉淀池(斜板沉淀池)在常规沉淀池中增加斜板以提供更大的沉淀面积,可更高效地沉淀去除水中的悬浮固体物质。
一般采用60°倾角,采用5cm板间距的斜板设置,其沉淀速率更高,占地面积更(通常比常规沉淀池的占地面积小65-80%)。
斜板沉淀池可适用于处理浊度>50NTU的进水。
超滤系统工艺设计
超滤膜以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
超滤使用错流过滤技术,通过部分进水推向膜的净水侧,悬浮物、细菌和病毒保持悬浮状态,并不断从膜表面移除。
因为错流技术能够处理含高浓度悬浮物的给水,因此该技术通常可用于膜生物反应器,将微生物从被处理的污水中分离,微生物可回流至生化池,而透过液可以再生利用或排放。
超滤错流膜与二沉池相比的优点如下:
(1)超滤错流膜对微生物形成一个绝对的屏障,可以阻止生物量流失,这不仅对净水有利,对保持生化池中的生物量、防止污泥膨胀也有利。
(2)超滤错流膜对悬浮物形成一个绝对的屏障,因为悬浮物吸附许多种类污染物(例如重金属、PAH、油脂等),因此膜的综合出水水质更好。
在排放越来越严格的今天,这是绝对有利的。
(3)如果透过液作为再生水回用,不需要过多的精力做进一步处理。
外置式错流式超滤膜组件特点如下:
很高的污泥浓度(MLSS=1000~40000mg/l);进水条件变化的适应力强;水平(卧式)放置;紧凑、简洁式安装;工艺、安装简单;湍流,能有效控制滤饼层的生成;连续的浓水回流,一次过滤时间很长;构造坚固可靠,产水水质稳定;膜系统易于停机放置;维护保养简单;清洗简单,可以实现全自动运行;避免了传统沉淀池出现污泥膨胀和浮渣的问题。
4.5.1超滤膜选型设计计算
根据超滤的影响因素和超滤膜组件特点可知:超滤的工作压力为0.1~0.6MPa,实际操作时应在极限通量附近进行,此时操作压力约为0.5~0.6MPa,超滤通量一般为1~100L/(m2·h),本设计经过实际测量试验得知超滤通量为J v=70 L/(m2·h)(实际参数)。
(1)超滤系统流量设计计算:
超滤系统流量Q=原水流量Q d+深度处理回用水Q h
其中深度处理回用水Q h的设计详见深度处理设计,这里先给出数值Q h=50m3/h 由此可知超滤系统流量Q=300m3/h+50m3/h=350m3/h=14.6m3/h
(2)超滤膜设计计算:
膜需要总面积S=Q/J v=14.6×1000L/h/70 L/(m2·h)=209m2
4.5.2超滤膜选型设计参数表
4.5.3超滤构筑物设计参数表
4.5.4超滤系统设备
(1)供料泵
(2)循环泵
(3)清洗泵
(4)清洗水箱
(5)超滤膜
(6)电磁流量计
(7)电磁流量计
(8)电磁流量计
(9)pH计
(10)压力传感器
(11)压力传感器。